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Abstract: Expressions for the central characters of the symmetric
group in terms of polynomials in the symmetric power-sums over the
contents of the Young diagram that specifies the irreducible representation
(“σ-polynomials”) were developed by Katriel (1991, 1996).
Expressions in terms of free cumulants that encode the Young diagram
(”Kerov polynomials”), were proposed by Kerov (2000).
The relation between these procedures is established.
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Introduction
Both the irreducible representations and the conjugacy-classes of Sn

are labelled by partitions of n.
The irreducible representations are denoted by Γ = [λ1, λ2, · · · ], where
λ1 ≥ λ2 ≥ · · · and

∑

i λi = n; λ1, λ2, · · · are non-negative integers. Γ
is commonly presented as a Young diagram, consisting of left-justified
rows of boxes of lengths λ1, λ2, · · · , non-increasing from top to bottom,
but other equivalent presentations will be referred to below.
Each conjugacy-class consists of the permutations whose cycle-lengths
comprise some partition of n.



The irreducible character χΓ
C, corresponding to the conjugacy-class

C and the irreducible representation Γ, can be renormalized into the
central character

λΓ
C = χΓ

C

|C|

|Γ|
,

where |C| is the number of group elements in the conjugacy class C

and |Γ| = χΓ
(1)n is the dimension of the irreducible representation Γ.

Here, (1)n stands for the conjugacy-class consisting of the identity.
The conjugacy class-sums, [C] ≡

∑

c∈C c, span the center of the
group-algebra. Acting on the irreducible modules they yield the central
characters as eigenvalues.



The single-cycle conjugacy class-sums in Sn generate the center of
the group algebra. Therefore, the corresponding central-characters are
of special interest.
We will use the shorthand notation (k)n for the conjugacy class (k)(1)n−k

in Sn, consisting of a cycle of length k and n − k fixed points (cycles
of unit length).
The corresponding conjugacy class-sum will be denoted by [(k)]n.



Ingram (1950) cited Frobenius for the expressions

λΓ
(2)n

=
1

2
M2 ; λΓ

(3)n
=

1

6
M3−

n(n − 1)

2
; λΓ

(4)n
=

1

4
M4−

2n − 3

2
M2 ,

and provided a similar expression for λΓ
(5)n

. Here,

M2 =

k
∑

j=1

[

(λj − j)(λj − j + 1) − j(j − 1)
]

,

M3 =

k
∑

j=1

[

(λj − j)(λj − j + 1)(2λj − 2j + 1) + j(j − 1)(2j − 1)
]

,

M4 =

k
∑

j=1

[

(λj − j)2(λj − j + 1)2 − j2(j − 1)2
]

.

The expressions for Mi ; i = 2, 3, 4 do not show enough regularity to
suggest a generalization.



The concept of contents of a Young diagram was introduced by
Robinson and Thrall (1953).
Given a Young diagram Γ = [λ1, λ2, · · · , λk], they considered the set
of pairs of integers (i, j) that label the boxes of Γ, i. e., {(i, j) ∈ Γ},
where i and j are row and column indices respectively, that satisfy
1 ≤ i ≤ k and 1 ≤ j ≤ λi. The contents of the Young diagram form
the multiset {{(j − i) ; (i, j) ∈ Γ}} (keeping track of repetition of
identical members).
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−1 0 1

−2 −1

−3 −2

−4



Symmetric power-sums over the contents of a Young diagram

σΓ
ℓ =

∑

(i,j)∈Γ

(j − i)ℓ ,

were independently introduced by Jucys (1974) and by Suzuki (1987),
who showed that the first and second symmetric power sums can be
used to express the central characters for the class of transpositions
and for the three-cycles, respectively.
It will be convenient to define σ0 = n.



A partition labelling a conjugacy class, stripped of its fixed points,
will be referred to as a reduced partition.

Two procedures for the evaluation of the central characters, due to
Katriel (1993,1996) and to Kerov (2000), respectively, will now be
reviewed. These procedures share the property that they essentially
depend on the reduced partition labelling the conjugacy class. The
residual dependence on the total degree of the symmetric group considered
is simple, in a sense to be explicated below.



Theorem 1.1. Katriel (1991). The central character corresponding
to any conjugacy class of the symmetric group Sn can be expressed
as a polynomial in the symmetric power-sums {σΓ

k ; k = 1, 2, · · · , n−
1}, whose structure depends on the reduced partition labelling the
conjugacy class. The coefficient of each term in this polynomial is
a polynomial in n that is independent of Γ.

On the basis of this Theorem a conjecture was proposed for the
construction of single- and multi-cycle central characters Katriel (1993,
1996) in terms of the symmetric power-sums over the contents of the
Young diagram that specifies the irreducible representation, that will
be referred to as the σ-polynomials.

An essential part of this conjecture was proved by Poulalhon,
Corteel, Goupil and Schaeffer (2000, 2004).



Lascoux and Thibon (2004) obtained expressions for symmetric
power-sums over Jucys-Murphy elements in terms of conjugacy class-sums,
whose inversion would yield the σ-polynomials presently discussed.
Finally, an alternative derivation, yielding a closed form expression
for the central characters in terms of symmetric power sums over the
contents, was proposed by Lassalle (2008). For a comprehensive
exposition we refer to Ceccherini-Silberstein, Scarabotti and
Tolli (2010).



Sergei Kerov, in a talk at Institut Poincaré in Paris (January
2000), presented expressions for central characters of the symmetric
group in terms of a family of polynomials in a set of elements called free
cumulants. The structure of these polynomials depends on the reduced
partitions labelling the conjugacy classes, whose central characters
they evaluate, but the dependence on the irreducible representation
with respect to which the central character is evaluated enters only
via the values that the free cumulants obtain. The free cumulants
will be defined below. Here we just mention the rather amazing fact
that Kerov’s polynomials originate from the asymptotic representation
theory of Sn for n → ∞, but turn out to be relevant to finite symmetric
groups as well.



Sergei Kerov passed away on July 30, 2000.
It is thanks to Biane that Kerov’s work on the central characters found
its way into well-presented expositions (2000, 2003). This was followed
by considerable research on Kerov’s procedure [Rattan (2005, 2007),
Biane (2005), Féray (2009), Petrullo and Senato (2011), DoÃlega
and Śniady (2012)]. A recent masterly exposition was presented by
Cartier (2013).

Lassalle (2008), in his concluding notes, pointed out the desirability
of establishing the connection between the expressions for the central
characters in terms of the symmetric power sums over the contents, on
the one hand, and Kerov’s polynomials in terms of the free cumulants,
on the other hand. The present paper establishes this connection.
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The single-cycle central characters as σ-polynomials
We shall denote by ⊢(ℓ) a partition whose least part is not smaller

than ℓ. We shall be mainly interested in the case ℓ = 2.

Theorem 2.1. The central character λΓ
(k)n

can be expressed as a
linear combination of terms specified by the partitions of k+1 into
parts, none of which is less than 2.
The partition

π ≡ 2n23n3 · · · (k + 1)nk+1 ⊢(2) (k + 1) ,

i.e., 2n2 + 3n3 + · · · + (k + 1)nk+1 = k + 1, yields the term

fπ(n)σn3
1 σ

n4
2 · · ·σ

nk+1
k−1 ,

where fπ(n) is a polynomial of degree nπ ≤ n2 in n.
σi, i = 1, 2, · · · , k − 1 are the symmetric power sums over the
contents of the Young diagram Γ.



This Theorem was originally stated as a conjecture, Katriel (1993,
1996). It was proved by Poulalhon, Corteel, Goupil and Schaeffer
(2000, 2004).

The conjecture, as stated in Katriel (1996), specifies the degree of
the polynomial fπ(n) somewhat more precisely, i.e.,

Conjecture 2.2.
nπ = n2 .

This refinement is convenient, but not essential for the rest of the
argument.



It remains to determine the polynomials fπ(n). This is facilitated
by the following two Theorems.

Theorem 2.3. The coefficient of the term σk−1 in λΓ
(k)n

, that corresponds
to the partition of k + 1 into a single part, is equal to unity.

Theorem 2.4. If the symmetric power sums σi are evaluated for
a Young diagram with less than k boxes, then λΓ

(k)n
= 0.

Using these Theorems, more than enough linear equations are generated,
allowing the determination of the required polynomials. To clarify
the procedure we emphasize that Theorem 2.4 yields a homogeneous
system of equations for the desired coefficients.



Jucys (1974) and Suzuki (1987) obtained

λΓ
(2)n

= σ1 ; λΓ
(3)n

= σ2 −
n(n − 1)

2
.

The procedure outlined above yields the following further expressions:

λΓ
(4)n

= σ3 − (2n − 3)σ1

λΓ
(5)n

= σ4 − (3n − 10)σ2 − 2σ2
1 +

n(n − 1)(5n − 19)

6
λΓ

(6)n
= σ5 − (4n − 25)σ3 − 6σ1σ2 + (6n2 − 38n + 40)σ1

λΓ
(7)n

= σ6 +

(

−5n +
105

2

)

· σ4 − 8 · σ3σ1 −
9

2
· σ2

2

+

(

21

2
n2 −

241

2
n + 252

)

· σ2

+(14n − 72) · σ2
1 −

1

24
n(n − 1)(49n2 − 609n + 1502)

...
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Kerov’s expressions for the characters
corresponding to single-cycle conjugacy classes

For the irreducible characters corresponding to the conjugacy class-sum
(k)n of Sn Kerov used the normalization

ΣΓ
k =

n!

(n − k)!

χΓ
(k)n

|Γ|
.

Since |(k)n| =
(

n
k

)

(k − 1)! = 1
k

n!
(n−k)!, we obtain

λΓ
(k)n

=
1

k
ΣΓ

k .



By multiplying the length of each row of the Young diagram Γ =
[λ1, λ2, · · · ] by the positive integer t and repeating it t times we obtain
the augmented Young diagram Γt = [(tλ1)

t, (tλ2)
t, · · · ], representing

an irreducible representation of Snt2. Biane (1998) proved that

Rk+1 ≡ lim
t→∞

ΣΓt
k

tk+1

exists, and referred to Rk+1 (that depends on Γ) as a free cumulant.
The remarkable property established by Kerov is that for the finite

symmetric group Sn the normalized character ΣΓ
k can be written as

a polynomial in the free cumulants R2, R3, · · · , Rk+1, with constant
coefficients, that Kerov conjectured to be positive integers. This property
of the coefficients was proved by Féray (2009), who proposed their
combinatorial interpretation.



The low k Kerov polynomials were given by Biane (2003), i.e.,

ΣΓ
1 = R2 = 2n

ΣΓ
2 = R3

ΣΓ
3 = R4 + R2

ΣΓ
4 = R5 + 5R3

ΣΓ
5 = R6 + 15R4 + 5R2

2 + 8R2
...

A general expression was derived by Goulden and Rattan (2005,
2007).



The dependence of the free cumulants Rk on the Young diagram Γ
that specifies the irreducible representation is obtained as follows:
a. The Young diagram is specified in terms of a “Russian convention”,
introduced in Section 4.1, that involves the set of parameters

x1 < y1 < x2 < y2 < · · · < ym−1 < xm .

b. The function

Hω(z) =

∏m−1
i=1 (z − yi)

∏m
i=1(z − xi)

is inverted, yielding the expansion

H〈−1〉
ω (t) =

1

t
+

∞
∑

i=1

Ri · t
i−1

where Ri are the desired free cumulants.
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Relation between the σ-polynomials and Kerov’s
polynomials
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Kerov’s expressions for the central characters are stated in terms
of the “Russian” convention, whereas the σ-polynomials involve the
“British” convention. It is therefore necessary to establish the relation
between these two conventions. This is done in Section 4.1.

A set of supersymmetric parameters for the rotated Young diagram
is defined in Section 4.2 by forming the power sums over the locations
of the minima and over the locations of the maxima,

Xk =

m
∑

i=1

xk
i and Yk =

m−1
∑

i=1

yk
i ,

and taking the differences Ak = Xk − Yk.
The symmetric power-sums over the contents are expressed in terms

of these supersymmetric parameters of the rotated Young diagram.
These relations are inverted in Section 4.3.



In Section 4.4 Kerov’s function Hω(z) is expanded in terms of a
sequence denoted by Gj, j = 1, 2, · · · and the members of the latter
sequence are expressed as polynomials in the supersymmetric parameters
of the rotated Young diagram.

In Section 4.5 the inverse of Hω(z) is expressed as a series involving
the sequence Ri, i = 1, 2, · · · , and the members of this sequence are
expressed as polynomials in the Gj, j = 1, 2, · · · .

In Section 4.6 Kerov’s sequence Ri, i = 1, 2, · · · is expressed in terms
of the supersymmetric parameters of the rotated Young diagram.

Finally, in Section 4.7 Kerov’s expressions for the central characters
are expressed in terms of the supersymmetric parameters of the rotated
Young diagram, allowing a detailed comparison with the σ-polynomials.



4.1

The rotated (“Russian”) and the “British” Young diagram

The locations of the minima and of the intertwining maxima,

x1 < y1 < x2 < y2 < · · · < xm−1 < ym−1 < xm ,

satisfy
m−1
∑

j=1

yj =

m
∑

j=1

xj .

Here, we specify the Young diagram Γ in terms of its distinct row
lengths λ(i) and their multiplicities µi, i.e., Γ = [λµ1

(1), λ
µ2
(2), · · · ], where

λ(1) > λ(2) > · · · and
∑

i λ(i)µi = n. Specifying Γ columnwise (or

specifying the conjugate Young diagram) we similarly define [λ
′

(1)

µ
′
1, λ

′

(2)

µ
′
2, · · · ].



Since the number of distinct rows (and of distinct columns) is the
number of maxima in the “Russian” notation, i.e., k = m − 1, it is
easy to see that

xℓ = λ(m+1−ℓ) − λ
′

(ℓ) ; ℓ = 1, 2, · · · , m ,

and (1)

yℓ = λ(m−ℓ) − λ
′

(ℓ) ; ℓ = 1, 2, · · · , m − 1 .

The 2k parameters {λ(ℓ), λ
′

(ℓ) ; ℓ = 1, 2, · · · , k} determine the 2k+1 =

2m−1 parameters {xℓ ; ℓ = 1, 2, · · · , m}∪{yℓ ; ℓ = 1, 2, · · · , m−1}
(recall that

∑m
ℓ=1 xℓ =

∑m−1
ℓ=1 yℓ).



The relations 1 can be inverted into

λ
′

(ℓ) =

ℓ−1
∑

i=1

yi −
ℓ

∑

i=1

xi

λ(m−ℓ) =

ℓ
∑

i=1

(yi − xi) = λ
′

(ℓ) + yℓ

where ℓ = 1, 2, · · · , m − 1 .



4.2

Symmetric power sums over the “contents” in terms of
the symmetric “Russian” parameters

Let
x1 < y1 < x2 < y2 < · · · < xm−1 < ym−1 < xm

specify a Young diagram, Γ.
The symmetric power sums over the minima and over the maxima

are

Xk =

m
∑

i=1

xk
i , Yk =

m−1
∑

i=1

yk
i .

The differences Ak = Xk−Yk will be referred to as the supersymmetric
power sums. It was noted above that A1 = 0.



First, we consider a Young diagram consisting of a single row of
length x. This diagram is specified by the “Russian” parameters x1 =
−1, y1 = x − 1 and x2 = x. For this Young diagram we obtain

Ak = (−1)k + xk − (x − 1)k = −

k−1
∑

j=1

(

k

j

)

· xj · (−1)k−j .

This set of linear relations between x, x2, · · · , xk−1 and A2, A3, · · · , Ak

can be inverted to obtain

Lemma 4.1.

xk =
1

k + 1

k−1
∑

j=0

(−1)j · Bj ·

(

k + 1

j

)

· Ak+1−j .



The symmetric power sums over the contents that correspond to the
single-row Young diagram considered above are

σk =

x−1
∑

i=0

ik =
1

k + 1
·

k+1
∑

j=1

(

k + 1

j

)

· Bk+1−j · x
j ,

where Bk are the Bernoulli numbers.
Using Lemma 4.1 we obtain

Lemma 4.2. For a single-row Young diagram of length x

σk = −
1

(k + 1) · (k + 2)
·

⌊k
2⌋

∑

n=0

B2n · (2n − 1) ·

(

k + 2

2n

)

· Ak+2−2n .

Finally,

Theorem 4.3. The expression for σk presented in Lemma 4.2
holds for arbitrary Young diagrams.

Theorem 4.3 means that the supersymmetric power sums {A2, A3, · · · }
determine the symmetric power sums over the contents, {σ1, σ2, · · · }.
The latter determine the multiset of contents, hence the Young diagram.



Using the theorem we obtain

σ0 = n =
1

2
· A2

σ1 =
1

6
· A3

σ2 =
1

12
· A4 −

1

12
· A2

σ3 =
1

20
· A5 −

1

12
· A3

σ4 =
1

30
· A6 −

1

12
· A4 +

1

20
· A2

σ5 =
1

42
· A7 −

1

12
· A5 +

1

12
· A3

σ6 =
1

56
· A8 −

1

12
· A6 +

1

8
· A4 −

5

84
· A2

σ7 =
1

72
· A9 −

1

12
· A7 +

7

40
· A5 −

5

36
· A3

σ8 =
1

90
· A10 −

1

12
· A8 +

7

30
· A6 −

5

18
· A4 +

7

60
· A2



4.3

The supersymmetric parameters of the rotated Young
diagram in terms of the symmetric power sums over the
contents

The relations in Theorem 4.3 can be inverted to obtain

Lemma 4.4.

Ak =

⌊k
2⌋

∑

i=1

2 ·

(

k

2i

)

· σk−2i .

The inverted relations are illustrated by

A2 = 2 · σ0 = 2n

A3 = 6 · σ1

A4 = 12 · σ2 + 2 · σ0

A5 = 20 · σ3 + 10 · σ1

A6 = 30 · σ4 + 30 · σ2 + 2 · σ0

A7 = 42 · σ5 + 70 · σ3 + 14 · σ1



4.4

Expansion of Hω(z)
Let

Hω(z) ≡
Πm−1

i=1 (z − yi)

Πm
i=1(z − xi)

. (2)

Here, to adhere with accepted notation, ω denotes the Young diagram
specified by the sets of extrema {x1, x2, · · · , xm} and {y1, y2, · · · , ym−1},
that is denoted by Γ in the rest of the paper.

Writing (2) in the form

∞
∑

j=0

1

zj+1
· Gj+1 ·

m
∏

i=1

(z − xi) =

m−1
∏

i=1

(z − yi) ,

and equating coefficients of equal powers of z up to the (m−1)’s power,
we obtain

ℓ
∑

j=0

(−1)j · X(ℓ−j) · Gj+1 = Y (ℓ) ; ℓ = 0, 1, · · · , m − 1. (3)



For ℓ = 0 (3) yields G1 = 1, and for ℓ = 1 it yields G2 = X1−Y1 = 0.
Hence, Hω(z) is of the form

Hω(z) =
1

z
+

∞
∑

j=3

Gj

1

zj
.

Proceeding, we obtain

G3 =
1

2
· A2 = n

G4 =
1

3
· A3

G5 =
1

4
· A4 +

1

8
· A2

2

G6 =
1

5
· A5 +

1

6
· A2 · A3

G7 =
1

6
· A6 +

1

18
· A2

3 +
1

8
· A2 · A4 +

1

48
A3

2

...



The coefficients {Gi} evaluated above depend on the min-max coordinates
only via their supersymmetric sums, {Aj ; j = 2, 3, · · · }.
It is obvious that the numerator of Hω(z) is a symmetric polynomial
in y1, y2, · · · , ym−1 , and the denominator is a symmetric polynomial
in x1, x2, · · · , xm. It follows that the coefficients Gi depend on two
such sets of symmetric power sums.
Allowing the parameters {xi; i = 1, 2, · · · , m} and {yi; i =
1, 2, · · · , m−1} to be continuous we note that taking the limit yk → xk

for a particular k we obtain an expression for an Hω(z) corresponding
to a Young diagram with m − 1 minima (and m − 2 maxima), which
depends on the corresponding symmetric power sums of the remaining
min-max coordinates. Consistency requires that the symmetric power
sums appear only in the combinations Xℓ − Yℓ ; ℓ = 2, 3, · · · .



Theorem 4.5.

Gk =
∑

Q⊢2 (k−1)

AQ

|Q|
,

where Q is a partition of k − 1 into parts none of which is less
then 2, Q = (2)q2(3)q3 · · · such that

∑

i i · qi = k − 1,
AQ ≡ A

q2
2 · Aq3

3 · · · and |Q| ≡ 2q2 · q2! · 3
q3 · q3! · · · .



4.5

Inversion of Hω(z)
It is easy to see that the inverse of Hω(z) is of the form

H〈−1〉
ω (t) =

1

t
+

∞
∑

i=1

Ri · t
i−1 . (4)

From (2) it follows that

H〈−1〉
ω (Hω(z)) = z . (5)

Substituting t = Hω(z) in (4), multiplying by Hω(z) and using (5) it
follows that

zHω(z) = 1 +

∞
∑

i=1

Ri

(

Hω(z)
)i

.



Establishing the recurrence relation

Rm = Gm+1 −
m−3
∑

ℓ=0

∑

Q⊢3(m−ℓ)

(ℓ + k)!

ℓ!
· Rℓ+k ·

GQ

[Q]
, (6)

where k = ℓ3 + ℓ4 + · · · and [Q] = ℓ3! · ℓ4! · · · , we obtain

R1 = 0

R2 = G3 = n

R3 = G4

R4 = G5 − 4 ·
1

2!
· G2

3

R5 = G6 − 5 · G3 · G4

R6 = G7 − 6 ·

(

G3 · G5 +
1

2!
· G2

4

)

+ 7 · G3
3

R7 = G8 − 7 · (G3 · G6 + G4 · G5) + 28 · G2
3 · G4



The expressions obtained above suggest

Conjecture 4.6.

Rk = −

⌊k
2⌋

∑

i=1

(−1)i ·
(k + i − 2)!

(k − 1)!
· Si(k + i) ,

where

Sp(K) =
∑

Q⊢
p
3 K

GQ

[Q]
; K ≥ 3p ,

Q is a partition of K into p parts each of which is not less than 3, i.e.,
Q = (3)q3(4)q4 · · · where q3 + q4 + · · · = p and 3 · q3 +4 · q4 + · · · = K.
Finally, GQ = G

q3
3 · Gq4

4 · · · and [Q] = q3! · q4! · · · .
Conjecture 4.6 is not used below because a direct expression for Rk

in terms of the supersymmetric parameters Ai is established in the
following section.



4.6

Kerov’s sequence Ri, i = 1, 2, · · · in terms of the supersymmetric
parameters of the rotated Young diagram

Since the coefficients Gi are determined by the supersymmetric parameters
Ai, the same holds for the coefficients Ri. Thus, using (6) and Theorem
4.5, we obtain

R1 = 0

R2 =
1

2
· A2 = n

R3 =
1

3
· A3

R4 =
1

4
· A4 −

3

8
· A2

2

R5 =
1

5
· A5 −

2

3
· A2 · A3

R6 =
1

6
· A6 −

5

8
· A2 · A4 −

5

18
· A2

3 +
25

48
· A3

2

...



The expressions obtained above suggest the general form

Proposition 4.7. The relationship between the Ri and Ai is

Rk =
∑

Q⊢2 k

(−1)p(Q)−1(k − 1)p(Q)−1

|Q|
· AQ . (7)

Here, Q, |Q| and AQ are defined as in Theorem 4.5. p(Q) =
∑

i qi

is the number of parts in Q.

Proof. Use Lagrange inversion.



4.7

The central characters
Using Proposition 4.7, Kerov’s expressions for the central characters

yield

λ[(2)]n =
1

2
· Σ2 =

1

2
· R3 =

1

6
· A3

λ[(3)]n =
1

3
· Σ3 =

1

3
· (R4 + R2) =

1

12
· A4 −

1

8
· A2

2 +
1

6
· A2

λ[(4)]n =
1

4
· Σ4 =

1

4
· R5 +

5

4
· R3 =

1

20
· A5 −

1

6
· A3 · A2 +

5

12
· A3

λ[(5)]n =
1

5
· Σ5 =

1

5
· R6 + 3 · R4 +

8

5
· R2 + R2

2

=
1

30
· A6 −

1

8
· A4 · A2 −

1

18
· A2

3 +
5

48
· A3

2 +
3

4
· A4 −

7

8
· A2

2 +
4

5
· A2

...



The corresponding expressions in Katriel (1996) are

λ[(2)]n = σ1 =
1

6
· A3

λ[(3)]n = σ2 −
1

2
· n · (n − 1) =

1

12
· A4 −

1

8
· A2

2 +
1

6
· A2

λ[(4)]n = σ3 − (2n − 3) · σ1 =
1

20
· A5 −

1

6
· A3 · A2 +

5

12
· A3

...

To obtain the expressions in terms of {Ai ; i = 2, 3, · · · } we used
Theorem 4.3.
Conclusion: The connection between the expressions for the central
characters of the one-cycle conjugacy classes in the symmetric group
in terms of σ-polynomials, and the expressions in terms of Kerov’s
polynomials, has been established.



Joyeux anniversaire, Jean-Yves.


