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Counting quadrant walks

Let S be a finite subset of Z2 (set of steps) and p0 ∈ N2 (starting point).

What is the number q(n) of n-step walks starting at p0 and
contained in N2?
For , what is the number of such walks that end at ?

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0)
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Counting quadrant walks

Let S be a finite subset of Z2 (set of steps) and p0 ∈ N2 (starting point).

What is the number q(n) of n-step walks starting at p0 and
contained in N2?
For (i , j) ∈ N2, what is the number q(i , j ; n) of such walks that end
at (i , j)?

The associated generating function:

Q(x , y ; t) =
∑
n≥0

∑
i ,j≥0

q(i , j ; n)x iy j tn.

What is the nature of this series?



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series
P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable



1. Write a functional equation

Example: S = {01, 1̄0, 11̄}
Q(x , y ; t) = 1 + t(y + x̄ + xȳ)Q(x , y)− tx̄Q(0, y)− txȳQ(x , 0)

with x̄ = 1/x and ȳ = 1/y .

Q(x , y ; t) ≡ Q(x , y) =
∑
n≥0

∑
i ,j≥0

q(i , j ; n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation
• The equation is linear, with two catalytic variables x and y (tautological

at x = 0 or y = 0) [Zeilberger 00]
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or (
1− t(y + x̄ + xȳ)
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Equations with one catalytic variable are much easier!

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a polynomial equation in one
catalytic variable y that defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series. Then each of this series is algebraic.

The proof is constructive.
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Example: for S(y ; t) = Q(0, y ; t),

t
y2 −

1
y
− ty = t

(
tyS(y ; t) +

1
y

)2

−
(

tyS(y ; t) +
1
y

)
− 2t2S(0; t).



Equations with one catalytic variable are much easier!

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a polynomial equation in one
catalytic variable y that defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series. Then each of this series is algebraic.

The proof is constructive.

⇒ A special case of an Artin approximation theorem with “nested”
conditions [Popescu 86]



Equations with two catalytic variables are harder...

D-finite transcendental(
1− t(y + x̄ + xȳ)

)
xyA(x , y) = xy − tyA(0, y)− tx2A(x , 0)

Algebraic

(1− t(x̄ + ȳ + xy))xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

Not D-finite

(1− t(x + x̄ + ȳ + xy))xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

But why?



2. The group of the model

Example. Take S = {1̄0, 01, 11̄}, with step polynomial

P(x , y) = x̄ + y + xȳ

Observation: P(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (

x̄y

, y) and Ψ : (x , y) 7→ (x ,

xȳ

) .

They are involutions, and generate a finite dihedral group G :

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

Remark. G can be defined for any quadrant model with small steps
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Observation: P(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .
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(ȳ , xȳ)
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The group is not always finite

• If S = {01̄, 1̄1̄, 1̄0, 11}, then P(x , y) = x̄(1 + ȳ) + ȳ + xy and

Φ : (x , y) 7→ (x̄ ȳ(1 + ȳ), y) and Ψ : (x , y) 7→ (x , x̄ ȳ(1 + x̄))

generate an infinite group:

Ψ

Φ

(x , y)

· · ·

· · ·(x , x̄ ȳ(1 + x̄))

(x̄ ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



3. When G is finite: the orbit sum

Example. If S = {01, 1̄0, 11̄}, the orbit of (x , y) is

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

and the (alternating) orbit sum is

OS = xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ



Classification of quadrant walks with small steps

Theorem
The series Q(x , y ; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

transcendental

|G |=∞: 56

Not D-finite



Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

transcendental

|G |=∞: 56

Not D-finite

Formal power
series algebra

in probability
Random walks

effective closure properties
arithmetic properties

G-functions
asymptotics

D-finite series

Computer algebra

Complex analysis



An old equation [Tutte 73]

• Properly coloured triangulations (q colours):

T (x , y ; t) ≡ T (x , y) = x(q − 1) + xytT (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1



An old equation [Tutte 73]

• Properly coloured triangulations (q colours):

T (x , y ; t) ≡ T (x , y) = x(q − 1) + xytT (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
Isn’t this reminiscent of quadrant equations?

Q(x , y ; t) ≡ Q(x , y) = 1 + txyQ(x , y)

− t
Q(x , y)− Q(0, y)

x
− t

Q(x , y)− Q(x , 0)

y



An old equation [Tutte 73]

• Properly coloured triangulations (q colours):
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+ xt
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Theorem [Tutte 73-84]

• For q = 4 cos2 πm , q 6= 0, 4, the series T (1, y) satisfies an equation with
one catalytic variable y .

This implies that it is algebraic [mbm-Jehanne
06].

• For any q, the generating function of properly q-coloured planar
triangulations is differentially algebraic:

2(1− q)w + (w + 10H − 6wH ′)H ′′+ (4− q)(20H − 18wH ′+ 9w2H ′′) = 0

with H(w) = wT (1, 0;
√

w).
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In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of
algebraicity.

II. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.
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In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of
algebraicity.

II. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.

quadrant models: 79

|G |<∞: 23

D-finite

dec. 4

algebraic

no dec. 19

transcendental

|G |=∞: 56

Not D-finite

dec. 9

D-algebraic

no dec. 47

???



I. New proofs for algebraic models

[In the world of formal power series]



Kreweras’ algebraic model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

• If we take x = t + ut2, both roots of the kernel

Y0,1 =
x − t ±

√
(x − t)2 − 4t2x3

2tx2

are series in t with rational coefficients in u, and can be legally
substituted for y in Q(x , y).

This gives

xY0 = R(x) + S(Y0), xY1 = R(x) + S(Y1),

so that
S(Y0)− S(Y1) = xY0 − xY1.

• Are there rational solutions to this equation?



Kreweras’ algebraic model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
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)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

• If we take x = t + ut2, both roots of the kernel

Y0,1 =
x − t ±

√
(x − t)2 − 4t2x3

2tx2

are series in t with rational coefficients in u, and can be legally
substituted for y in Q(x , y). This gives

xY0 = R(x) + S(Y0), xY1 = R(x) + S(Y1),

so that
S(Y0)− S(Y1) = xY0 − xY1.

• Are there rational solutions to this equation?



Kreweras’ algebraic model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
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Decoupling functions

Def. A rational function D(y ; t) ≡ D(y) is a decoupling function if, for
Y0,1 the roots of the kernel,

D(Y0)− D(Y1) = xY0 − xY1.

Example: For Kreweras’ model, D(y) = −1/y is a decoupling function.
Proof:

1
t

= P(x ,Yi ) =
1
x

+
1
Y0

+ xY0 =
1
x

+
1
Y1

+ xY1

Theorem [Bernardi-mbm-Raschel]
• A quadrant model with finite group admits a decoupling function if and
only if its orbit sum is zero (exactly 4 models).
• Exactly 9 quadrant models with an infinite group admit a decoupling
function.
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Back to Kreweras’ model

• The equation
S(Y0)− S(Y1) = xY0 − xY1,

with S(y) = tyQ(0, y), now reads

S(Y0)− D(Y0) = S(Y1)− D(Y1),

with D(y) = −1/y .

• Are there rational solutions to this equation?

Def. A rational function I (y ; t) ≡ I (y) is an invariant if, the roots Y0,Y1
of the kernel satisfy

I (Y0) = I (Y1).
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Invariants

Def. A rational function I (y ; t) ≡ I (y) is an invariant if, the roots Y0,Y1
of the kernel satisfy

I (Y0) = I (Y1).

Example: For Kreweras’ model, with kernel 1− t(x̄ + ȳ + xy), an
invariant exists:

I (y) =
t
y2 −

1
y
− ty .

Proof: check that I (Y0) = I (Y1).

Theorem [Bernardi-mbm-Raschel]
A quadrant model admits a rational invariant if and only if the associated
group is finite.
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invariant exists:

I (y) =
t
y2 −

1
y
− ty .

Proof: check that I (Y0) = I (Y1).

Theorem [Bernardi-mbm-Raschel]
A quadrant model admits a rational invariant if and only if the associated
group is finite.



Back to Kreweras’ model:
combining decoupling functions and invariants

We have

S(Y0)− D(Y0) = S(Y1)− D(Y1) and I (Y0) = I (Y1)

with

S(y)− D(y) = tyQ(0, y) +
1
y

and I (y) =
t
y2 −

1
y
− ty .

The invariant lemma
There are few invariants: I (y) must be a polynomial in S(y)− D(y)
whose coefficients are series in t.

t
y2 −

1
y
− ty = t

(
tyQ(0, y) +

1
y

)2

−
(

tyQ(0, y) +
1
y

)

+ c−2t2Q(0, 0)

.

Expanding at y = 0 gives the value of c .
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Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have a rational
invariant and a decoupling function ⇒ uniform solution via the solution of
an equation with one catalytic variable

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:
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Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have a rational
invariant and a decoupling function ⇒ uniform solution via the solution of
an equation with one catalytic variable

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:
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II. Infinite groups: some differentially
algebraic models
[An excursion in the world of analytic functions]

Fayolle, Iasnogorodski, Malyshev [1999]



The role of decoupling functions

Theorem [Bernardi-mbm-Raschel]
For the 9 models with an infinite group and a decoupling function, the
series Q(x , y ; t) is D-algebraic.
That is, it satisfies a DE in t (and a DE in x , and a DE in y) with
polynomial (or even constant) coefficients.



A weaker (and analytic) notion of invariants

• Still require that I (Y0) = I (Y1), where Y0,Y1 are the roots of the kernel
... but only for some values of x (and t).

• meromorphicity condition in a domain
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Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral



Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral

ω1 = i
∫ x2

x1

dx√
−δ(x)

, ω3 =

∫ x1

X (y1)

dx√
δ(x)

.

R(y ; t) =

∫ f (y)

f (y2)

dz√
4z3 − g2z − g3

g2, g3 polynomials in t, f (y) rational in y and algebraic in t.



Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral

Proposition [Bernardi-mbm-Raschel]
I (y ; t) is D-algebraic in y and t.



Combining decoupling functions and invariants

For a model with decoupling function D(y) we have, for x ∈ (x1, x2):

S(Y0)− D(Y0) = S(Y1)− D(Y1) and I (Y0) = I (Y1)

where S(y) = K (0, y)Q(0, y) and I (y) is the weak invariant.

The invariant lemma [Litvinchuk 00]
There are few invariants: S(y)− D(y) must be a rational function
in I (y). The value of this rational function is found by looking at the
poles and zeroes of S(y)− D(y).
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Combining decoupling functions and invariants

For a model with decoupling function D(y) we have, for x ∈ (x1, x2):

S(Y0)− D(Y0) = S(Y1)− D(Y1) and I (Y0) = I (Y1)

where S(y) = K (0, y)Q(0, y) and I (y) is the weak invariant.

The invariant lemma [Litvinchuk 00]
There are few invariants: S(y)− D(y) must be a rational function
in I (y). The value of this rational function is found by looking at the
poles and zeroes of S(y)− D(y).

Example: is decoupled with D(y) = −1/y and

S(y) +
1
y

= t(1 + y)Q(0, y) +
1
y

=
I ′(0)

I (y)− I (0)
− I ′(0)

I (−1)− I (0)
− 1



Combining decoupling functions and invariants

For a model with decoupling function D(y) we have, for x ∈ (x1, x2):

S(Y0)− D(Y0) = S(Y1)− D(Y1) and I (Y0) = I (Y1)

where S(y) = K (0, y)Q(0, y) and I (y) is the weak invariant.

The invariant lemma [Litvinchuk 00]
There are few invariants: S(y)− D(y) must be a rational function
in I (y). The value of this rational function is found by looking at the
poles and zeroes of S(y)− D(y).

Corollary
For the 9 models with an infinite group and a decoupling function, the
series Q(x , y ; t) is D-algebraic.



Conclusion

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

transcendental

|G |=∞: 56

Not D-finite



Conclusion

quadrant models: 79

|G |<∞: 23

D-finite

dec. 4

algebraic

no dec. 19

transcendental

|G |=∞: 56

Not D-finite

dec. 9

D-algebraic

no dec. 47

???

To do:
find explicit DEs (done for y)
Nature of Q(x , y ; t) when no decoupling function exists?
[Dreyfus, Hardouin, Roques, Singer 17(a)]




