Kirillov-Reshetikhin modules and
quantum affine algebras

Bernard Leclerc
Université de Caen

SLC 78
Saint-Nabor, 27/03/2017



Saint-Mélany August 1991




Saint-Mélany August 1991

o '551"




Saint-Mélany August 1994




J. L. Cardy

References

1] B. Verlinde, Nucl, Phys., B300 (1088), 360,
2] G. Moore aud N. Seiberg, Phys. Lett. (in press).
] A.A. Belavin, AM. Polyakov and AB. Jamoloddlikor, el Phys,
B241 (1984), 333,
[4] P. Goddard, A Kent and D. Ofive, Comm. Math, Phys., 103 (1985),

105,

(5] E. Date, M. Jimbo, T. Miwa and M. Okado, Phys. Rev., B35 (1957},
05.

} J.L. Caxdy, Nucl. Phys., B275 (1986), 200.

] H. Saleur and M. Baer, Nucl. Plys. (in press).

] H. Salour, J. Phys., , A23 (1989), L4L,

] 3T Cardy, Nucl. Phys., B240[FS12} (1984), 514

10 1LW.J. B
(1986), 74:

1] B A]\dzew:, R.J. Baxter and P.J. Forsester, J. Stat. Phys., 35 (1984),

J.1.. Gardy and M.P. Nightingale, Phys. Rev. Lett., , 56

(12 N mub.m-. Daiverity of Toko prepis UT-530 (1988)

[13) T. Onogi and N. Tshibashi, University of Tokyo preprint U'T-Komaba,
889 (mm

{14] . Sonoda, preprint LBI-25315

[15] L Peschel and T.T. Truong, Z. Phys., B89 (1957), 395

L. Cardy and L Peschel, Nucl. Phys., BS0O[FS22] (1985), 377.

[17] A. Cappelli, C. Ttzykson and J.-B. Zuber, Nucl. Phys., B280 (1087},
15

{16] D. Huse, Phys. Rev., B, 30 (1984), 3908,

[18] R. J. Baxter, “Exactly Solved Models in Statistical Mechanics”, Aca-
demic, 1982,

[20] H. ltoyama and H. Thacker, Phys. Rev. Lett., , 14 (1987), 13

[21} J.L. Caxdy, in “Fields, Strings and Critical Phenomena”, Les Houches

8, E. Brézin aod J. Zinn-Justin eds., North-Holland, 1959.

[22] V. Pasquier and H. Salour, in “Fields, Strings and Critical Phenomena”,
Les Houches 1088, E. Brézin aad J. Zixn-Justin eds., Nortl-Holland,
1

Depurtment of Physics
Univessity of Colifornia
Santa Barbara GA 99106
US4

SLC 34 Saint-Nabor March 1995

Advanced Studies in Pure Mathematics 19, 1989
hm;rahlr Systems in Quanturm Field Theory and Statistical Viechanics
- 149-191

Paths, Maya Diagrams and representations of s({r, C}

Etsuro Date, Michio Jimbo, Atsuo Kuniba,
Tetsnji Miwa and Masato Okado

Dedicated to Professor Tosihusa Kimura on his G0th birthday

§1. Introduction

Let g be the affine Tie algebra &((r, C), lct A be a dominant integral
weight, and let L(A) be the irreducible g-moduls with lighest weight
A. In this article we construct an explicit hasis of each weight space
L{A),. As a corollary we prove a new combinatorial formula for the
dimensionality of L(A),., which was conjectured in [L] through ihe study
of corner transfer matrices of solvable lattice models (see Theorem 12
below).

problem of constructing explicit bases goes back 1o the work of
Gelfand and ‘Dsetlin [2] who gave a canonical basis of L(A) for the clas-
nalogous results are available
in the setting of affine Lie algebras. When A is of level 1, L{A) can be
identified with a space of polynomials in infinitely many variables [3,4]
or a simple modification thereof [5]. For higher levels, the Z-algebra ap-
proach initiated by Lepowsky and Wilson [6] provides a basis in various
cases (g = 51(2, C), arbitrary levels [3),{7], or g = §{(r, C), 53(r, C), level
2 [8)). Lakshmibai and Seshadri (0] gave a ‘standard monomial basis’
for 51(2,C) using geometric ideas.

A new feature of our approach is the use of an object-—path, which
we now explain. Let e, = (0, 1 ,++,0)(0 < 4 < r) denote the
standard base voctors of Z7. We extend the sullixes to 2 by ety = €
Tix a positive integer I

Definition 1.1, A path s a sequence == ((k))
cloments (k) ¢ " of the form ¢, sy sy (1 (), -+

consisting of
wik) € )
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Fig. 2.2 Coloring of nodes.
where g, ay are the simple roots of 51(2, C). Next we define the action
of the Chevalley generators e, fi. Put eY’ (resp. fo¥) = Ty, ¥, where

¥ runs over the Young diagrams obtained by removing (esp. adjoining)
one white node from Y. For insiance,

B
A= F+E+E‘

Likewise define e, /1 replacing ‘white' by ‘black’. We have then

(2.4) (FY,Y") = (¥,eY"),

With these definitions the irreducible 51(2, C)-module L(Aq) is realized
as a subspace of F[0] spanned by vectors of the form f;, -+ fi, @, ¢ being
the empty Young diagram.

“There is a natural map pa, : ¥ = 7 sending the set of Young
diagrams onto that of Ap-paths. Let ¥ be a Younv dmgram. a,ud let
9; denote the length of its (j + 1)-th column (j = 0 for
7 0). Then 7 = ps, (¥) is defined by

7)€ {01} ()

— g5 mod 2 (5 2 0)

For instance,

Y ?:‘ givess  p=1,0,1,1,0 L

Conversely, for cach 7 there exists a unique Young diagram ¥ = ¥,

Paths and Represen

tions 135

which satisfies the conditions
(253)  pay{¥) =n,
(2.5b) ¥ has the signature [yn,uz, oyl With 11 > 3 > o By

Thus by (2.5b)

o CH, GO, sl

H EI E,‘! . are not.

The Young diagram ¥, is called the highest lift of n. Tt has the
property that, for any ¥ such that pa, (¥) = 7, one has ¥, C V7.
Our bas vectors & ¢ L{Aq)" are defined o be

L) =(Yv), v € L(Ao)
Bach ¢, is a weight vector. In the Young diagram picture ¥, its weight

X, is simply given by counting the numbers of white and black nodes
(2.3). Tn the path picture n we have

(26) A = u(0) = SO k(H(alk = 1)0() - 2 (nslie = 1) malh)))5,

where 4(0) is the ‘initial point’ of the sequence 4 (2.2) corresponding to
0, 8= a0+ a, an

27 Hiny)=0  ifn=07"=
. =1  otherwise
For example, 7 = 7' in (2.1) has the weight A, = —Ay + 24, — 35,

ne can also construct a basis {v,} of L{Ag) as follows. Consider
the process of removing the nodes from ¥, one by one, At each step we
require:
(i) removal of the node produces a Young diagram satisfying (2.5b),
(ii) among the nodes satisfying (i) the rightmost one is remove
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Finite-dimensional representations of g

e g simple complex Lie algebra, with Cartan matrix C = [Cj]; je/-
o P =@, Zw; weight lattice of g.
e Simple finite-dimensional g-modules L(1) are labelled by

S P+ = EBNG),

iel

e Finite-dimensional g-modules have a weight-space decomposition

M=@ M,

nepP

~~ character of M: x(M) := Z dim(M,,) e"
uepP

e For A € P, x(L(A)) is given by Weyl’s character formula.
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Characters

e x(M) is a Laurent polynomial in the y; := e®i.
Example: g = sl3 (type Ao).
2L@) = yity ety
2U@2) = Yoty vty
Example: g = so5 (type Bo).

x(L@) = yi+yy Va+1+yiys2+yy!
X(L(@2) = yotyiVo +Y;i Yoty
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Finite-dimensional representations of U,(g)

e ¢ category of finite-dimensional Uy(g)-modules.
(g e C*, notarootof 1)

e Lattice of /-weights: P:= D.cc- Pic1 Z(w;, 2).

Theorem (Chari-Pressley)

e Simples of ¢ are parametrized by . = @, , N(@;, ).
e Ko(%) = polynomial ring in the [L(®;,2)] (i € I, z € C*).

e M € ¢ has an (-weight-space decomposition M = @, 5 M;

Definition (Frenkel-Reshetikhin)

Xq(M) :=%; pdimM; e = g-character of M.

o [M]=[N]inKo(?) <= xq(M)=2xq(N).
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g-characters

e %q(M) is a Laurent polynomial in the Y; , := e(®2),
Example: g = sl3 (type A).

Xo(L(@1,2)) = Y1+ Y, ]

1,292 Y2=Zq + Y_1

2,28

Example: g = so5 (type Bo).

Xq(L(®@1,2)) = Yig+ Y, VozqYorg+ YozqVy,

1,2%4 ! ] 2,25
+Y1202 Vo Vo T Viags
—1 —1 —1
Xq(L(@2,2)) = Yaz+YizqYylo+ Yy e Yozq + Vo

e There is no Weyl type character formula for x 4 (L(i)) But

@ Frenkel-Mukhin’s algorithm for minuscule representations.

@ Nakajima’s geometric description for g of type A, D, E.
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Kirillov-Reshetikhin modules

Notation: For i € /, k € N, and z € C* put

Wi, =L ((wi,z) (@, 2GR) + -+ (wl,’zq2k—2)) ‘

Theorem (Kuniba-Nakanishi-Suzuki, Nakajima, Hernandez)

The [W,S')Z] satisfy an infinite system of equations, called T-system.
In type A, D, E:

[WIEZ)Z} [ngj)zqz] - [ngi)ﬂ,z] [W;SI)1 qu] EII [WIS/)ZQ}i
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Infinite quivers attached to Cartan matrices

@ C=(cj|i,je ), Cartan matrix (An, Bp, ..., Fs,G2)
@ D =diag(d}), d; € Z~o, min(d;) = 1, such that DC is symmetric
() (5, quiver with vertex set / X 7Z, and arrows:

(i,r)—=(,s) <= ¢j#0ands=r+dcj

@ Q, one of the two connected components of Q









(1.2)

(,

o
-

—~
[N
{
N

\

(1 7_4)

L
.
-
N
-
N

(23)

—
N

71)

N
|

-

—

(27_3)









C=(_22 _21> SN

(2.3) (1.3)







Semi-infinite quivers
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Semi-infinite quivers

@ infinite quiver I : same graph as Q, but change of vertex
labelling: (/,r) is changed into (/,r+ d;). New vertex set W.

@ semi-infinite quiver [, fullsubquiver of [ with vertex set
W~ ={(i,s) e W|s<0}.



(2,0)

N,

(1,-1)

\

(27_2)

/\

-3)

(27_4)

/\

-5)

(27_6)

N\

a,

(1,

(1,-7)
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g-characters of KR-modules

o z:={zs|(i,s) € W™}, set of indeterminates

Definition
o/, cluster algebra with initial seed (z,I )

e monomial change of variables : Z; » = [Tk~0,r+kg<0 Y gk
e 1" dual Coxeter number of g.

Theorem (Hernandez-L)

There exists an explicit sequence of mutations . such that:

@ 1~ (X) has the same quiver as ©

@ For m > h’/2, the cluster variables of 17 (%) are the
g-characters of all KR-modules (up to spectral shift)

~+ algorithm to calculate g-characters of KR-modules by “successive
approximations”.



The rules are tricky, but they are a much more efficient way
of getting the answer than by counting beans.

Richard Feynman, QED the strange theory of light and
matter, 1985.



2,-6)

(2,0)
(2,-2)

/\/)

(2,—4)

\./"

(1,-5)

\,

(-7

(13
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(2.0)

(2-2)

(2-4)

(2,-6)

(1,-1
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(2.0)

(2.0)




\

(1,-1)

N

(1,-3

N

(1.-5

(1,-7

(2.0)

(2a_2)

(2.-4)

(2,-6)

b



The sequence . : type A

(1,-1

2,0)

/(

(2.-2)

(2.-4)




The sequence . : type A

/(

(1,-1

(1,-7)

2,0)




(2,0)

(1.-1

(2a_2)

(1,-3

Ned

(21_4)

2\

(1,-5

(2.-6)

A

(1 :_7)



The sequence . : type A,

(2.0) (2.0)

~ ~

(1,-1

—_
|
=

(27_2) (27_2)

g v~

(1,-3) (1,-3)

(2,-4) (2,-4)

(2,-6) (2,-86)
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(20)

(2.0)

(2.0)

AVYAVAS

-2)
—4)
-6)

(2,
(2,
(2,

/\/\/ /

—6)

(2,-4)

Z

/\/
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I N

(2,-10) (1,-9)




The sequence . : type B>

(2,0 (20)
PN
(2,-2) (1,-1) 2 —2) <— (1,-1)
e \
(1,-3) (2,-4) (1,-3) —> (2,
NN
(2.-6) (1,-5) (2 6) 1,-5)
e
1,-7) (2,-8) 1,-7) —>=
NP ¢
(2,-10) (1,-9) (2.-10) <— (1,-9)
-

(1,-11) . . (1,-11)



(2 0)

@ 2) — (1,-1)

(1,-3) —> (2, 4)

( 6) — (1,-5)

(-7 —> (2 8)

- 10) — (1,-9)

(1,-11)
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(2,0) (2,0)
/ PN
(2,-2) (1,-1) (2,-2) (1,-1)
(1,-3) ‘>(2 4) (1,-3) (2.-4)
(I
(2 —6) —> (1,-5) (2,-6) (1,-5)
1,-7) —> (1,-7) (2,-8)
¢ (N
(2,-10) — (1,-9) (2,-10) (1,-9)
/

(1,-11) . . (1,-11)
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\_/

(2772)

(27_4)

(1 7_1)

(17_3)

(17_5)
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Yi-sYs,

Yy,

T~

Yo, 4Y2 2Y20

/

—3Y1,-1




Yo 2+ Yg_,g Y11

/
Yi1
Y2’
/

Yi-3Y1,1

’

T

Yo, 4

/

Yi,5Y1,3Y1 1

—2Y20

Yo _2Ya20



The algorithm : type A>

Yo o+Ys4 Vi1

Yy, Yi& Yi-3Y1,-1

Yi-3

Yo _aYz2 2Y2p

—

Yi5Y1,3Y1,1



The algorithm : type A>

Yo o+Ys0 Vi1

Y11

Vo 4Yo 24Ya aYagYi14Ys 5Ye0 Y1 aY1 1

Yi-3Y1,-1

2, 6Y2, aY2 2+"'+Y£14Y£12Y2fa Yi,5Y1,3Y1 4

Yi5Y1,3Y11



The algorithm : type A>

/ Yo o+ Yy Vi1
Yia+ Y Yo 24V,

Yo _aYo_o+Yo_aYydYi_1+ Yilg Yoo Yi—aYi_1

Yi-3Y1,1

Yo 6o 4Yo ot tYs 4 Vs oYsd YisYiaVi 1

Yi,5Y1,3Y1 4



The algorithm : type A>

Yo 2450 Y11

Yi a3+ Y{L Yo _o+Yy]

Yo aYo 2+Yo 4 Yi& Yi1+ Yilg Yzfa Yi3Y1,1

PR

Vi sYi g+t Y, L Ya0

Yo eY24Y2 o+t Y£14 Yy, Ygf& Yi,-5Y1,-3Y11

i

Y1 -5Y1,-3Y1,1



The algorithm : type A>

Yo 2o+ Yi& Y11

Yi 3+ Y1j11 Y2,—2+ Yg_(;

Yo aYo 2+Yo 4Yad Y114 Ys s Yia Yi,-3Y1,1

Y15V g+t Y, LYo

Yo Yo 4Ye ot Yy, Yilg Yia Y1, 5Y1,3Y1,1

P

Yie7YisYi s+t Ys Yo 1 Y5 ]




The algorithm : type A

Y2,—4+ Yg_ylg Y‘I,—3+ Y1_’11

—

Yi s+ Y{lg Yo 4+ Y£12

Yi-7Y1 s+t

Yi_oY1-7Y1 54+

—1
Yo 4

—1
Y2,—6

—1
Y2,—2

\

Yo, Y2 Yo 4+

o

—1 —1
Y2,—4 Y2,—2

1y
Y3 Yi L

1y oy
Y s Y1 s Y1






The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).

@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).
@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.

@ Z, cluster variable of &/ ~» M, indecomposable A-module



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).

@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.

@ Z, cluster variable of &/ ~» M, indecomposable A-module

@ expansion of Z in terms of X;’s is encoded in the topology of
varieties of submodules of M:



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).

@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.

@ Z, cluster variable of &/ ~» M, indecomposable A-module

@ expansion of Z in terms of X;’s is encoded in the topology of
varieties of submodules of M:
@ monomials m <—  dimension vectors d of submodules



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).
@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.
@ Z, cluster variable of &/ ~» M, indecomposable A-module
@ expansion of Z in terms of X;’s is encoded in the topology of
varieties of submodules of M:
@ monomials m <+—  dimension vectors d of submodules
@ coefficient of m = Euler characteristic of the variety of
submodules of dimension d



The CC-DWZ philosophy

@ o7 cluster algebra with initial seed ((X1,...,Xn), Q).
@ ~~ A, an associative algebra of the form CQ// where / is an ideal
given by a superpotential of Q.
@ Z, cluster variable of &/ ~» M, indecomposable A-module
@ expansion of Z in terms of X;’s is encoded in the topology of
varieties of submodules of M:
@ monomials m <+—  dimension vectors d of submodules
@ coefficient of m = Euler characteristic of the variety of
submodules of dimension d

Theorem (Hernandez-L)
Geometric character formulas for g-characters of KR-modules
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Type F4: the quiver Q—
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@ If z; ~ M, then []; z; ~ ®;M;
@ ~~ geometric g-character formulas for tensor products of
fundamental Uq(g)-modules, that is, for standard modules.

@ In type A,D,E, the varieties of submodules involved in these
formulas are isomorphic to Nakajima graded quiver varieties
Z*(V, W) (Lusztig, Savage-Tingley).

@ In type B,C,EG, these varieties of submodules might be
interesting replacements for the missing Nakajima varieties.

@ A simple Ugy(g)-module S is called real if S® S is simple.

Real simple modules correspond to cluster monomials.

~» Would give geometric g-character formulas for all real simples.




