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o [n]={12,...,n}
@ parking function: a map f : [n] — [n] such that for all
k € [n] the set f~1([k]) has at least k elements

@ IPF, .. set of all parking functions of length n

Theorem (Folklore)
For n > 0, the cardinality of PF,, is (n +1)"~1.
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@ k-avoiding parking function: f € IPF,, with k & f, but
lefforalll >k

@ IPF, .. set of all k-avoiding parking functions

Proposition (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
Forn > 0and k € [n], the cardinality of PF,, y is




@ k-avoiding parking function: f € IPF,, with k & f, but
lefforalll >k

@ IPF, .. set of all k-avoiding parking functions

Proposition (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
Forn > 0and k € [n], the cardinality of PF,, y is

Z_!!<(k F1k1 - k"‘1>.
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@ noncrossing partition
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Theorem (G. Kreweras, 1972)

Forn > 0, the cardinality of NC,, is

Cat(n) = L (271).

n+1




@ dual refinement order

6 1 2

15
14

13

12

11 7

0 g 8
{{1,2, 6,7,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ dual refinement order

6 L 2

15
14

13

12
11

0 g 8
{{1,2, 6,7,8,14,15},{3,4,5},{9,10,12,13}, {11}, {16}}



@ dual refinement order
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Theorem (G. Kreweras, 1972)
Forn > 0, the poset (NCy, <dret) is a lattice.







@ if X <4rer y, then there are B, B’ € x such that
y= (x\{B,B'}) U(BUB)
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o 7 extends to a labeling of the maximal chains of
(I\Cn/ Sdref) ~ Gn



o 7 extends to a labeling of the maximal chains of
(I\Cn/ Sdref) ~ Gn

Theorem (R. Stanley, 1997; P. Biane, 2001)

The map 7t is a bijection from €, to IPF,_.
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Idea (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo

& I. Nicolas, 2016)

For 1 < k < n study the subposet of (NCy,, <qyef) induced by the
maximal chains in PF,_q .

@ denote this poset by P,k



1234

TN
Y N
1|234i 123|z\11 12|34 3 14)23 2134|2 2}24|3
12322;3%;&;1?1234 11\4|z|3
S\

1]23]4



1]23]4



1234

/ \\
/ \ \\

1)234 1423 1342 124)3
T~ ~ 4
2 2 2
1
1 1 1
_— / <
1[23/4 1243 1234 14]23

T~

1]23]4



@ B3, .. Boolean lattice of rank n

Theorem (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
If?’l > k, then Pn,k = Pk—i—l,k X By k1.




@ Mobius function:

1, x=y
up(x,y) = 4 = Leczay H(x,2), x<y
0, otherwise

@let0=12|---|[nand1=123---n

Theorem (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
For 1 < k < n we have up, (0,1) = 0.




@ order complex: simplicial complex whose faces are
chains

Conjecture (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
The order complex of Py, \ {0,1} is contractible.
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@ the Structure Theorem implies that it suffices to study
Pn,n—l
@ write i ~ j if there exists B € x withi,j € B
o define X, = {x e N, | {n—1,n} € x}
Y, ={xeNC, | {n} exand 1 ~n—1}
@ let PE, = NC,, \ (X, UY,)

Lemma (M. Bruce, M. Dougherty, M. Hlavacek,

R. Kudo & I. Nicolas, 2016)
For n > 3 the ground set of Py, ,—1 is precisely PE,,.
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@ the Structure Theorem implies that it suffices to study
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@ write i ~ j if there exists B € x withi,j € B
o define X, = {x e N, | {n—1,n} € x}
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We have |PE3| = 3and(orn >4
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@ the Structure Theorem implies that it suffices to study
Pn,n—l
@ write i ~ j if there exists B € x withi,j € B
o define X, = {x e N, | {n—1,n} € x}
Y, ={xeNC, | {n} exand 1 ~n—1}
@ let PE, = NC,, \ (X, UY,)

@ How about we study the poset (PE,, <gref) a bit?
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Theorem (%, 2017)
For n > 3 the poset (PEy,, <aref) is a graded lattice.




o left-modular: x that satisfies (y Vx) Az=yV (x A\ z)
forally <z
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o left-modular: x that satisfies (y Vx) Az=yV (x A\ z)
forally <z

@ X; .. noncrossing partition with only non-singleton
block [i — 1] U {n}

Proposition (4%, 2017)
For i € [n] the element x; is left-modular in (PE,, <qref)-




o left-modular: x that satisfies (y Vx) Az=yV (x A\ z)
forally <z

@ X; .. noncrossing partition with only non-singleton
block [i — 1] U {n}

For n > 3 the lattice (PE,, <qref) is supersolvable.




@ for y <gref z define

AMy,z) =min{i |z=yVx; Az} —1



@ for y <gref z define

AMy,z) =min{i |z=yVx; Az} —1

Forn > 3 the map A is an EL-labeling of (PE,, <dref)- l
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Proposition (2%, 2017)
Forn > 3, the map A restricts to an EL-labeling of Py, ,—1.




o recall: P = Pry1x X By_k—1

For 1 < k < n there exists an EL-labeling for P, \. l




e recall: pp (0,1) =0

For 1 < k < n the order complex of Py, \ {0,1} is homotopy
equivalent to a wedge of (n — 2)-dimensional spheres. The
number of these spheres is given by up, , (0,1).




e recall: pp (0,1) =0

For 1 < k < n the order complex of P, \ {0,1} is contractible. l




Thank You.



@ Mobius Function
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@ a;; .. noncrossing partition with only non-singleton
block {i,j}

o A, ={aj;|1<i<j<n}\{an-1,an-1}
@ let < be any partial order on A,;; X C A,
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thata<xand a <grer V X
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@ bounded below: for every x € X there is a € A, such
thata<xand a <grer V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x
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@ bounded below: for every x € X there is a € A, such
thata<xand a <grer V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x
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@ bounded below: for every x € X there is a € A, such
thata<xand a <grer V X

@ NBB: no nonempty subset of X is BB
@ NBB-base for x: Xis NBB and \/ X = x

Theorem (A. Blass, B. Sagan, 1997)

Let P = (P, <) be a finite lattice and < any partial order on the
atoms of P. For x € P we have

up(0,0) =Y (-1,

X

where the sum runs over the NBB-bases for x.




@ subsets of A, correspond to certain graphs on [1]

{a14, 23,204} < ><

B N



@ let {x1,xy,...,x,} be the left-modular chain from before
o letA; = {ac Ay |a Laref xi and a <gref Xif1}
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@ let {x1,xy,...,x,} be the left-modular chain from before
o letA; = {ac Ay |a Laref xi and a <gref Xif1}
o leta<Ja'ifand onlyifa € A;,a’ € Ajandi <j
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@ let {x1,xy,...,x,} be the left-modular chain from before
o letA; = {ac Ay |a Laref xi and a <gref Xif1}
o leta<Ja'ifand onlyifa € A;,a’ € Ajandi <j

Proposition (2%, 2017)

For n > 3 the NBB-bases for 1 in (PE,, <qef) are precisely those
maximal chains of (A,, <), whose associated graph is a tree with
an edge between 1 and n such that:

@ the removal of this edge yields two trees on vertices [k| and
{k+1,k+2,...,n} for somek € [n — 2], and

® there is no edge between n — 1 and n.




@ let {x1,xy,...,x,} be the left-modular chain from before
o letA; = {ac Ay |a Laref xi and a <gref Xif1}
o leta<Ja'ifand onlyifa € A;,a’ € Ajandi <j

For n > 3 we have
B ) (0,1) = (=1)"~ (Cat(n — 1) — 2Cat(n —2) ).




@ let {x1,xy,...,x,} be the left-modular chain from before
o letA; = {ac Ay |a Laref xi and a <gref Xif1}
o leta<Ja'ifand onlyifa € A;,a’ € Ajandi <j

For n > 3 we have

4 (2n—5
o n—1
]’l(PEandref) (0’ 1) o (_1) E ( n— 4 ) ’




@ parking function of type B:amap f : [n] — [n] ~ PFE
@ noncrossing partition of type B: noncrossing partition

of [2n] symmetric under rotation by 180° ~~ NCB
@ %P .. maximal chains of (NCB, < 4.ef)

Theorem (P. Biane, 2001)
There is a bijection from €2 to PFE.




@ k-avoiding parking function of type B: f € IPF? with
k¢ f,butl efforalll >k
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o PB, .. poset induced by PF},

Conjecture (%, 2017)
For n > 0, we have ppp (0,1) = 0.
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@ k-avoiding parking function of type B: f € IPF? with
k¢ f,butlcfforalll >k

o PB, .. poset induced by PF},

@ IEP .. ground set of PP,

Conjecture (%, 2017)

For n > 0, we have 2n—3
V(Eglgdref) (0’ 1) - <_1)n ( n—23 )
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