Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux

with
Olivier Bernardi, Brandeis University, Boston
Kilian Raschel, CNRS, Université de Tours




Counting quadrant walks... at the séminaire lotharingien

SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan
“Computer Algebra for Lattice Path Combinatorics”

SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel
“Analytic and Probabilistic Tools for Lattice Path Enumeration”




Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

Example. S = {10,10,11,11}, po = (0,0)



Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

- What is the number g(n) of n-step walks starting at pg and
contained in N°?

For (i,j) € N2, what is the number q(i,j; n) of such walks that end
at (i,5)?

Example. S = {10,10,11,11}, po = (0,0)




Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

- What is the number g(n) of n-step walks starting at pg and
contained in N°?

For (i,j) € N2, what is the number q(i,j; n) of such walks that end

t (i,j)?

The associated generating function:
QU yit) =Y > qli,jimx'yt".
n>0i,>0

What is the nature of this series?



A hierarchy of formal power series

o Rational series

_ P(1)
A(t) = A0
e Algebraic series
P(t,A(t)) =0

e Differentially finite series (D-finite)
d
> Pi(t)A(r) =0
i=0

e D-algebraic series
P(t, At), A(t), ..., A (t)) =0

Multi-variate series: one DE per variable




Example: S = {01,10,11}
Qx,yit) =1+ t(y + X +xy)Qx,y) = txQ(0,y) — txy Q(x,0)
withx=1/xand y =1/y.

QU yit) = Qxy) =D > qlijin)x'y/t"

n>0i >0



Example: S = {01,10,11}
Qlx,yit) = 14 t(y + X +xy)Q(x,y) — txQ(0,y) — txy Q(x. 0)

(1 —tly+x+ X}_/)) Q(x,y) =1—-txQ(0,y) — txyQ(x,0),



Example: S = {01,10,11}
Qlx,y;t) =14 t(y + X+ x¥7)Q(x,y) — txQ(0,y) — txyQ(x, 0)
or
(1 - t(y + X +X}_/))Q(X7y) =1- t)_(Q(an) - tX_)_/Q(X, 0)7
or

(1 - t(y + X —|—x;7))ny(x,y) =Xy — tyQ(O’y) - tX2Q(X’ O)




1. Write a functional equation -

Example: S = {01,10, 11}
Q(X7y; t) =1+ t(y +)_<+X)7)Q(X7y) - t)_(Q(O/y) - tX)_/Q(X,O)

or
(1—tly +x+x7))Qx,y) =1 - txQ(0,y) — txy Q(x,0),
or

(1= tly + X +x7))0Q(x,y) = xy — tyQ(0, ) — tx*Q(x,0)

e The polynomial 1 — t(y + X + x¥) is the kernel of this equation

e The equation is linear, with two catalytic variables x and y (tautological
at x =0 or y = 0) [Zeilberger 00]



Let P(t,y,S(y;t), Ai(t),. .., Ak(t)) be a polynomial equation in one
catalytic variable y that defines uniquely S(y; t), Ai(t), ..., Ax(t) as
formal power series. Then each of this series is algebraic.

The proof is constructive.



Let P(t,y,S(y;t), Ai(t),. .., Ak(t)) be a polynomial equation in one
catalytic variable y that defines uniquely S(y; t), Ai(t), ..., Ax(t) as
formal power series. Then each of this series is algebraic.

The proof is constructive.

Example: for S(y;t) = Q(0,y; t),

Ll oy (tyS(y; t) + %)2 - (tyS(y; t) + }l,) —26%5(0; 1)

y2 y




Let P(t,y,S(y;t), Ai(t),. .., Ak(t)) be a polynomial equation in one
catalytic variable y that defines uniquely S(y; t), Ai(t), ..., Ax(t) as
formal power series. Then each of this series is algebraic.

The proof is constructive.

= A special case of an Artin approximation theorem with “nested”
conditions [Popescu 86]



{

D-finite transcendental

(1= t(y + x + x7))xyA(x,y) = xy — tyA(0, y) — tx?A(x, 0)

Algebraic

(1—t(X + 7+ xy))xyA(x,y) = xy — tyA(0, y) — txA(x,0)

ﬁ Not D-finite

(1 —t(x+Xx+y+xy))xvA(x,y) = xy — tyA(0, y) — txA(x, 0)

But why?



Example. Take S = {10,01, 11}, with step polynomial

P(x,y) =Xx+y+xy



Example. Take S = {10,01, 11}, with step polynomial
P(x,y) =X+y+xy
Observation: P(x,y) is left unchanged by the rational transformations

O:(x,y)—~( ,y) and V:(x,y)—(x, ).



Example. Take S = {10,01, 11}, with step polynomial
P(x,y) =X+y+xy
Observation: P(x,y) is left unchanged by the rational transformations

o (x,y)— (xy,y) and V:(x,y)— (x,x¥).



2. The group of the model -

Example. Take S = {10, 01,11}, with step polynomial
P(x,y) =X+ y+ xy
Observation: P(x,y) is left unchanged by the rational transformations
d:(x,y) = (xy,y) and V:(x,y)— (x,xy).

They are involutions, and generate a finite dihedral group G:

v
(x,¥) (7,%)
vy —— ) Ty



2. The group of the model ~

Example. Take S = {10, 01,11}, with step polynomial
P(x,y) =X+ y+ xy
Observation: P(x,y) is left unchanged by the rational transformations
o (x,y)— (xy,y) and V:(x,y)— (x,x¥).

They are involutions, and generate a finite dihedral group G:

v
(x,¥) (7,%)
v (6xp) ) v

Remark. G can be defined for any quadrant model with small steps



o If S ={01,11,10,11}, then P(x,y) = X(1L +¥) + ¥ + xy and
& (xy) > (F(L+7)y) and W (x,y) o (6 x7(1+ %))

generate an infinite group:

O @1y Ly
(x,y)




Example. If S = {01,10, 11}, the orbit of (x,y) is

"
a9 (Ry.%) —&

(x,¥) (¥.%)
v (o) 5 7 v

and the (alternating) orbit sum is

0S = xy — xy? + X%y — Xy + xy? — x%y



The series Q(x, y; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10|, [Bostan-Kauers 10]
[Kurkova-Raschel 12]
[Mishna-Rechnitzer 07], [Melczer-Mishna 13]
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e Properly coloured triangulations (g colours):

TOGyit) =TGy) =x(g—1) +xytT(x,y)T(L,y)
T(Xay) B T(X70) —x2yt T(Xay) B T(lvy)

x—1

+ xt



e Properly coloured triangulations (g colours):

TOGyit) =TGy) =x(g—1) +xytT(x,y)T(L,y)
T(Xay) B T(X70) —x2yt T(Xay) B T(lvy)

+ xt ~—1

Isn't this reminiscent of quadrant equations?

Rlx,yit) = Qx,y) = 1+ txyQ(x, y)
o tQ(X7Y) - 0(07}/) o tQ(X7Y) B Q(X7 0)
x y

{




e Properly coloured triangulations (g colours):

TOGyit) =TGy) =x(g—1) +xytT(x,y)T(L,y)
T(va) B T(X70) —x2yt T(X7y) B T(lay)

t
X y x—1

e For g = 4 cos? . q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y.




e Properly coloured triangulations (g colours):

TOGyit) =TGy) =x(g—1) +xytT(x,y)T(L,y)
T(va) B T(X70) —x2yt T(X7y) B T(lay)

t
X y x—1

e For g = 4 cos? . q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y. This implies that it is algebraic [mbm-Jehanne
06].




e Properly coloured triangulations (g colours):

TOGyit) =TGy) =x(g—1) +xytT(x,y)T(L,y)
T(va) B T(X70) —x2yt T(X7y) B T(lay)

t
X y x—1

e For g = 4 cos? . q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y. This implies that it is algebraic [mbm-Jehanne
06].

e For any g, the generating function of properly g-coloured planar
triangulations is differentially algebraic:

2(1—q)w+ (w+ 10H — 6wH')H" + (4 — q)(20H — 18wH' + 9w’ H") = 0

with H(w) = wT(1,0; /w).




|. Adapt Tutte's method to quadrant walks: new and uniform proofs of
algebraicity.

[I. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.



In this talk

|. Adapt Tutte's method to quadrant walks: new and uniform proofs of
algebraicity.

Il. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.
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In this talk

|. Adapt Tutte's method to quadrant walks: new and uniform proofs of
algebraicity.

Il. Extension to an analytic context: some walks with an infinite group
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[In the world of formal power series]



e The equation (with x =1/x and y = 1/y):
(1 t(x+7 +x))xQ(x,y) = xy — txQ(x,0) — tyQ(0, y)
=xy = R(x) = 5(y)



Kreweras' algebraic model

e The equation (with x =1/x and y = 1/y):
(1= t(x+ 7 +x9)0Q(x,y) = xy — txQ(x,0) — tyQ(0, )
=xy — R(x) = S(y)
o If we take x = t + ut?, both roots of the kernel
x —t 4 /(x — t)2 — 4t2x3

are series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y).



Kreweras' algebraic model

e The equation (with x =1/x and y = 1/y):
(1= t(x+7 +x))vQ(x, y) = xy — xQ(x,0) — tyQ(0, y)
=xy — R(x) = 5(y)

o If we take x = t + ut?, both roots of the kernel

are series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y). This gives

xYy = R(X) + S(Yo), xY1 = R(X) + S(Yl),
so that

’ S(YO) - S(Yl) = XY() — XY1. ‘




Kreweras' algebraic model

e The equation (with x =1/x and y = 1/y):
(1= t(x+ 7 +x9)0Q(x,y) = xy — txQ(x,0) — tyQ(0, )
=xy — R(x) = 5(y)
o If we take x = t + ut?, both roots of the kernel
x —t 4 /(x — t)2 — 4t2x3
2tx2

are series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y). This gives

xYo = R(x)+S(Yo),  xY1=R(x)+S(1),

Yo1 =

so that

‘ S(YO) - S(Yl) = XY() — XY1. ‘

e Are there rational solutions to this equation?



Def. A rational function D(y; t) = D(y) is a decoupling function if, for
Yo,1 the roots of the kernel,

D(Yo) — D(Yl) = XYO — XY1.



Def. A rational function D(y; t) = D(y) is a decoupling function if, for
Yo,1 the roots of the kernel,

D(Yo) — D(Yl) = XYO — XY1.

Example: For Kreweras' model, D(y) = —1/y is a decoupling function.

Proof: ) ) ) ) )
Z=P(x,Y))=~-+ — Yo=-4 — Y;
t (X’ ) X+Y0+X0 X—l_Yl—i-X1



Def. A rational function D(y; t) = D(y) is a decoupling function if, for
Yo,1 the roots of the kernel,

D(Yo) — D(Y]_) = XY() — XY1.

Example: For Kreweras' model, D(y) = —1/y is a decoupling function.
Proof: ) ) ) ) )

S P, Y) =4 — 4 xYo= -+ — +xY

t (X’ ) X+Y0+X0 X—l_Yl—i-X1

e A quadrant model with finite group admits a decoupling function if and

only if its orbit sum is zero (exactly 4 models).
e Exactly 9 quadrant models with an infinite group admit a decoupling
function.

el als (e ol I als Sl




e The equation
S(Yo) — S(Yl) = XYO — XY]_,

with S(y) = tyQ(0, y), now reads
5(Y0) — D(Yo) = 5(Y1) — D(V1),
with D(y) = —1/y.



e The equation
S(Yo) - S(Yl) = XYO - XY]_,

with S(y) = tyQ(0, y), now reads
5(Y0) — D(Yo) = 5(Y1) — D(V1),
with D(y) = —1/y.

e Are there rational solutions to this equation?



e The equation
S(Yo) — S(Y1) = xYo — xY1,
with S(y) = tyQ(O0, y), now reads
5(Yo) — D(Yo) = S(Y1) — D(V1),
with D(y) = —1/y.

e Are there rational solutions to this equation?

Def. A rational function /(y;t) = I(y) is an invariant if, the roots Yp, Y1
of the kernel satisfy
1(Yo) = 1(Y1).



Def. A rational function /(y; t) = I(y) is an invariant if, the roots Yp, Y1
of the kernel satisfy
1(Yo) = I(Y1).



Def. A rational function /(y; t) = I(y) is an invariant if, the roots Yp, Y1
of the kernel satisfy

1(Yo) = I(Y1).
Example: For Kreweras' model, with kernel 1 — t(X + y + xy), an
invariant exists:

t 1
Iy)= — — = —ty.
W=7z-)-v
Proof: check that /(Yp) = /(Y1).



Def. A rational function /(y; t) = I(y) is an invariant if, the roots Yp, Y1
of the kernel satisfy

1(Yo) = I(Y1).
Example: For Kreweras' model, with kernel 1 — t(X + y + xy), an
invariant exists:

t 1
Iy)= — — = —ty.
W=7z-)-v
Proof: check that /(Yp) = /(Y1).

A quadrant model admits a rational invariant if and only if the associated
group is finite.




We have
S(Yo)—D(Yo):S(Yl)—D(Yl) and I(Yo):I(Yl)
with

L t 1
SV -DW) =R+ and ()= 5T -



We have
S(Yo)—D(Yo):S(Yl)—D(Yl) and I(Yo):I(Yl)

with

S(y) - D(y) = yQ(0.) + % and  I(y)= 51y

There are few invariants: /(y) must be a polynomial in S(y) — D(y)
whose coefficients are series in t.




We have
S(Yo)—D(Yo):S(Yl)—D(Yl) and I(Yo):I(Yl)

with

S(y) - D(y) = yQ(0.) + % and  I(y)= 51y

There are few invariants: /(y) must be a polynomial in S(y) — D(y)
whose coefficients are series in t.

t 1 1\? 1
Sty = t(tyQ(O,y)—i——) - (tyQ(O,y)—I——) +c
y y y y

Expanding at y = 0 gives the value of c.



We have
S(Yo)—D(Yo):S(Yl)—D(Yl) and I(Yo):I(Yl)

with

S(y) - D(y) = yQ(0.) + % and  I(y)= 51y

There are few invariants: /(y) must be a polynomial in S(y) — D(y)
whose coefficients are series in t.

oy =e(ve0 )+1)2—(to(o )+3)  ~22000)
y2 y Y = Y Y y 34 Y y Y e

Expanding at y = 0 gives the value of c.



All models with a finite group and a zero orbit sum have a rational
invariant and a decoupling function = uniform solution via the solution of
an equation with one catalytic variable

sVl e



Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have a rational
invariant and a decoupling function = uniform solution via the solution of
an equation with one catalytic variable

sVl e

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:

2 1 2
1 1 1 1 1 1
17§2 1%2 2%?1 2%1
1 1 1 1 1 1
A 1 2 1



[An excursion in the world of analytic functions]

Probability Theory and Stochastic Modelling 40

Guy Fayolle
Roudolf fasnogorodski
Vadim Malyshev

~ Random
Walks in the
Quarter Plane

Algebraic Methods, Boundary Value
Problems, Applications to Queueing
Systems and Analytic Combinatorics

Second Edition

@ Springer

Comeussoaris

Fayolle, lasnogorodski, Malyshev [1999]



For the 9 models with an infinite group and a decoupling function, the
series Q(x, y; t) is D-algebraic.

That is, it satisfies a DE in t (and a DE in x, and a DE in y) with
polynomial (or even constant) coefficients.

AR A TR



o Still require that /(Yp) = /( Y1), where Yp, Y1 are the roots of the kernel
... but only for some values of x (and t).



o Still require that /(Yp) = /( Y1), where Yp, Y1 are the roots of the kernel
... but only for some values of x (and t).

e meromorphicity condition in a domain



For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y; t) = p (R(y: t), wi(t), ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y: t) = o (R(y: t),wr(t), ws(t))
where
g is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral

" i/X2 dx " /Xl dx
1= ——, w3= —
xa /—0(x) X(v1) VO(x)

f(y) dz
Ry:t) = /f

(v2) V423 — gz — g3

&2, g3 polynomials in t, f(y) rational in y and algebraic in t.




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y; t) = p (R(y: t), wi(t), ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral

I(y; t) is D-algebraic in y and t.




For a model with decoupling function D(y) we have, for x € (x1, x2):
S(Yo) — D(Yo) = S(Yl) — D(Yl) and I(Yo) = /(Yl)
where S(y) = K(0,y)Q(0,y) and I(y) is the weak invariant.



For a model with decoupling function D(y) we have, for x € (x1, x2):
S(Yo)—D(Yo)IS(Yl)—D(Yl) and /(YO):/(YI)
where S(y) = K(0,y)Q(0,y) and I(y) is the weak invariant.

There are few invariants: S(y) — D(y) must be a rational function

in /(y). The value of this rational function is found by looking at the
poles and zeroes of S(y) — D(y).




For a model with decoupling function D(y) we have, for x € (x1, x2):
S(Yo)—D(Yo)IS(Yl)—D(Yl) and I(YO):/(YI)
where S(y) = K(0,y)Q(0,y) and I(y) is the weak invariant.

There are few invariants: S(y) — D(y) must be a rational function

in /(y). The value of this rational function is found by looking at the
poles and zeroes of S(y) — D(y).

Example: is decoupled with D(y) = —1/y and

1 1o o
SW) ) =t y)QOY+ =y ey T i) i) -




For a model with decoupling function D(y) we have, for x € (x1, x2):

S(Yo)—D(Yo)IS(Yl)—D(Yl) and /(YO):/(YI)
where S(y) = K(0,y)Q(0,y) and I(y) is the weak invariant.

There are few invariants: S(y) — D(y) must be a rational function
in /(y). The value of this rational function is found by looking at the
poles and zeroes of S(y) — D(y).

For the 9 models with an infinite group and a decoupling function, the
series Q(x, y; t) is D-algebraic.
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To do:
o find explicit DEs (done for y)
e Nature of Q(x,y;t) when no decoupling function exists?
[Dreyfus, Hardouin, Roques, Singer 17(a)]





