Positive m-divisible non-crossing partitions and their cylic sieving

Christian
Krattenthaler and Stump

Universität Wien and Freie Universität Berlin

m-divisible non-crossing partitions associated with reflection groups

m-divisible non-crossing partitions associated with reflection groups

Let W be a finite real reflection group.
The absolute length (reflection length) $\ell_{T}(w)$ of an element $w \in W$ is defined by the smallest k such that

$$
w=t_{1} t_{2} \cdots t_{k}
$$

where all t_{i} are reflections.

m-divisible non-crossing partitions associated with reflection groups

Let W be a finite real reflection group.
The absolute length (reflection length) $\ell_{T}(w)$ of an element $w \in W$ is defined by the smallest k such that

$$
w=t_{1} t_{2} \cdots t_{k}
$$

where all t_{i} are reflections.
The absolute order (reflection order) \leq_{T} is defined by

$$
u \leq_{T} w \text { if and only if } \ell_{T}(u)+\ell_{T}\left(u^{-1} w\right)=\ell_{T}(w)
$$

m-divisible non-crossing partitions associated with reflection groups

Definition (ARMSTRONG)

The m-divisible non-crossing partitions for a reflection group W are defined by

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \left.\quad \ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

where c is a Coxeter element in W.

m-divisible non-crossing partitions associated with reflection groups

Definition (ARMSTRONG)

The m-divisible non-crossing partitions for a reflection group W are defined by

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \left.\quad \ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

where c is a Coxeter element in W.

In particular,

$$
N C^{(1)}(W) \cong N C(W)
$$

the "ordinary" non-crossing partitions for W.

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \left.\qquad \ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\},
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}$

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

Example for $m=3, W=A_{6}\left(=S_{7}\right)$:

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.
Now "blow-up" w_{1}, w_{2}, w_{3} :

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.
Now "blow-up" w_{1}, w_{2}, w_{3} :

$$
(7,16) \quad(2,20) \quad(3,6,18)
$$

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.
Now "blow-up" w_{1}, w_{2}, w_{3} :

$$
(7,16)^{-1}(2,20)^{-1}(3,6,18)^{-1}
$$

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.
Now "blow-up" w_{1}, w_{2}, w_{3} :

$$
(1,2, \ldots, 21)(7,16)^{-1}(2,20)^{-1}(3,6,18)^{-1}
$$

m-divisible non-crossing partitions associated with reflection groups

Combinatorial realisation in type A (Armstrong)

$$
\begin{aligned}
& N C^{(m)}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \\
& \left.\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\}
\end{aligned}
$$

EXAMPLE FOR $m=3, W=A_{6}\left(=S_{7}\right)$:
$w_{0}=(4,5,6), w_{1}=(3,6), w_{2}=(1,7)$, and $w_{3}=(1,2,6)$.
Now "blow-up" w_{1}, w_{2}, w_{3} :

$$
\begin{aligned}
& (1,2, \ldots, 21)(7,16)^{-1}(2,20)^{-1}(3,6,18)^{-1} \\
& \quad=(1,2,21)(3,19,20)(4,5,6)(7,17,18)(8,9, \ldots, 16)
\end{aligned}
$$

m-divisible non-crossing partitions associated with reflection groups

m-divisible non-crossing partitions associated with reflection groups

A 3-divisible non-crossing partition of type B_{5}

m-divisible non-crossing partitions associated with reflection groups

A 3-divisible non-crossing partition of type D_{6}

positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!

positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!
These were defined by Buan, Reiten and Thomas, as an aside in " m-noncrossing partitions and m-clusters." There, they constructed a bijection between the facets of the m-cluster complex of Fomin and Reading and the m-divisible non-crossing partitions of Armstrong.

positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!
These were defined by Buan, Reiten and Thomas, as an aside in "m-noncrossing partitions and m-clusters." There, they constructed a bijection between the facets of the m-cluster complex of Fomin and Reading and the m-divisible non-crossing partitions of Armstrong.

The positive m-clusters are those which do not contain any negative roots. They are enumerated by the positive Fuß-Catalan numbers

$$
\mathrm{Cat}_{+}^{(m)}(W):=\prod_{i=1}^{n} \frac{m h+d_{i}-2}{d_{i}}
$$

positive m-divisible non-crossing partitions

So:

positive m-divisible non-crossing partitions

So:
Buan, Reiten and Thomas declare:

Definition

The image of the positive m-clusters under the Buan-Reiten-Thomas bijection constitutes the positive m-divisible non-crossing partitions.

positive m-divisible non-crossing partitions

So:
Buan, Reiten and Thomas declare:

Definition

The image of the positive m-clusters under the Buan-Reiten-Thomas bijection constitutes the positive m-divisible non-crossing partitions.

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition ($w_{0} ; w_{1}, \ldots, w_{n}$) in $N C^{(m)}(W)$ is positive, if and only if $w_{0} w_{1} \cdots w_{m-1}$ is not contained in any proper standard parabolic subgroup of W.

positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition ($w_{0} ; w_{1}, \ldots, w_{m}$) in $N C^{(m)}(W)$ is positive, if and only if $w_{0} w_{1} \cdots w_{m-1}$ is not contained in any proper standard parabolic subgroup of W.

positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition ($w_{0} ; w_{1}, \ldots, w_{m}$) in $N C^{(m)}(W)$ is positive, if and only if $w_{0} w_{1} \cdots w_{m-1}$ is not contained in any proper standard parabolic subgroup of W.

Let $N C_{+}^{(m)}(W)$ denote the set of all positive m-divisible non-crossing partitions for W.
Trivial corollary:

$$
\left|N C_{+}^{(m)}(W)\right|=\mathrm{Cat}_{+}^{(m)}(W)
$$

positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition ($w_{0} ; w_{1}, \ldots, w_{m}$) in $N C^{(m)}(W)$ is positive, if and only if $w_{0} w_{1} \cdots w_{m-1}$ is not contained in any proper standard parabolic subgroup of W.

Let $N C_{+}^{(m)}(W)$ denote the set of all positive m-divisible non-crossing partitions for W.
Trivial corollary:

$$
\left|N C_{+}^{(m)}(W)\right|=\mathrm{Cat}_{+}^{(m)}(W)
$$

Buan, Reiten and Thomas then write:
"Other than that, there do not seem to be enumerative results known for these families."

Enumeration of positive m-divisible non-crossing partitions

Enumeration of positive m-divisible non-crossing partitions

For "ordinary" m-divisible non-crossing partitions, closed-form enumeration results are known for:

- total number;
- number of those of given rank;
- number of those with given block sizes (in types A, B, D);
- number of chains;
- number of chains with elements at given ranks;
- number of chains with elements at given ranks and bottom element with given block sizes (in types A, B, D).

How do elements of $N C_{+}^{(m)}\left(A_{n-1}\right)$ look like?

How do elements of $N C_{+}^{(m)}\left(A_{n-1}\right)$ look like?

How do elements of $N C_{+}^{(m)}\left(A_{n-1}\right)$ look like?

Fact: Under Armstrong's map, the elements of $N C_{+}^{(m)}\left(A_{n-1}\right)$ correspond to those m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ in which $m n$ and 1 are in the same block.

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m, n be positive integers, The total number of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ is given by

$$
\frac{1}{n}\binom{(m+1) n-2}{n-1} .
$$

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m, n be positive integers, The total number of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ is given by

$$
\frac{1}{n}\binom{(m+1) n-2}{n-1}
$$

Theorem

Let m, n, I be positive integers, The number of multi-chains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{I-1}$ in the poset of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ is given by

$$
\frac{1+(I-1)(m-1)}{n-1}\binom{n-1+(I-1)(m n-1)}{n-2}
$$

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m and n be positive integers, For non-negative integers $b_{1}, b_{2}, \ldots, b_{n}$, the number of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ which have exactly b_{i} blocks of size $m i, i=1,2, \ldots, n$, is given by

$$
\frac{1}{m n-1}\binom{b_{1}+b_{2}+\cdots+b_{n}}{b_{1}, b_{2}, \ldots, b_{n}}\binom{m n-1}{b_{1}+b_{2}+\cdots+b_{n}}
$$

if $b_{1}+2 b_{2}+\cdots+n b_{n}=n$, and 0 otherwise.

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m, n, I be positive integers, and let $s_{1}, s_{2}, \ldots, s_{/}$be non-negative integers with $s_{1}+s_{2}+\cdots+s_{1}=n-1$. The number of multi-chains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{I-1}$ in the poset of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ with the property that $\mathrm{rk}\left(\pi_{i}\right)=s_{1}+s_{2}+\cdots+s_{i}, i=1,2, \ldots, I-1$, is given by

$$
\frac{m n-s_{2}-s_{3}-\cdots-s_{1}-1}{(m n-1) n}\binom{n}{s_{1}}\binom{m n-1}{s_{2}} \cdots\binom{m n-1}{s_{l}} .
$$

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m, n, I be positive integers, For non-negative integers $b_{1}, b_{2}, \ldots, b_{n}$, the number of multi-chains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{I-1}$ in the poset of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ for which the number of blocks of size mi of π_{1} is $b_{i}, i=1,2, \ldots, n$, is given by

$$
\left.\begin{array}{rl}
\frac{m n-b_{1}-b_{2}-\cdots-b_{n}}{(m n-1)\left(b_{1}+b_{2}+\cdots+b_{n}\right)}\left(\begin{array}{c}
b_{1}
\end{array}+b_{2}+\cdots+b_{n}\right. \\
b_{1}, b_{2}, \ldots, b_{n}
\end{array}\right) ~\binom{(I-1)(m n-1)}{b_{1}+b_{2}+\cdots+b_{n}-1} .
$$

if $b_{1}+2 b_{2}+\cdots+n b_{n}=n$, and 0 otherwise.

Enumeration in $N C_{+}^{(m)}\left(A_{n-1}\right)$

Theorem

Let m, n, I be positive integers, and let $s_{1}, s_{2}, \ldots, s_{l}, b_{1}, b_{2}, \ldots, b_{n}$ be non-negative integers with $s_{1}+s_{2}+\cdots+s_{l}=n-1$. The number of multi-chains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{I-1}$ in the poset of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ with the property that $\mathrm{rk}\left(\pi_{i}\right)=s_{1}+s_{2}+\cdots+s_{i}, i=1,2, \ldots, I-1$, and that the number of blocks of size mi of π_{1} is b_{i}, $i=1,2, \ldots, n$, is given by

$$
\begin{aligned}
& \frac{m n-b_{1}-b_{2}-\cdots-b_{n}}{(m n-1)\left(b_{1}+b_{2}+\cdots+b_{n}\right)}\binom{b_{1}+b_{2}+\cdots+b_{n}}{b_{1}, b_{2}, \ldots, b_{n}} \\
& \times\binom{ m n-1}{s_{2}} \cdots\binom{m n-1}{s_{l}}
\end{aligned}
$$

if $b_{1}+2 b_{2}+\cdots+n b_{n}=n$ and $s_{1}+b_{1}+b_{2}+\cdots+b_{n}=n$, and 0 otherwise.

How do elements of $N C_{+}^{(m)}\left(B_{n}\right)$ look like?

How do elements of $N C_{+}^{(m)}\left(B_{n}\right)$ look like?

Fact: Under Armstrong's map, the elements of $N C_{+}^{(m)}\left(B_{n}\right)$ correspond to those m-divisible non-crossing partitions of $\{1,2, \ldots, m n,-1,-2, \ldots,-m n\}$ which are invariant under rotation by 180°, and in which the block of 1 contains a negative element.

Enumeration in $N C_{+}^{(m)}\left(B_{n}\right)$

Enumeration in $N C_{+}^{(m)}\left(B_{n}\right)$

Theorem

Let m, n, I be positive integers such that $r \geq 2$ and $r \mid m n$. Furthermore, let $s_{1}, s_{2}, \ldots, s_{l}$ be non-negative integers with $s_{1}+s_{2}+\cdots+s_{l}=n$. The number of multi-chains $\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{I-1}$ in the poset of positive m-divisible non-crossing partitions in $N C^{(m)}\left(B_{n}\right)$ which the property that $\operatorname{rk}\left(\pi_{i}\right)=s_{1}+s_{2}+\cdots+s_{i}, i=1,2, \ldots, I-1$, and that the number of non-zero blocks of size mi of π_{1} is $r b_{i}, i=1,2, \ldots, n$, is given by

$$
\binom{b_{1}+b_{2}+\cdots+b_{n}}{b_{1}, b_{2}, \ldots, b_{n}}\binom{m n-1}{s_{2}} \cdots\binom{m n-1}{s_{l}}
$$

Enumeration in $N C_{+}^{(m)}\left(B_{n}\right)$

Etc.

How do elements of $N C_{+}^{(m)}\left(D_{n}\right)$ look like?

How do elements of $N C_{+}^{(m)}\left(D_{n}\right)$ look like?

Fact: Under CK's map, the elements of $N C_{+}^{(m)}\left(D_{n}\right)$ correspond to those m-divisible non-crossing partitions on the annulus with $\{1,2, \ldots, m(n-1),-1,-2, \ldots,-m(n-1)\}$ on the outer circle and $\{m(n-1)+1, \ldots, m n,-m(n-1)-1, \ldots,-m n\}$ on the inner circle which are invariant under rotation by 180°, satisfy the earlier mentioned and non-defined technical constraint, and in which the predecessor of 1 in its block is a negative element on the outer circle.

Enumeration in $N C_{+}^{(m)}\left(D_{n}\right)$

Enumeration in $N C_{+}^{(m)}\left(D_{n}\right)$

Under construction

A Fundamental Principle of Combinatorial Enumeration (2004ff)

A Fundamental Principle of Combinatorial Enumeration (2004ff)

Every family of combinatorial objects satisfies the

cyclic sieving phenomenon!

Cyclic sieving (Reiner, Stanton, White)

Cyclic sieving (Reiner, Stanton, White)

Ingredients:

- a set M of combinatorial objects,
- a cyclic group $C=\langle g\rangle$ acting on M,
- a polynomial $P(q)$ in q with non-negative integer coefficients.

Cyclic sieving (Reiner, Stanton, White)

Ingredients:

- a set M of combinatorial objects,
- a cyclic group $C=\langle g\rangle$ acting on M,
- a polynomial $P(q)$ in q with non-negative integer coefficients.

Definition

The triple (M, C, P) exhibits the cyclic sieving phenomenon if

$$
\left|\operatorname{Fix}_{M}\left(g^{p}\right)\right|=P\left(e^{2 \pi i p /|C|}\right)
$$

Cyclic sieving (Reiner, Stanton, White)

Example:

Cyclic sieving (Reiner, Stanton, White)

Example:

$$
\begin{gathered}
M=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,3\},\{2,4\}\} \\
g: i \mapsto i+1 \quad(\bmod 4) \\
P(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
\end{gathered}
$$

Cyclic sieving (Reiner, Stanton, White)

Example:

$$
\begin{gathered}
M=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,3\},\{2,4\}\} \\
g: i \mapsto i+1 \quad(\bmod 4) \\
P(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
\end{gathered}
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{0}\right)\right|=6=P(1)=P\left(e^{2 \pi i \cdot 0 / 4}\right)
$$

Cyclic sieving (Reiner, Stanton, White)

Example:

$$
\begin{gathered}
M=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,3\},\{2,4\}\} \\
g: i \mapsto i+1 \quad(\bmod 4) \\
P(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
\end{gathered}
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{0}\right)\right|=6=P(1)=P\left(e^{2 \pi i \cdot 0 / 4}\right)
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{1}\right)\right|=0=P(i)=P\left(e^{2 \pi i \cdot 1 / 4}\right)
$$

Cyclic sieving (Reiner, Stanton, White)

ExAmple:

$$
\begin{gathered}
M=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,3\},\{2,4\}\} \\
\\
g: i \mapsto i+1 \quad(\bmod 4) \\
P(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
\end{gathered}
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{0}\right)\right|=6=P(1)=P\left(e^{2 \pi i \cdot 0 / 4}\right),
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{1}\right)\right|=0=P(i)=P\left(e^{2 \pi i \cdot 1 / 4}\right),
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{2}\right)\right|=2=P(-1)=P\left(e^{2 \pi i \cdot 2 / 4}\right),
$$

Cyclic sieving (Reiner, Stanton, White)

ExAmple:

$$
\begin{gathered}
M=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,3\},\{2,4\}\} \\
\\
g: i \mapsto i+1 \quad(\bmod 4) \\
P(q)=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}=1+q+2 q^{2}+q^{3}+q^{4}
\end{gathered}
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{0}\right)\right|=6=P(1)=P\left(e^{2 \pi i \cdot 0 / 4}\right),
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{1}\right)\right|=0=P(i)=P\left(e^{2 \pi i \cdot 1 / 4}\right),
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{2}\right)\right|=2=P(-1)=P\left(e^{2 \pi i \cdot 2 / 4}\right),
$$

$$
\left|\operatorname{Fix}_{M}\left(g^{3}\right)\right|=0=P(-i)=P\left(e^{2 \pi i \cdot 3 / 4}\right) .
$$

A Fundamental Principle of Combinatorial Enumeration (2004ff)

Every family of combinatorial objects satisfies the
cyclic sieving phenomenon!

A Fundamental Principle of Combinatorial Enumeration (2004ff)

Every family of combinatorial objects satisfies the

cyclic sieving phenomenon!

Corollary

The positive m-divisible non-crossing partitions satisfy the cyclic sieving phenomenon.

A cyclic action for m-divisible non-crossing partitions

A cyclic action for m-divisible non-crossing partitions

Let $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) .
\end{aligned}
$$

It generates a cyclic group of order $m h$.

A cyclic action for m-divisible non-crossing partitions

Let $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) .
\end{aligned}
$$

It generates a cyclic group of order $m h$.
Furthermore, let

$$
\mathrm{Cat}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}}
$$

where $[\alpha]_{q}:=\left(1-q^{\alpha}\right) /(1-q)$.

A cyclic action for m-divisible non-crossing partitions

Let $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) .
\end{aligned}
$$

It generates a cyclic group of order $m h$.
Furthermore, let

$$
\mathrm{Cat}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}}
$$

where $[\alpha]_{q}:=\left(1-q^{\alpha}\right) /(1-q)$.
Theorem (with T. W. MüLler)
The triple $\left(N C^{(m)}(W),\langle K\rangle, \operatorname{Cat}^{(m)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

A cyclic action for m-divisible non-crossing partitions

Let $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) .
\end{aligned}
$$

It generates a cyclic group of order $m h-2$.
Furthermore, let

$$
\mathrm{Cat}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}}
$$

where $[\alpha]_{q}:=\left(1-q^{\alpha}\right) /(1-q)$.

A cyclic action for m-divisible non-crossing partitions

Let $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) .
\end{aligned}
$$

It generates a cyclic group of order $m h-2$.
Furthermore, let

$$
\mathrm{Cat}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}}
$$

where $[\alpha]_{q}:=\left(1-q^{\alpha}\right) /(1-q)$.

Theorem (with T. W. MÜLLER)

Let $N C^{(m ; 0)}(W)$ denote the subset of $N C^{(m)}(W)$ consisting of those elements for which $w_{0}=i d$. Then the triple $\left(N C^{(m ; 0)}(W),\langle K\rangle, \operatorname{Cat}^{(m-1)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

A cyclic action for positive m-divisible non-crossing partitions?

A cyclic action for positive m-divisible non-crossing partitions?

Bad news:
The map $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right)
\end{aligned}
$$

does not necessarily map positive m-divisible non-crossing partitions to positive ones!

A cyclic action for positive m-divisible non-crossing partitions?

Bad news:
The map $K: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \quad \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right)
\end{aligned}
$$

does not necessarily map positive m-divisible non-crossing partitions to positive ones!

Consequently: we have to modify the above action.

A cyclic action for positive m-divisible non-crossing partitions?

A cyclic action for positive m-divisible non-crossing partitions?

Let $K_{+}: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the map defined by

$$
\begin{aligned}
& \left(w_{0} ; w_{1}, \ldots, w_{m}\right) \\
& \mapsto\left(\left(c w_{m-1}^{R} w_{m} c^{-1}\right) w_{0}\left(c w_{m-1}^{R} w_{m} c^{-1}\right)^{-1} ;\right. \\
& \\
& \left.\quad c w_{m-1}^{R} w_{m} c^{-1}, w_{1}, \ldots, w_{m-1}^{L}\right),
\end{aligned}
$$

where $w_{m-1}=w_{m-1}^{L} w_{m-1}^{R}$ is the factorisation of w_{m-1} into its "good" and its "bad" part.

A cyclic action for positive m-divisible non-crossing partitions?

Factorisation into "good" and "bad" part

A cyclic action for positive m-divisible non-crossing partitions?

Factorisation into "good" and "bad" part

Fix a reduced word $c=c_{1} \cdots c_{n}$ for the Coxeter element c.
Define the c-sorting word $w(c)$ for $w \in W$ to be the lexicographically first reduced word for w when written as a subword of c^{∞}.
Let $\mathrm{w}_{\circ}(c)=s_{k_{1}} \cdots s_{k_{N}}$ with $N=n h / 2$ be the c-sorting word of the longest element $w_{\circ} \in W$.
The word $\mathrm{w}_{\mathrm{o}}(c)$ induces a reflection ordering given by

$$
\begin{aligned}
T=\left\{s_{k_{1}}<_{c} s_{k_{1}} s_{k_{2}} s_{k_{1}}<_{c} s_{k_{1}} s_{k_{2}} s_{k_{3}} s_{k_{2}} s_{k_{1}}\right. & <_{c} \ldots \\
& \left.<_{c} s_{k_{1}} \ldots s_{k_{N-1}} s_{k_{N}} s_{k_{N-1}} \ldots s_{k_{1}}\right\}
\end{aligned}
$$

Associate to every element $w \in N C(W)$ a reduced T-word $\mathcal{T}_{c}(w)$ given by the lexicographically first subword of T that is a reduced T-word for w.
We decompose w as $w=w^{L} w^{R}$ where w^{R} is the part of $\mathcal{T}_{c}(w)$ within the last n reflections in T.

Cyclic sieving for positive m-divisible non-crossing partitions

Cyclic sieving for positive m-divisible non-crossing partitions

Let $K_{+}: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the earlier defined map.
Furthermore, let

$$
\mathrm{Cat}_{+}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}-2\right]_{q}}{\left[d_{i}\right]_{q}}
$$

Cyclic sieving for positive m-divisible non-crossing partitions

Let $K_{+}: N C^{(m)}(W) \rightarrow N C^{(m)}(W)$ be the earlier defined map.
Furthermore, let

$$
\mathrm{Cat}_{+}^{(m)}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}-2\right]_{q}}{\left[d_{i}\right]_{q}}
$$

Conjecture

The triple $\left(N C_{+}^{(m)}(W),\left\langle K_{+}\right\rangle, \mathrm{Cat}_{+}^{(m)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

Conjecture

Let $N C_{+}^{(m ; 0)}(W)$ denote the subset of $N C_{+}^{(m)}(W)$ consisting of those elements for which $w_{0}=i d$. Then the triple $\left(N C_{+}^{(m ; 0)}(W),\left\langle K_{+}\right\rangle, \mathrm{Cat}_{+}^{(m-1)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

Cyclic sieving for positive m-divisible non-crossing partitions

Conjecture

The triple $\left(N C_{+}^{(m)}(W),\left\langle K_{+}\right\rangle, \mathrm{Cat}_{+}^{(m)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

Conjecture

Let $N C_{+}^{(m ; 0)}(W)$ denote the subset of $N C_{+}^{(m)}(W)$ consisting of those elements for which $w_{0}=i d$. Then the triple $\left(N C_{+}^{(m ; 0)}(W),\left\langle K_{+}\right\rangle\right.$, Cat $\left._{+}^{(m-1)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

Cyclic sieving for positive m-divisible non-crossing partitions

Conjecture

The triple $\left(N C_{+}^{(m)}(W),\left\langle K_{+}\right\rangle, \mathrm{Cat}_{+}^{(m)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

Conjecture

Let $N C_{+}^{(m ; 0)}(W)$ denote the subset of $N C_{+}^{(m)}(W)$ consisting of those elements for which $w_{0}=i d$. Then the triple $\left(N C_{+}^{(m ; 0)}(W),\left\langle K_{+}\right\rangle, \operatorname{Cat}_{+}^{(m-1)}(W ; q)\right)$ exhibits the cyclic sieving phenomenon.

State of affairs: This is proved for all types except for type D_{n}.

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Realisation of the cyclic action in type A_{n-1}

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Realisation of the cyclic action in type A_{n-1}
"In principle," under Armstrong's combinatorial realisation, the map K_{+}becomes rotation by one unit, unless this would produce a non-positive m-divisible partition.

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Realisation of the cyclic action in type A_{n-1}

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Realisation of the cyclic action in type A_{n-1}

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

How do "pseudo-rotationally" invariant elements look like?

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

How do "pseudo-rotationally" invariant elements look like?

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Theorem

Let m, n, r be positive integers with $r \geq 2$ and $r \mid(m n-2)$. Furthermore, let $b_{1}, b_{2}, \ldots, b_{n}$ be non-negative integers. The number of positive m-divisible non-crossing partitions of $\{1,2, \ldots, m n\}$ which are invariant under the r-pseudo-rotation $\widetilde{\phi}^{(m n-2) / r}$, the number of non-zero blocks of size mi being $r b_{i}$, $i=1,2, \ldots, n$, the zero block having size $m a=m n-m r \sum_{j=1}^{n} j b_{j}$, is given by

$$
\binom{b_{1}+b_{2}+\cdots+b_{n}}{b_{1}, b_{2}, \ldots, b_{n}}\binom{(m n-2) / r}{b_{1}+b_{2}+\cdots+b_{n}}
$$

if $b_{1}+2 b_{2}+\cdots+n b_{n}<n / r$, or if $r=2$ and $b_{1}+2 b_{2}+\cdots+n b_{n}=n / 2$, and 0 otherwise.

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

Theorem

Let C be the cyclic group of pseudo-rotations of an mn-gon generated by K_{+}. Then the triple (M, P, C) exhibits the cyclic sieving phenomenon for the following choices of sets M and polynomials P :
(1) $M=\widetilde{N C}_{+}^{(m)}(n)$, and $P(q)=\frac{1}{[n]_{q}}\left[\begin{array}{c}(m+1) n-2 \\ n-1\end{array}\right]_{q}$;
(2) M consists of all elements of $\widetilde{N C}_{+}^{(m)}(n)$ the block sizes of which are all equal to m, and $P(q)=\frac{1}{[n]_{q}}\left[\begin{array}{c}m n-2 \\ n-1\end{array}\right]_{q}$;
(3) M consists of all elements of $\widetilde{N C}_{+}^{(m)}(n)$ which have rank s (or, equivalently, their number of blocks is $n-s$), and

$$
P(q)=\frac{1}{[n]_{q}}\left[\begin{array}{l}
n \\
s
\end{array}\right]_{q}\left[\begin{array}{c}
m n-2 \\
n-s-1
\end{array}\right]_{q} ;
$$

Cyclic sieving for positive m-divisible non-crossing partitions for type A_{n-1}

(1) M consists of all elements of $\widetilde{N C}_{+}^{(m)}(n)$ whose number of blocks of size mi is $b_{i}, i=1,2, \ldots, n$, and

$$
\begin{aligned}
P(q)=\frac{1}{\left[b_{1}+b_{2}+\cdots+b_{n}\right]_{q}} & {\left[\begin{array}{c}
b_{1}+b_{2}+\cdots+b_{n} \\
b_{1}, b_{2}, \ldots, b_{n}
\end{array}\right]_{q} } \\
\times & {\left[\begin{array}{c}
m n-2 \\
b_{1}+b_{2}+\cdots+b_{n}-1
\end{array}\right]_{q} }
\end{aligned}
$$

Cyclic sieving for positive m-divisible non-crossing partitions for type B_{n}

Realisation of the cyclic action in type B_{n}

Cyclic sieving for positive m-divisible non-crossing partitions for type B_{n}

Realisation of the cyclic action in type B_{n}
"In principle," under Armstrong's combinatorial realisation, the map K_{+}becomes rotation by one unit, unless this would produce a non-positive m-divisible partition.

Cyclic sieving for positive m-divisible non-crossing partitions for type B_{n}

Realisation of the cyclic action in type B_{n}

Cyclic sieving for positive m-divisible non-crossing partitions for type B_{n}

Realisation of the cyclic action in type B_{n}

Cyclic sieving for positive m-divisible non-crossing partitions for type B_{n}

There are results for the positive m-divisible non-crossing partitions for type B_{n} which are similar to those for type A_{n-1}.

Cyclic sieving for positive m-divisible non-crossing partitions for the exceptional types

The (positive) m-divisible non-crossing partitions

$$
\left(w_{0} ; w_{1}, \ldots, w_{m}\right)
$$

for the exceptional types become "sparse" for large m.
This allows one to reduce the occurring enumeration problems to finite problems.
"Other than that, there do not seem to be enumerative results known for these families."

