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A superplancherel measure associated to set partitions and its limit
Basic character theory

Frobenius scalar product

Let φ, ψ : G → C

〈φ, ψ〉 := 1
|G |

∑
g∈G

φ(g)ψ(g) ∈ C

Consider the algebra of class functions of G , endowed with this
product:

∃! orthonormal basis s.t. every basis element χ has χ(1) ∈ N+.

Call such elements irreducible characters and the basis Irr(G).
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The upper unitriangular group

Fq the finite field with q elements, q a prime power

Un(Fq) :=



1 ∗ ∗ · · · ∗
1 ∗ · · · ∗

. . . ...
. . . ...

1


, ∗ ∈ Fq

Classifying the irreducible representations of Un(Fq) is a “wild”
problem
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OK, no irreducible characters. Now what?


G =

⊔
g∈G/∼

[g ], G is an union of conjugacy classes

Irr(G) = {χ : G/∼→ C orthonormal w.r.t. 〈·, ·〉}

idea (André and Yan):


G =

⊔
K∈K

K ,

H = {ψ : K → C orthogonal w.r.t. 〈·, ·〉}
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Supercharacter theory (Diaconis and Isaacs)

A supercharacter theory is a pair (K,H) where K is a set partition
of G and H is an orthogonal set of characters such that

1 |K| = |H|;
2 if ψ ∈ H then ψ constant on K , ∀K ∈ K;
3 if χ ∈ Irr(G) then ∃!ψ such that 〈χ, ψ〉 6= 0.

Given a suitable K then H is fixed
(and viceversa).
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(Bergeron and Thiem) A supercharacter theory for Un(Fq)

h =



1 0 1 0 1 4 0 3
1 5 2 0 3 6 0

1 0 0 0 4 3
1 0 0 3 0

1 0 4 0
1 0 0

1 0
1


,



1 0 · 0 ? · · ·
1 ? · · · · ·

1 0 0 0 · ?
1 0 0 · 0

1 0 ? ·
1 0 0

1 0
1



π =
1 2 3 4 5 6 7 8
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Why this supercharacter theory?

1 Superclasses (and supercharacters) are indexed by nice
combinatorial objects;

2 the supercharacters have an explicit formula;
3 the supercharacters have rational values;
4 the algebra of superclass functions is isomorphic to the

algebra of symmetric functions in noncommutative variables;
5 Nice decomposition of the supercharacter table (Bergeron and

Thiem).
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Set partitions notation

π =
1 2 3 4 5 6 7 8

Arcs(π) = {(1, 5), (2, 3), (3, 8), (5, 7)};

a(π) = |Arcs(π)| = 4;
dim(π) =

∑
(i ,j)∈Arcs(π)

j − i = 12;

crs(π) = ]crossings of π = 1;



A superplancherel measure associated to set partitions and its limit
supercharacter theory

Set partitions notation

π =
1 2 3 4 5 6 7 8

Arcs(π) = {(1, 5), (2, 3), (3, 8), (5, 7)};
a(π) = |Arcs(π)| = 4;

dim(π) =
∑

(i ,j)∈Arcs(π)
j − i = 12;

crs(π) = ]crossings of π = 1;



A superplancherel measure associated to set partitions and its limit
supercharacter theory

Set partitions notation

π =
1 2 3 4 5 6 7 8

Arcs(π) = {(1, 5), (2, 3), (3, 8), (5, 7)};
a(π) = |Arcs(π)| = 4;
dim(π) =

∑
(i ,j)∈Arcs(π)

j − i = 12;

crs(π) = ]crossings of π = 1;



A superplancherel measure associated to set partitions and its limit
supercharacter theory

Set partitions notation

π =
1 2 3 4 5 6 7 8

Arcs(π) = {(1, 5), (2, 3), (3, 8), (5, 7)};
a(π) = |Arcs(π)| = 4;
dim(π) =

∑
(i ,j)∈Arcs(π)

j − i = 12;

crs(π) = ]crossings of π = 1;



A superplancherel measure associated to set partitions and its limit
supercharacter theory

The dimension of a supercharacter is

χπ(1) = (q − 1)a(π) · qdim(π)−a(π);

〈χπ, χπ〉 = (q − 1)a(π) · qcrs(π);

The superplancherel measure

SPlG(χ) = 1
|G |

χ(1)2

〈χ, χ〉
= 1

q
n(n−1)

2

(q − 1)a(π) · q2 dim(π)−2a(π)

qcrs(π)
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1 See set partitions as objects of the same space

(some
renormalization happens);

2 interpret our statistics w.r.t. this new setting;
3 let n→∞;
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→ → →



1 0 · 0 ? · · ·
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→
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·
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1
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?

1
0

0
·

0
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0
?
·

1
0

0
1
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             

→

1

0
1
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0
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∫ y=d

y=c
dµ ≤ d − c SUB-UNIFORM
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SPln(χπ) = 1
q

n(n−1)
2

q2 dim(π)−2a(π)

(q − 1)a(π)qcrs(π) =

exp
(
−n2 log q

(1
2 − 2Idim(µπ) + Icrs(µπ)

)
+ O(n)

)

dim(π)→ Idim(µπ) :=
∫

∆
(y − x) dµ

crs(π)→
∫

∆2
1[x1 < x2 < y1 < y2] dµπ(x1, y1) dµπ(x2, y2)

H(µ) := 1
2 − 2Idim(µ) + Icrs(µ)
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Playing with Idim(µ) = ∫
∆(y − x) dµ

7→

µ φ(µ)
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µ has uniform marginals

µ inside the top left square
Icrs(µ) = 0

⇔ µ = Ω

The last step (technical) is to prove that µπ(n) → Ω iff
H(µπ(n))→ H(Ω) = 0.
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