Walks in the quadrant: differential algebraicity

Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux with
Olivier Bernardi, Brandeis University, Boston Kilian Raschel, CNRS, Université de Tours

Counting quadrant walks... at the séminaire lotharingien

SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan "Computer Algebra for Lattice Path Combinatorics"

SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel "Analytic and Probabilistic Tools for Lattice Path Enumeration"

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps) and $p_{0} \in \mathbb{N}^{2}$ (starting point).

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps) and $p_{0} \in \mathbb{N}^{2}$ (starting point).

- What is the number $q(n)$ of n-step walks starting at p_{0} and contained in \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps) and $p_{0} \in \mathbb{N}^{2}$ (starting point).

- What is the number $q(n)$ of n-step walks starting at p_{0} and contained in \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

The associated generating function:

$$
Q(x, y ; t)=\sum_{n \geq 0} \sum_{i, j \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

What is the nature of this series?

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

Multi-variate series: one DE per variable

1. Write a functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$

$$
Q(x, y ; t)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

with $\bar{x}=1 / x$ and $\bar{y}=1 / y$.

$$
Q(x, y ; t) \equiv Q(x, y)=\sum_{n \geq 0} \sum_{i, j \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

1. Write a functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$

$$
Q(x, y ; t)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0),
$$

1. Write a functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$

$$
Q(x, y ; t)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

1. Write a functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$

$$
Q(x, y ; t)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0),
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

- The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation
- The equation is linear, with two catalytic variables x and y (tautological at $x=0$ or $y=0$) [Zeilberger 00]

Equations with one catalytic variable are much easier!

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a polynomial equation in one catalytic variable y that defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series. Then each of this series is algebraic.

The proof is constructive.

Equations with one catalytic variable are much easier!

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a polynomial equation in one catalytic variable y that defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series. Then each of this series is algebraic.

The proof is constructive.
Example: for $S(y ; t)=Q(0, y ; t)$,

$$
\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y S(y ; t)+\frac{1}{y}\right)^{2}-\left(t y S(y ; t)+\frac{1}{y}\right)-2 t^{2} S(0 ; t)
$$

Equations with one catalytic variable are much easier!

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a polynomial equation in one catalytic variable y that defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series. Then each of this series is algebraic.

The proof is constructive.
\Rightarrow A special case of an Artin approximation theorem with "nested" conditions [Popescu 86]

Equations with two catalytic variables are harder...

D-finite transcendental

$$
(1-t(y+\bar{x}+x \bar{y})) x y A(x, y)=x y-t y A(0, y)-t x^{2} A(x, 0)
$$

Algebraic

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

\square Not D-finite
$(1-t(x+\bar{x}+\bar{y}+x y)) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)$

But why?

2. The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
P(x, y)=\bar{x}+y+x \bar{y}
$$

2. The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
P(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $P(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\quad, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \quad)
$$

2. The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
P(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $P(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y}) .
$$

2. The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
P(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $P(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group G :

2. The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
P(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $P(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group G :

Remark. G can be defined for any quadrant model with small steps

The group is not always finite

- If $\mathcal{S}=\{0 \overline{1}, \overline{1} \overline{1}, \overline{1} 0,11\}$, then $P(x, y)=\bar{x}(1+\bar{y})+\bar{y}+x y$ and

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}(1+\bar{y}), y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \bar{x} \bar{y}(1+\bar{x}))
$$

generate an infinite group:

3. When G is finite: the orbit sum

Example. If $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$, the orbit of (x, y) is

and the (alternating) orbit sum is

$$
O S=x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}
$$

Classification of quadrant walks with small steps

Theorem

The series $Q(x, y ; t)$ is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

```
[mbm-Mishna 10], [Bostan-Kauers 10]
                                    D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
```


Classification of quadrant walks with small steps

quadrant models: 79

An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$
\begin{aligned}
T(x, y ; t) \equiv T(x, y) & =x(q-1)+x y t T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$
\begin{aligned}
T(x, y ; t) \equiv T(x, y) & =x(q-1)+x y t T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

Isn't this reminiscent of quadrant equations?

$$
Q(x, y ; t) \equiv Q(x, y)=1+t x y Q(x, y)
$$

$$
-t \frac{Q(x, y)-Q(0, y)}{x}-t \frac{Q(x, y)-Q(x, 0)}{y}
$$

An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$
\begin{aligned}
T(x, y ; t) \equiv T(x, y) & =x(q-1)+x y t T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

Theorem [Tutte 73-84]

- For $q=4 \cos ^{2} \frac{\pi}{m}, q \neq 0,4$, the series $T(1, y)$ satisfies an equation with one catalytic variable y.

An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$
\begin{aligned}
T(x, y ; t) \equiv T(x, y) & =x(q-1)+x y t T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

Theorem [Tutte 73-84]

- For $q=4 \cos ^{2} \frac{\pi}{m}, q \neq 0,4$, the series $T(1, y)$ satisfies an equation with one catalytic variable y. This implies that it is algebraic [mbm-Jehanne 06].

An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$
\begin{aligned}
T(x, y ; t) \equiv T(x, y) & =x(q-1)+x y t T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

Theorem [Tutte 73-84]

- For $q=4 \cos ^{2} \frac{\pi}{m}, q \neq 0,4$, the series $T(1, y)$ satisfies an equation with one catalytic variable y. This implies that it is algebraic [mbm-Jehanne 06].
- For any q, the generating function of properly q-coloured planar triangulations is differentially algebraic:

$$
2(1-q) w+\left(w+10 H-6 w H^{\prime}\right) H^{\prime \prime}+(4-q)\left(20 H-18 w H^{\prime}+9 w^{2} H^{\prime \prime}\right)=0
$$

with $H(w)=w T(1,0 ; \sqrt{w})$.

In this talk

I. Adapt Tutte's method to quadrant walks: new and uniform proofs of algebraicity.
II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.

In this talk

I. Adapt Tutte's method to quadrant walks: new and uniform proofs of algebraicity.
II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.

In this talk

I. Adapt Tutte's method to quadrant walks: new and uniform proofs of algebraicity.
II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.
quadrant models: 79

I. New proofs for algebraic models

[In the world of formal power series]

Kreweras' algebraic model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

Kreweras' algebraic model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- If we take $x=t+u t^{2}$, both roots of the kernel

$$
Y_{0,1}=\frac{x-t \pm \sqrt{(x-t)^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
$$

are series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$.

Kreweras' algebraic model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- If we take $x=t+u t^{2}$, both roots of the kernel

$$
Y_{0,1}=\frac{x-t \pm \sqrt{(x-t)^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
$$

are series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$. This gives

$$
x Y_{0}=R(x)+S\left(Y_{0}\right), \quad x Y_{1}=R(x)+S\left(Y_{1}\right)
$$

so that

$$
S\left(Y_{0}\right)-S\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

Kreweras' algebraic model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- If we take $x=t+u t^{2}$, both roots of the kernel

$$
Y_{0,1}=\frac{x-t \pm \sqrt{(x-t)^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
$$

are series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$. This gives

$$
x Y_{0}=R(x)+S\left(Y_{0}\right), \quad x Y_{1}=R(x)+S\left(Y_{1}\right)
$$

so that

$$
S\left(Y_{0}\right)-S\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

- Are there rational solutions to this equation?

Decoupling functions

Def. A rational function $D(y ; t) \equiv D(y)$ is a decoupling function if, for $Y_{0,1}$ the roots of the kernel,

$$
D\left(Y_{0}\right)-D\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

Decoupling functions

Def. A rational function $D(y ; t) \equiv D(y)$ is a decoupling function if, for $Y_{0,1}$ the roots of the kernel,

$$
D\left(Y_{0}\right)-D\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

Example: For Kreweras' model, $D(y)=-1 / y$ is a decoupling function. Proof:

$$
\frac{1}{t}=P\left(x, Y_{i}\right)=\frac{1}{x}+\frac{1}{Y_{0}}+x Y_{0}=\frac{1}{x}+\frac{1}{Y_{1}}+x Y_{1}
$$

Decoupling functions

Def. A rational function $D(y ; t) \equiv D(y)$ is a decoupling function if, for $Y_{0,1}$ the roots of the kernel,

$$
D\left(Y_{0}\right)-D\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

Example: For Kreweras' model, $D(y)=-1 / y$ is a decoupling function. Proof:

$$
\frac{1}{t}=P\left(x, Y_{i}\right)=\frac{1}{x}+\frac{1}{Y_{0}}+x Y_{0}=\frac{1}{x}+\frac{1}{Y_{1}}+x Y_{1}
$$

Theorem [Bernardi-mbm-Raschel]

- A quadrant model with finite group admits a decoupling function if and only if its orbit sum is zero (exactly 4 models).
- Exactly 9 quadrant models with an infinite group admit a decoupling function.

Back to Kreweras' model

- The equation

$$
S\left(Y_{0}\right)-S\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

with $S(y)=\operatorname{ty} Q(0, y)$, now reads

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right)
$$

with $D(y)=-1 / y$.

Back to Kreweras' model

- The equation

$$
S\left(Y_{0}\right)-S\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

with $S(y)=\operatorname{ty} Q(0, y)$, now reads

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right)
$$

with $D(y)=-1 / y$.

- Are there rational solutions to this equation?

Back to Kreweras' model

- The equation

$$
S\left(Y_{0}\right)-S\left(Y_{1}\right)=x Y_{0}-x Y_{1}
$$

with $S(y)=\operatorname{ty} Q(0, y)$, now reads

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right)
$$

with $D(y)=-1 / y$.

- Are there rational solutions to this equation?

Def. A rational function $I(y ; t) \equiv I(y)$ is an invariant if, the roots Y_{0}, Y_{1} of the kernel satisfy

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

Invariants

Def. A rational function $I(y ; t) \equiv I(y)$ is an invariant if, the roots Y_{0}, Y_{1} of the kernel satisfy

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

Invariants

Def. A rational function $I(y ; t) \equiv I(y)$ is an invariant if, the roots Y_{0}, Y_{1} of the kernel satisfy

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

Example: For Kreweras' model, with kernel $1-t(\bar{x}+\bar{y}+x y)$, an invariant exists:

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

Proof: check that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$.

Invariants

Def. A rational function $I(y ; t) \equiv I(y)$ is an invariant if, the roots Y_{0}, Y_{1} of the kernel satisfy

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

Example: For Kreweras' model, with kernel $1-t(\bar{x}+\bar{y}+x y)$, an invariant exists:

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

Proof: check that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$.
Theorem [Bernardi-mbm-Raschel]
A quadrant model admits a rational invariant if and only if the associated group is finite.

Back to Kreweras' model:

combining decoupling functions and invariants

We have

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

with

$$
S(y)-D(y)=t y Q(0, y)+\frac{1}{y} \quad \text { and } \quad I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

Back to Kreweras' model: combining decoupling functions and invariants

We have

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

with

$$
S(y)-D(y)=t y Q(0, y)+\frac{1}{y} \quad \text { and } \quad I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

The invariant lemma
There are few invariants: $I(y)$ must be a polynomial in $S(y)-D(y)$ whose coefficients are series in t.

Back to Kreweras' model: combining decoupling functions and invariants

We have

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

with

$$
S(y)-D(y)=t y Q(0, y)+\frac{1}{y} \quad \text { and } \quad I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

The invariant lemma
There are few invariants: I(y) must be a polynomial in $S(y)-D(y)$ whose coefficients are series in t.

$$
\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right)+c
$$

Expanding at $y=0$ gives the value of c.

Back to Kreweras' model: combining decoupling functions and invariants

We have

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

with

$$
S(y)-D(y)=t y Q(0, y)+\frac{1}{y} \quad \text { and } \quad I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

The invariant lemma
There are few invariants: I(y) must be a polynomial in $S(y)-D(y)$ whose coefficients are series in t.

$$
\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right) \quad-2 t^{2} Q(0,0)
$$

Expanding at $y=0$ gives the value of c.

Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have a rational invariant and a decoupling function \Rightarrow uniform solution via the solution of an equation with one catalytic variable

Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have a rational invariant and a decoupling function \Rightarrow uniform solution via the solution of an equation with one catalytic variable

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:

II. Infinite groups: some differentially algebraic models

[An excursion in the world of analytic functions]

Fayolle, Iasnogorodski, Malyshev [1999]

The role of decoupling functions

Theorem [Bernardi-mbm-Raschel]

For the 9 models with an infinite group and a decoupling function, the series $Q(x, y ; t)$ is D-algebraic.
That is, it satisfies a DE in t (and a DE in x, and a DE in y) with polynomial (or even constant) coefficients.

A weaker (and analytic) notion of invariants

- Still require that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$, where Y_{0}, Y_{1} are the roots of the kernel
... but only for some values of x (and t).

A weaker (and analytic) notion of invariants

- Still require that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$, where Y_{0}, Y_{1} are the roots of the kernel
... but only for some values of x (and t).
- meromorphicity condition in a domain

Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

$$
I(y ; t)=\wp\left(\mathcal{R}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass elliptic function
- its periods ω_{1} and ω_{3} are elliptic integrals
- its argument \mathcal{R} is also an elliptic integral

Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

$$
I(y ; t)=\wp\left(\mathcal{R}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass elliptic function
- its periods ω_{1} and ω_{3} are elliptic integrals
- its argument \mathcal{R} is also an elliptic integral

$$
\begin{gathered}
\omega_{1}=i \int_{x_{1}}^{x_{2}} \frac{\mathrm{~d} x}{\sqrt{-\delta(x)}}, \quad \omega_{3}=\int_{X\left(y_{1}\right)}^{x_{1}} \frac{\mathrm{~d} x}{\sqrt{\delta(x)}} . \\
\mathcal{R}(y ; t)=\int_{f\left(y_{2}\right)}^{f(y)} \frac{\mathrm{d} z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}}
\end{gathered}
$$

g_{2}, g_{3} polynomials in $t, f(y)$ rational in y and algebraic in t.

Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of the form

$$
I(y ; t)=\wp\left(\mathcal{R}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass elliptic function
- its periods ω_{1} and ω_{3} are elliptic integrals
- its argument \mathcal{R} is also an elliptic integral

Proposition [Bernardi-mbm-Raschel]

 $I(y ; t)$ is D-algebraic in y and t.
Combining decoupling functions and invariants

For a model with decoupling function $D(y)$ we have, for $x \in\left(x_{1}, x_{2}\right)$:

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

where $S(y)=K(0, y) Q(0, y)$ and $I(y)$ is the weak invariant.

Combining decoupling functions and invariants

For a model with decoupling function $D(y)$ we have, for $x \in\left(x_{1}, x_{2}\right)$:

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

where $S(y)=K(0, y) Q(0, y)$ and $I(y)$ is the weak invariant.
The invariant lemma [Litvinchuk 00]
There are few invariants: $S(y)-D(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $S(y)-D(y)$.

Combining decoupling functions and invariants

For a model with decoupling function $D(y)$ we have, for $x \in\left(x_{1}, x_{2}\right)$:

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

where $S(y)=K(0, y) Q(0, y)$ and $I(y)$ is the weak invariant.
The invariant lemma [Litvinchuk 00]
There are few invariants: $S(y)-D(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $S(y)-D(y)$.

Example: \mp is decoupled with $D(y)=-1 / y$ and

$$
S(y)+\frac{1}{y}=t(1+y) Q(0, y)+\frac{1}{y}=\frac{I^{\prime}(0)}{l(y)-I(0)}-\frac{I^{\prime}(0)}{l(-1)-I(0)}-1
$$

Combining decoupling functions and invariants

For a model with decoupling function $D(y)$ we have, for $x \in\left(x_{1}, x_{2}\right)$:

$$
S\left(Y_{0}\right)-D\left(Y_{0}\right)=S\left(Y_{1}\right)-D\left(Y_{1}\right) \quad \text { and } \quad I\left(Y_{0}\right)=I\left(Y_{1}\right)
$$

where $S(y)=K(0, y) Q(0, y)$ and $I(y)$ is the weak invariant.
The invariant lemma [Litvinchuk 00]
There are few invariants: $S(y)-D(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $S(y)-D(y)$.

Corollary

For the 9 models with an infinite group and a decoupling function, the series $Q(x, y ; t)$ is D-algebraic.

\leftrightarrows

Conclusion

Conclusion

To do:

- find explicit DEs (done for y)
- Nature of $Q(x, y ; t)$ when no decoupling function exists?
[Dreyfus, Hardouin, Roques, Singer 17(a)]

