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Frobenius scalar product

Let ¢,90: G — C
|

(¢, |G|Z¢ g)Y(g) €

geai

Consider the algebra of class functions of G, endowed with this
product:

3! orthonormal basis s.t. every basis element x has x(1) € N..

|
Call such elements irreducible characters and the basis Irr(G).
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L Basic character theory

The Plancherel measure

> x(1)?* =16

Xx€Elrr(G)

I
Measure on Irr(G)

_ x(1y?
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‘—supercharacter theory

The upper unitriangular group

Fq the finite field with g elements, g a prime power

1

Classifying the irreducible representations of U,(Fg) is a “wild”
problem
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G= | [g], G is an union of conjugacy classes
gEC/~
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H = {¢: K — C orthogonal w.r.t. (-,-)}
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‘—supercharacter theory

OK, no irreducible characters. Now what?

G= | K,
Kek

H = {¢: K — C orthogonal w.r.t. (-,-)}

m Each K is a union of conjugacy classes;
m thus, ¢ are class functions (constant on conjugacy classes);

m /rr(G) is a basis for the algebra of class functions, so each
must be a linear combination of irreducible characters;
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‘—supercharacter theory

Supercharacter theory (Diaconis and Isaacs)

A supercharacter theory is a pair (K, H) where K is a set partition
of G and H is an orthogonal set of characters such that

IK| = |H|;
if 1 € H then v constant on K, VYK € K;
if x € Irr(G) then 3¢ such that (x,v) # 0.

|
Given a suitable K then H is fixed
(and viceversa).
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‘—supercharacter theory

Why this supercharacter theory?

Superclasses (and supercharacters) are indexed by nice
combinatorial objects;

the supercharacters have an explicit formula;
the supercharacters have rational values;

the algebra of superclass functions is isomorphic to the
algebra of symmetric functions in noncommutative variables;

Nice decomposition of the supercharacter table (Bergeron and
Thiem).
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‘—supercharacter theory

Set partitions notation

12345678

m Arcs(m) = {(1,5),(2,3),(3,8),(5,7)};
m a(m) = |Arcs(n)| = 4;
m dim(7) = D j—i=12

(i j)EArcs(m)
m crs(m) = fcrossings of m = 1;
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L

supercharacter theory

The dimension of a supercharacter is
| J
Xﬂ'(l) _ (q . 1)3(71') . qdlm(w)—a(w);

(X", X™) = (g — 1)2(7) . gers(m);

The superplancherel measure

1 -1 a(m) . 42dim(m)—2a(m)
SPla(x) = zc( )? (=" -q

X> g~ qCI‘S(Tl’)
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‘—supercharacter theory

Plan

See set partitions as objects of the same space (some
renormalization happens);

interpret our statistics w.r.t. this new setting;

let n — o0;
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‘—supercharacter theory

Our setting

measures 1 on A s.t.
A= M= Ja 1t < 1 (subprobability)
1 has sub-uniform marginals

C :| L x=1 py=d
, / / du <d-c SUB-UNIFORM
X y
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Theorem (DDS)

There exists a measure Q € I such that pu, — Q almost surely.
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Sp| ( ﬂ) 1 q2dim(71')f2a(7r)
n X = n(n— =
q ( . 1) (q _ 1)3(7r)qcrs(7r)

exp (—n2 log q (; — 2lgim (per) + /C,s(,uﬂ)> + O(n))

dim(r) ~ lam(1) = [ (v =) d
crs(m) — /Az 1Pa < x < y1 < yol dpx(x1, 1) dpr(x2, y2)

1

H(p) = 5 = 2lgim (1) + lers(12)
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Playing with crossings

lesliin) = [ 10 < 50 < 1 < el a4, 1) din2.32)

2

If u has mass in — " and p has uniform marginals then

2
’

Icrs(ﬂ):0<:>,u: , =Q

s
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‘—supercharacter theory

Summary

w has uniform marginals
H(p) =0« p inside the top left square < pu=Q
lers(p) =0

The last step (technical) is to prove that j ) — € iff
H(ppm) — H(Q) = 0.
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