Kirillov-Reshetikhin modules and quantum affine algebras

Bernard Leclerc Université de Caen

SLC 78 Saint-Nabor, 27/03/2017

Saint-Mélany August 1991

Saint-Mélany August 1991

Saint-Mélany August 1994

48 J. L. Cardy

References

- [1] E. Verlinde, Nucl. Phys., B300 (1988), 360.
- 2 G. Moore and N. Seiberg, Phys. Lett. (in press).
- [3] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys., B241 (1984), 333.
- [4] P. Goddard, A. Kent and D. Olive, Comm. Math. Phys., 103 (1986).
- 105.
 [5] E. Date, M. Jimbo, T. Miwa and M. Okado, Phys. Rev., B35 (1987),
- 2105. [6] J.L. Cardy, Nucl. Phys., B275 (1986), 200.
- [5] J.L. Cardy, Nucl. Phys., B275 (1980), 200.
 [7] H. Saleur and M. Bauer, Nucl. Phys. (in press).
- [7] H. Saleur and M. Bauer, Nucl. Phys. (in press)
 [8] H. Saleur, J. Phys., A22 (1989), L41.
- [8] H. Saleur, J. Phys., A22 (1989), L41.
 [9] J.L. Cardy, Nucl. Phys., B240[FS12] (1984), 514.
- [10] H.W.J. Blöte, J.L. Cardy and M.P. Nightingale, Phys. Rev. Lett., 56 (1986), 742.
- (1989), 742.
 [11] G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys., 35 (1984).
- 193.
 [12] N. Ishibashi, University of Tokyo preprint UT-530 (1988).
- [13] T. Onogi and N. Ishibashi, University of Tokyo preprint UT-Komaba, 88-9 (1988).
- [14] H. Sonoda, preprint LBL-25316.
- [14] H. Sonoda, preprint Libb-20316.[15] I. Peschel and T.T. Truong, Z. Phys., B69 (1987), 395.
- J.L. Cardy and I. Peschel, Nucl. Phys., B300[FS22] (1988), 377.
 A. Cappelli, C. Itaykson and J.-B. Zuber, Nucl. Phys., B280 (1987),
- 445. [18] D. Huse, Phys. Rev., B, 30 (1984), 3908.
- [19] R. J. Baxter, "Exactly Solved Models in Statistical Mechanics", Academic. 1982.
- H. Itoyama and H. Thacker, Phys. Rev. Lett., 14 (1987), 1395.
 J.L. Cardy, in "Fields, Strings and Critical Phenomena", Les Houches
- 1988, B. Brézin and J. Zinn-Justin eds., North-Holland, 1989.

 [22] V. Pasquier and H. Saleur, in "Fields, Strings and Critical Phenomena",
- V. Pasquier and H. Saleur, in "Fields, Strings and Critical Phenomena", Les Houches 1988, E. Bréxin and J. Zian-Justin eds., North-Holland, 1989.

Department of Physics University of California Santa Barbara CA 93106 U.S.A. Advanced Studies in Pure Mathematics 19, 1989 Integrable Systems in Quantum Field Theory and Statistical Mechanics pp. 149-191

Paths, Maya Diagrams and representations of $\widehat{\mathfrak{sl}}(r, \mathbb{C})$

Etsuro Date, Michio Jimbo, Atsuo Kuniba, Tetsuii Miwa and Masato Okado

Dedicated to Professor Tosihusa Kimura on his 60th birthday

§1. Introduction

Let g be the affine Lie algebra $\delta(f,C)$, let λ be a dominant integral weight, and let $L(\lambda)$ be the irreducible ρ -module with highest weight Λ . In this article we construct an explicit basis of each weight space $L(\Lambda)_{\mu}$. λ as a corollary we prove a new combinatorial formula for the dimensionality of $L(\Lambda)_{\mu}$, which was conjectured in [1] through the study of corner transfer matrices of solvable lattice models (see Theorem 1.2 below).

The problem of constructing explicit bases goes back to the work of Geffand and Teller [2] who gave a canonical basis of I_0/I_0 of the classical Lie algebras $g = g[ir_1(0), ofr_1(C)]$. Analogous results are available in the setting of sime Lie algebra. When Λ is of level I_1/I_0 can be identified with a space of polynomials in infinitely many variables $[A_1]$ cor a simple modification thereof [S]. For higher levels, the X-algebra approach initiated by Lepowsky and Wilson [0] provides a basis in various cases $[g = 2(I_0, I_0)$ arithrizy levels $[A_1]^2$, or $g = [A_1^2, I_0, I_0^2]$, when I_0 is I_0 is I_0 and I_0 is I_0 and I_0 is I_0 and I_0 complete I_0 and I_0 complete I_0 and I_0 complete I_0 constituting the I_0 complete I_0 complete I_0 complete I_0 complete I_0 complete I_0 constituting I_0 complete I_0 complete I_0 complete I_0 complete I_0 complete I_0 constituting I_0 complete I_0 complete I_0 complete I_0 complete I_0 constitution I_0 constitution I_0 complete I_0 complete I_0 complete I_0 complete I_0 constitution I_0 complete I_0 constitution I_0 complete I_0 constitution I_0 const

A new feature of our approach is the use of an object—path, which we now explain. Let $\epsilon_{\mu}=(0,\cdots,\overset{n}{1},\cdots,0)(0\leq\mu<\tau)$ denote the standard base vectors of Z^r . We extend the suffixes to \mathbf{Z} by $\epsilon_{\mu+r}=\epsilon_{\mu}$. Fix a nositive integer l.

Definition 1.1. A path is a sequence $\eta = (\eta(k))_{k \geq 0}$ consisting of elements $\eta(k) \in \mathbb{Z}^*$ of the form $\epsilon_{\mu_1(k)} + \cdots + \epsilon_{\mu_l(k)} (\mu_1(k), \cdots, \mu_l(k) \in \mathbb{Z})$.

Fig. 2.2 Coloring of nodes.

where α_0 , α_1 are the simple roots of $\widehat{\mathfrak{sl}}(2, \mathbf{C})$. Next we define the action of the Chevalley generators e_i , f_i . Put e_0Y (resp. $f_0Y) = \sum_{\mathcal{V}} \mathcal{V}'$, where Y' runs over the Young diagrams obtained by removing (resp. adjoining) one white node from Y. For instance,

Likewise define e_1, f_1 replacing 'white' by 'black'. We have then

$$(2.4)$$
 $(f_iY, Y') = (Y, e_iY'),$

With these definitions the irreducible $\widehat{\mathfrak{sl}}(2, \mathbb{C})$ -module $L(\Lambda_0)$ is realized as a subspace of $\mathcal{F}[0]$ spanned by vectors of the form $f_{i_1} \cdots f_{i_k} \phi$, ϕ being the empty Young diagram.

There is a natural map $p_{\Lambda_0}: Y \mapsto \eta$ sending the set of Young diagrams onto that of Λ_0 -paths. Let Y be a Young diagram, and let g_j denote the length of its (j+1)-th column $(j=0,1,\cdots,g_j=0)$ for $j \gg 0$). Then $\eta = p_{\Lambda_0}(X)$ is defined by

$$\eta(j) \in \{0, 1\}, \quad \eta(j) \equiv j - g_j \mod 2 \ (j \ge 0).$$

For instance,

$$Y =$$
 gives $\eta = 1, 0, 1, 1, 0, 1, \cdots$

Conversely, for each η there exists a unique Young diagram $Y = Y_{\eta}$

which satisfies the conditions

(2.5a) $p_{\Lambda_0}(Y) = \eta$,

(2.5b) Y has the signature $|y_1, y_2, \dots, y_s|$ with $y_1 > y_2 > \dots > y_s$.

Thus by (2.5b)

hnt

The Young diagram Y_{η} is called the highest lift of η . It has the property that, for any Y' such that $p_{\Lambda_0}(Y') = \eta$, one has $Y_{\eta} \subset Y'$.

operty that, for any r such that $p_{A_0}(r) = \eta$, one has $r_\eta \subset r$. Our base vectors $\xi_\eta \in L(\Lambda_0)^*$ are defined to be

$$\xi_{\eta}(v) = (Y_{\eta}, v), \quad v \in L(\Lambda_0).$$

Each ξ_{η} is a weight vector. In the Young diagram picture Y_{η} , its weight λ_{η} is simply given by counting the numbers of white and black nodes (2.3). In the path picture η we have

$$(2.6) \quad \lambda_{\eta} = \mu(0) - \sum_{k>1} k \Big(H \big(\eta(k-1), \eta(k) \big) - H \big(\eta_{\Lambda}(k-1), \eta_{\Lambda}(k) \big) \Big) \delta,$$

where $\mu(0)$ is the 'initial point' of the sequence μ (2.2) corresponding to n, $\delta = \alpha_0 + \alpha_1$, and

$$\begin{array}{ll} H(\eta,\eta')=0 & \quad \text{if } \eta=0,\eta'=1, \\ &=1 & \quad \text{otherwise}. \end{array}$$

For example, $\eta=\eta^{(3)}$ in (2.1) has the weight $\lambda_{\eta}=-\Lambda_{0}+2\Lambda_{1}-3\delta$. One can also construct a basis $\{v_{\eta}\}$ of $L(\Lambda_{0})$ as follows. Consider the process of removing the nodes from Y_{η} one by one. At each step we require:

- require:

 (i) removal of the node produces a Young diagram satisfying (2.5b).
- (ii) among the nodes satisfying (i) the rightmost one is removed.

Finite-dimensional representations of $\ensuremath{\mathfrak{g}}$

• \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.

Finite-dimensional representations of ${\mathfrak g}$

- \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.
- $P = \bigoplus_{i \in I} \mathbb{Z} \overline{\sigma}_i$ weight lattice of \mathfrak{g} .

Finite-dimensional representations of $\mathfrak g$

- \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.
- $P = \bigoplus_{i \in I} \mathbb{Z} \overline{\omega}_i$ weight lattice of \mathfrak{g} .
- Simple finite-dimensional \mathfrak{g} -modules $L(\lambda)$ are labelled by

$$\lambda \in P_+ = \bigoplus_{i \in I} \mathbb{N} \boldsymbol{\omega}_i$$

Finite-dimensional representations of $\mathfrak g$

- \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.
- $P = \bigoplus_{i \in I} \mathbb{Z} \overline{\omega}_i$ weight lattice of \mathfrak{g} .
- Simple finite-dimensional \mathfrak{g} -modules $L(\lambda)$ are labelled by

$$\lambda \in P_+ = \bigoplus_{i \in I} \mathbb{N} \boldsymbol{\omega}_i$$

• Finite-dimensional g-modules have a weight-space decomposition

$$M = \bigoplus_{\mu \in P} M_{\mu}$$

Finite-dimensional representations of $\mathfrak g$

- \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.
- $P = \bigoplus_{i \in I} \mathbb{Z} \overline{\omega}_i$ weight lattice of \mathfrak{g} .
- Simple finite-dimensional \mathfrak{g} -modules $L(\lambda)$ are labelled by

$$\lambda \in P_+ = \bigoplus_{i \in I} \mathbb{N} \boldsymbol{\omega}_i$$

• Finite-dimensional g-modules have a weight-space decomposition

$$M = \bigoplus_{\mu \in P} M_{\mu}$$

 \rightsquigarrow character of M: $\chi(M) := \sum_{\mu \in P} \dim(M_{\mu}) e^{\mu}$

Finite-dimensional representations of ${\mathfrak g}$

- \mathfrak{g} simple complex Lie algebra, with Cartan matrix $C = [c_{ij}]_{i,j \in I}$.
- $P = \bigoplus_{i \in I} \mathbb{Z} \overline{\omega}_i$ weight lattice of \mathfrak{g} .
- Simple finite-dimensional \mathfrak{g} -modules $L(\lambda)$ are labelled by

$$\lambda \in P_+ = \bigoplus_{i \in I} \mathbb{N} \boldsymbol{\omega}_i$$

• Finite-dimensional g-modules have a weight-space decomposition

$$M = \bigoplus_{\mu \in P} M_{\mu}$$

- \rightsquigarrow character of M: $\chi(M) := \sum_{\mu \in P} \dim(M_{\mu}) e^{\mu}$
- For $\lambda \in P_+$, $\chi(L(\lambda))$ is given by Weyl's character formula.

• $\chi(M)$ is a Laurent polynomial in the $y_i := e^{\overline{\sigma}_i}$.

• $\chi(M)$ is a Laurent polynomial in the $y_i := e^{\overline{\sigma}_i}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

• $\chi(M)$ is a Laurent polynomial in the $y_i := e^{\overline{\sigma}_i}$.

Example:
$$\mathfrak{g} = \mathfrak{sl}_3$$
 (type A_2).

$$\chi(L(\varpi_1)) = y_1 + y_1^{-1}y_2 + y_2^{-1}$$

$$\chi(L(\varpi_2)) = y_2 + y_2^{-1}y_1 + y_1^{-1}$$

• $\chi(M)$ is a Laurent polynomial in the $y_i := e^{\overline{\alpha}_i}$.

Example:
$$\mathfrak{g} = \mathfrak{sl}_3$$
 (type A_2).
$$\chi(L(\varpi_1)) = y_1 + y_1^{-1} y_2 + y_2^{-1}$$
$$\chi(L(\varpi_2)) = y_2 + y_2^{-1} y_1 + y_1^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

• $\chi(M)$ is a Laurent polynomial in the $y_i := e^{\overline{\sigma}_i}$.

Example: $g = \mathfrak{sl}_3$ (type A_2).

$$\chi(L(\varpi_1)) = y_1 + y_1^{-1}y_2 + y_2^{-1}$$

 $\chi(L(\varpi_2)) = y_2 + y_2^{-1}y_1 + y_1^{-1}$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

$$\chi(L(\varpi_1)) = y_1 + y_1^{-1}y_2^2 + 1 + y_1y_2^{-2} + y_1^{-1}$$

$$\chi(L(\varpi_2)) = y_2 + y_1y_2^{-1} + y_1^{-1}y_2 + y_2^{-1}$$

• \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\sigma}_i, \mathbf{z})$.

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\sigma}_i, \mathbf{z}).$

Theorem (Chari-Pressley)

• Simples of \mathscr{C} are parametrized by $\widehat{P}_+ = \bigoplus_{i,\mathbf{z}} \mathbb{N}(\boldsymbol{\varpi}_i,\mathbf{z})$.

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\sigma}_i, \mathbf{z}).$

Theorem (Chari-Pressley)

- Simples of \mathscr{C} are parametrized by $\widehat{P}_+ = \bigoplus_{i,\mathbf{z}} \mathbb{N}(\boldsymbol{\varpi}_i,\mathbf{z})$.
- $K_0(\mathscr{C})$ = polynomial ring in the $[L(\varpi_i, \mathbf{z})]$ $(i \in I, \mathbf{z} \in \mathbb{C}^*)$.

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\varpi}_i, \mathbf{z}).$

Theorem (Chari-Pressley)

- Simples of \mathscr{C} are parametrized by $\widehat{P}_+ = \bigoplus_{i,\mathbf{z}} \mathbb{N}(\boldsymbol{\varpi}_i,\mathbf{z})$.
- $K_0(\mathscr{C})$ = polynomial ring in the $[L(\boldsymbol{\varpi}_i, \mathbf{z})]$ $(i \in I, \mathbf{z} \in \mathbb{C}^*)$.
- $M \in \mathscr{C}$ has an ℓ -weight-space decomposition $M = \bigoplus_{\widehat{\lambda} \in \widehat{P}} M_{\widehat{\lambda}}$.

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\sigma}_i, \mathbf{z}).$

Theorem (Chari-Pressley)

- Simples of \mathscr{C} are parametrized by $\widehat{P}_+ = \bigoplus_{i,\mathbf{z}} \mathbb{N}(\boldsymbol{\sigma}_i,\mathbf{z})$.
- $K_0(\mathscr{C})$ = polynomial ring in the $[L(\boldsymbol{\varpi}_i, \mathbf{z})]$ $(i \in I, \mathbf{z} \in \mathbb{C}^*)$.
- $M \in \mathscr{C}$ has an ℓ -weight-space decomposition $M = \bigoplus_{\widehat{\lambda} \in \widehat{P}} M_{\widehat{\lambda}}$.

Definition (Frenkel-Reshetikhin)

$$\chi_q(M) := \sum_{\widehat{\lambda} \in \widehat{P}} \dim M_{\widehat{\lambda}} e^{\widehat{\lambda}} = q$$
-character of M .

- \mathscr{C} category of finite-dimensional $U_q(\widehat{\mathfrak{g}})$ -modules. $(q \in \mathbb{C}^*, \text{ not a root of 1})$
- Lattice of ℓ -weights: $\widehat{P} := \bigoplus_{\mathbf{z} \in \mathbb{C}^*} \bigoplus_{i \in I} \mathbb{Z}(\boldsymbol{\varpi}_i, \mathbf{z}).$

Theorem (Chari-Pressley)

- Simples of \mathscr{C} are parametrized by $\widehat{P}_+ = \bigoplus_{i,\mathbf{z}} \mathbb{N}(\boldsymbol{\varpi}_i,\mathbf{z})$.
- $K_0(\mathscr{C})$ = polynomial ring in the $[L(\varpi_i, \mathbf{z})]$ $(i \in I, \mathbf{z} \in \mathbb{C}^*)$.
- $M \in \mathscr{C}$ has an ℓ -weight-space decomposition $M = \bigoplus_{\widehat{\lambda} \in \widehat{P}} M_{\widehat{\lambda}}$.

Definition (Frenkel-Reshetikhin)

$$\chi_q(M) := \sum_{\widehat{\lambda} \in \widehat{P}} \dim M_{\widehat{\lambda}} e^{\widehat{\lambda}} = q$$
-character of M .

•
$$[M] = [N]$$
 in $K_0(\mathscr{C}) \iff \chi_q(M) = \chi_q(N)$.

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$. Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

$$\chi_{q}(L(\overline{\omega}_{1},z)) = Y_{1,z} + Y_{1,zq^{4}}^{-1} Y_{2,zq} Y_{2,zq^{3}} + Y_{2,zq} Y_{2,zq^{5}}^{-1}
+ Y_{1,zq^{2}} Y_{2,zq^{3}}^{-1} Y_{2,zq^{5}}^{-1} + Y_{1,zq^{6}}^{-1}$$

$$\chi_{q}(L(\overline{\omega}_{2},z)) = Y_{2,z} + Y_{1,zq} Y_{2,zq^{2}}^{-1} + Y_{1,zq^{5}}^{-1} Y_{2,zq^{4}} + Y_{2,zq^{6}}^{-1}$$

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

$$\begin{array}{lcl} \chi_{q}(L(\varpi_{1},z)) & = & Y_{1,z} + Y_{1,zq^{4}}^{-1} Y_{2,zq} Y_{2,zq^{3}} + Y_{2,zq} Y_{2,zq^{5}}^{-1} \\ & & + Y_{1,zq^{2}} Y_{2,zq^{3}}^{-1} Y_{2,zq^{5}}^{-1} + Y_{1,zq^{6}}^{-1} \end{array}$$

$$\chi_{q}(L(\varpi_{2},z)) & = & Y_{2,z} + Y_{1,zq} Y_{2,zq^{2}}^{-1} + Y_{1,zq^{5}}^{-1} Y_{2,zq^{4}} + Y_{2,zq^{6}}^{-1} \end{array}$$

• There is no Weyl type character formula for $\chi_q(L(\hat{\lambda}))$.

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\varpi_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

$$\begin{array}{lcl} \chi_{q}(L(\varpi_{1},z)) & = & Y_{1,z} + Y_{1,zq^{4}}^{-1} Y_{2,zq} Y_{2,zq^{3}} + Y_{2,zq} Y_{2,zq^{5}}^{-1} \\ & & + Y_{1,zq^{2}} Y_{2,zq^{3}}^{-1} Y_{2,zq^{5}}^{-1} + Y_{1,zq^{6}}^{-1} \end{array}$$

$$\chi_{q}(L(\varpi_{2},z)) & = & Y_{2,z} + Y_{1,zq} Y_{2,zq^{2}}^{-1} + Y_{1,zq^{5}}^{-1} Y_{2,zq^{4}} + Y_{2,zq^{6}}^{-1} \end{array}$$

- There is no Weyl type character formula for $\chi_q\left(L(\widehat{\lambda})\right)$. But
 - Frenkel-Mukhin's algorithm for minuscule representations.

• $\chi_q(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\overline{\omega}_i,z)}$.

Example: $\mathfrak{g} = \mathfrak{sl}_3$ (type A_2).

$$\chi_q(L(\varpi_1,z)) = Y_{1,z} + Y_{1,zq^2}^{-1} Y_{2,zq} + Y_{2,zq^3}^{-1}$$

Example: $\mathfrak{g} = \mathfrak{so}_5$ (type B_2).

$$\begin{array}{lcl} \chi_{q}(L(\varpi_{1},z)) & = & Y_{1,z} + Y_{1,zq^{4}}^{-1} Y_{2,zq} Y_{2,zq^{3}} + Y_{2,zq} Y_{2,zq^{5}}^{-1} \\ & & + Y_{1,zq^{2}} Y_{2,zq^{3}}^{-1} Y_{2,zq^{5}}^{-1} + Y_{1,zq^{6}}^{-1} \end{array}$$

$$\chi_{q}(L(\varpi_{2},z)) & = & Y_{2,z} + Y_{1,zq} Y_{2,zq^{2}}^{-1} + Y_{1,zq^{5}}^{-1} Y_{2,zq^{4}}^{-1} + Y_{2,zq^{6}}^{-1} \end{array}$$

- There is no Weyl type character formula for $\chi_q\left(L(\widehat{\lambda})\right)$. But
 - Frenkel-Mukhin's algorithm for minuscule representations.
 - Nakajima's geometric description for g of type A, D, E.

Kirillov-Reshetikhin modules

Kirillov-Reshetikhin modules

Notation: For $i \in I$, $k \in \mathbb{N}$, and $z \in \mathbb{C}^*$ put

$$W_{\mathbf{k},z}^{(i)} := L\left((\varpi_i,z) + (\varpi_i,zq^2) + \cdots + (\varpi_i,zq^{2k-2})\right).$$

Kirillov-Reshetikhin modules

Notation: For $i \in I$, $k \in \mathbb{N}$, and $z \in \mathbb{C}^*$ put

$$W_{\mathbf{k},z}^{(i)} := L\left((\boldsymbol{\varpi}_i,z) + (\boldsymbol{\varpi}_i,zq^2) + \cdots + (\boldsymbol{\varpi}_i,zq^{2\mathbf{k}-2})\right).$$

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The $[W_{k,z}^{(i)}]$ satisfy an infinite system of equations, called T-system.

Kirillov-Reshetikhin modules

Notation: For $i \in I$, $k \in \mathbb{N}$, and $z \in \mathbb{C}^*$ put

$$W_{\mathbf{k},z}^{(i)} := L\left((\varpi_i,z) + (\varpi_i,zq^2) + \cdots + (\varpi_i,zq^{2k-2})\right).$$

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The $[W_{k,z}^{(i)}]$ satisfy an infinite system of equations, called T-system. In type A, D, E:

$$\left[W_{k,z}^{(i)}\right]\left[W_{k,zq^2}^{(i)}\right] = \left[W_{k+1,z}^{(i)}\right]\left[W_{k-1,zq^2}^{(i)}\right] + \prod_{i \neq i} \left[W_{k,zq}^{(j)}\right]^{-c_{ij}}$$

•
$$C = (c_{ij} \mid i, j \in I)$$
, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$

- $C = (c_{ij} \mid i, j \in I)$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \operatorname{diag}(d_i), d_i \in \mathbb{Z}_{>0}$, $\min(d_i) = 1$, such that DC is symmetric

- $C = (c_{ij} \mid i, j \in I)$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \operatorname{diag}(d_i), d_i \in \mathbb{Z}_{>0}$, $\min(d_i) = 1$, such that DC is symmetric
- \circ \tilde{Q} , quiver with vertex set $I \times \mathbb{Z}$, and arrows:

$$(i,r) \rightarrow (j,s) \iff c_{ij} \neq 0 \text{ and } s = r + d_i c_{ij}$$

- $C = (c_{ij} \mid i, j \in I)$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \operatorname{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that DC is symmetric
- $\widetilde{\mathbf{Q}}$, quiver with vertex set $I \times \mathbb{Z}$, and arrows:

$$(i,r) \rightarrow (j,s) \iff c_{ij} \neq 0 \text{ and } s = r + d_i c_{ij}$$

• Q, one of the two connected components of \widetilde{Q}

$$C = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad \vdots \qquad (2,3)$$

$$\begin{pmatrix} (1,2) & & \\$$

$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \qquad \vdots \qquad \begin{pmatrix} 2.5 \\ & & \\ &$$

Semi-infinite quivers

Semi-infinite quivers

• infinite quiver Γ : same graph as Q, but change of vertex labelling: (i, r) is changed into $(i, r + d_i)$. New vertex set W.

Semi-infinite quivers

- infinite quiver Γ : same graph as Q, but change of vertex labelling: (i, r) is changed into $(i, r + d_i)$. New vertex set W.
- semi-infinite quiver Γ^- , full subquiver of Γ with vertex set $W^- = \{(i, s) \in W \mid s \le 0\}$.

$$C = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$(1,-1)$$

$$(2,-2)$$

$$(1,-3)$$

$$(1,-5)$$

$$(1,-5)$$

$$(2,-6)$$

$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

• monomial change of variables : $z_{i,r} = \prod_{k>0, r+kd_i \le 0} Y_{i,a^{r+kd_i}}$

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathscr{A} , cluster algebra with initial seed (z, Γ^{-})

- monomial change of variables : $Z_{i,r} = \prod_{k>0, r+kd_i < 0} Y_{i,a^{r+kd_i}}$
- h dual Coxeter number of \mathfrak{g} .

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

- monomial change of variables : $Z_{i,r} = \prod_{k>0,r+kd_i<0} Y_{i,\alpha^{r+kd_i}}$
- h dual Coxeter number of g.

Theorem (Hernandez-L)

There exists an explicit sequence of mutations \mathcal{S} such that:

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

- monomial change of variables : $Z_{i,r} = \prod_{k>0,r+kd_i<0} Y_{i,\alpha^{r+kd_i}}$
- h dual Coxeter number of g.

Theorem (Hernandez-L)

There exists an explicit sequence of mutations $\mathscr S$ such that:

• $\mu_{\mathscr{S}}(\Sigma)$ has the same quiver as Σ

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

- monomial change of variables : $Z_{i,r} = \prod_{k>0,r+kd_i<0} Y_{i,\alpha^{r+kd_i}}$
- h dual Coxeter number of g.

Theorem (Hernandez-L)

There exists an explicit sequence of mutations $\mathscr S$ such that:

- $\mu_{\mathscr{S}}(\Sigma)$ has the same quiver as Σ
- For $m \ge h^{\kappa}/2$, the cluster variables of $\mu_{\mathscr{S}}^m(\Sigma)$ are the q-characters of all KR-modules (up to spectral shift)

• $z := \{z_{i,s} \mid (i,s) \in W^-\}$, set of indeterminates

Definition

 \mathcal{A} , cluster algebra with initial seed (z, Γ^-)

- monomial change of variables : $Z_{i,r} = \prod_{k>0,r+kd_i<0} Y_{i,\alpha^{r+kd_i}}$
- *h* dual Coxeter number of g.

Theorem (Hernandez-L)

There exists an explicit sequence of mutations $\mathscr S$ such that:

- $\mu_{\mathscr{S}}(\Sigma)$ has the same quiver as Σ
- For $m \ge h^{\kappa}/2$, the cluster variables of $\mu_{\mathscr{S}}^m(\Sigma)$ are the q-characters of all KR-modules (up to spectral shift)

 \rightarrow algorithm to calculate *q*-characters of KR-modules by "successive approximations".

The rules are tricky, but they are a much more efficient way of getting the answer than by counting beans.

Richard Feynman, *QED the strange theory of light and matter*, 1985.

• \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.
- \mathbb{Z} , cluster variable of $\mathbb{A} \longrightarrow M$, indecomposable A-module

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.
- \mathbb{Z} , cluster variable of $\mathscr{A} \leadsto M$, indecomposable A-module
- expansion of Z in terms of X_i 's is encoded in the topology of varieties of submodules of M:

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.
- \mathbb{Z} , cluster variable of $\mathbb{A} \longrightarrow \mathbb{M}$, indecomposable \mathbb{A} -module
- expansion of Z in terms of X_i 's is encoded in the topology of varieties of submodules of M:
 - monomials $m \longleftrightarrow dimension vectors d of submodules$

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.
- \mathbb{Z} , cluster variable of $\mathscr{A} \leadsto M$, indecomposable A-module
- expansion of Z in terms of X_i 's is encoded in the topology of varieties of submodules of M:
 - monomials $m \longleftrightarrow dimension vectors d of submodules$
 - coefficient of m = Euler characteristic of the variety of submodules of dimension d

- \mathscr{A} cluster algebra with initial seed $((x_1, \ldots, x_n), Q)$.
- \rightsquigarrow A, an associative algebra of the form $\mathbb{C}Q/I$ where I is an ideal given by a superpotential of Q.
- \mathbb{Z} , cluster variable of $\mathscr{A} \leadsto M$, indecomposable A-module
- expansion of Z in terms of X_i 's is encoded in the topology of varieties of submodules of M:
 - monomials $m \longleftrightarrow dimension vectors d of submodules$
 - coefficient of m = Euler characteristic of the variety of submodules of dimension d

Theorem (Hernandez-L)

Geometric character formulas for q-characters of KR-modules

$$\chi_q\left(W_{1,-3}^{(1)}\right) = Y_{1,-3} + Y_{1,-1}^{-1} Y_{2,-2} + Y_{2,0}^{-1}$$

$$\chi_q\left(W_{1,-3}^{(1)}\right) = Y_{1,-3} + Y_{1,-1}^{-1} Y_{2,-2} + Y_{2,0}^{-1}$$
$$= Y_{1,-3} \left(1 + A_{1,-2}^{-1} + A_{1,-2}^{-1} A_{2,-1}^{-1}\right)$$

$$\begin{array}{lcl} \chi_{q}\left(W_{1,-3}^{(1)}\right) & = & Y_{1,-3} + Y_{1,-1}^{-1} \, Y_{2,-2} + Y_{2,0}^{-1} \\ & = & Y_{1,-3} \left(1 + A_{1,-2}^{-1} + A_{1,-2}^{-1} A_{2,-1}^{-1}\right) \end{array}$$

$$A_{1,r} = Y_{1,r-1} Y_{1,r+1} Y_{2,r}^{-1}, \quad A_{2,r} = Y_{2,r-1} Y_{2,r+1} Y_{1,r}^{-1}.$$

$$\begin{array}{lcl} \chi_{q}\left(W_{1,-3}^{(1)}\right) & = & Y_{1,-3} + Y_{1,-1}^{-1} \, Y_{2,-2} + Y_{2,0}^{-1} \\ & = & Y_{1,-3} \left(1 + A_{1,-2}^{-1} + A_{1,-2}^{-1} A_{2,-1}^{-1}\right) \end{array}$$

$$\textbf{\textit{A}}_{1,r} = \textbf{\textit{Y}}_{1,r-1} \, \textbf{\textit{Y}}_{1,r+1} \, \textbf{\textit{Y}}_{2,r}^{-1}, \quad \textbf{\textit{A}}_{2,r} = \textbf{\textit{Y}}_{2,r-1} \, \textbf{\textit{Y}}_{2,r+1} \, \textbf{\textit{Y}}_{1,r}^{-1}.$$

$$K_{1,-2}^{(1)}$$
: (2,-1)

$$\rightarrow \chi_q \left(W_{2,-5}^{(1)} \right)$$

$$K_{1,-5}^{(1)}$$
: $(2,-3)$ $(1,-3)$ \sim $\chi_q(W_{1,-7}^{(1)})$

$$K_{2,-5}^{(1)}$$
: $(2,-3)$ $(1,-3)$ $(1,-3)$ $(1,-3)$ $(2,-5)$ $(2,-7)$ $(1,-7)$ $(1,-7)$ $(1,-9)$ $(2,-9)$

$$K_{1,-5}^{(1)}$$
: $(2,-3)$ $(1,-3)$ \rightsquigarrow $\chi_q(W_{1,-7}^{(1)})$

$$K_{2,-5}^{(1)}$$
: $(2,-3)$ $(1,-3)$ \longrightarrow $\chi_q\left(W_{2,-11}^{(1)}\right)$ $(1,-5)$ $(2,-5)$ $(2,-7)$ $(1,-7)$ $(1,-9)$ $(2,-9)$

$$K_{2,-7}^{(2)}$$
: (2,-3) $\sim \chi_q \left(W_{2,-10}^{(2)}\right)$

$$(1,-5) \qquad (2,-5) \qquad (1,-7)$$

$$(2,-9) \qquad (1,-7)$$

$$\alpha = \gamma = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \beta = \delta = \begin{pmatrix} 0 & 1 \end{pmatrix}.$$

$$K_{3,-7}^{(2)}$$
: (2,-3)
$$(1,-5) \qquad (2,-5)$$

$$\uparrow \qquad (2,-5)$$

$$\uparrow \qquad (2,-7) \qquad (1,-7)$$

$$\uparrow \qquad (1,-9) \qquad (2,-9)$$

$$\uparrow \qquad (2,-11)$$

$$\alpha = \gamma = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \beta = \delta = \begin{pmatrix} 0 & 1 \end{pmatrix}.$$

$$\rightsquigarrow \chi_q \left(W_{3,-12}^{(2)} \right)$$

Type F_4 : the quiver Q^-

Type F_4

Type F_4

(4,-16)

• If $\mathbb{Z}_i \rightsquigarrow M_i$ then $\prod_i \mathbb{Z}_i \rightsquigarrow \bigoplus_i M_i$

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.
- In type A,D,E, the varieties of submodules involved in these formulas are isomorphic to Nakajima graded quiver varieties \(\mathcal{V}, \mathcal{W} \) (Lusztig, Savage-Tingley).

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.
- In type A,D,E, the varieties of submodules involved in these formulas are isomorphic to Nakajima graded quiver varieties \(\mathcal{V}, \mathcal{W} \) (Lusztig, Savage-Tingley).
- In type B,C,F,G, these varieties of submodules might be interesting replacements for the missing Nakajima varieties.

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.
- In type A,D,E, the varieties of submodules involved in these formulas are isomorphic to Nakajima graded quiver varieties \(\mathcal{V}, \mathcal{W} \) (Lusztig, Savage-Tingley).
- In type B,C,F,G, these varieties of submodules might be interesting replacements for the missing Nakajima varieties.
- A simple $U_q(\widehat{\mathfrak{g}})$ -module S is called real if $S \otimes S$ is simple.

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.
- In type A,D,E, the varieties of submodules involved in these formulas are isomorphic to Nakajima graded quiver varieties \(\mathscr{V}, \mathbb{W} \) (Lusztig, Savage-Tingley).
- In type B,C,F,G, these varieties of submodules might be interesting replacements for the missing Nakajima varieties.
- A simple $U_q(\widehat{\mathfrak{g}})$ -module S is called real if $S \otimes S$ is simple.

Conjecture

Real simple modules correspond to cluster monomials.

- If $Z_i \rightsquigarrow M_i$ then $\prod_i Z_i \rightsquigarrow \bigoplus_i M_i$
- \leadsto geometric q-character formulas for tensor products of fundamental $U_q(\widehat{\mathfrak{g}})$ -modules, that is, for standard modules.
- In type A,D,E, the varieties of submodules involved in these formulas are isomorphic to Nakajima graded quiver varieties \(\mathcal{V}, \mathcal{W} \) (Lusztig, Savage-Tingley).
- In type B,C,F,G, these varieties of submodules might be interesting replacements for the missing Nakajima varieties.
- A simple $U_q(\widehat{\mathfrak{g}})$ -module S is called real if $S \otimes S$ is simple.

Conjecture

Real simple modules correspond to cluster monomials.

 \rightsquigarrow Would give geometric *q*-character formulas for all real simples.