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Proposition (M. Bruce, M. Dougherty, M. Hlavacek,
R. Kudo & I. Nicolas, 2016)
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Idea (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo
& I. Nicolas, 2016)
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maximal chains in PFn−1,k.

denote this poset by Pn,k
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Theorem (M. Bruce, M. Dougherty, M. Hlavacek,
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Möbius function:

µP (x, y) =


1, x = y
−∑x≤z<y µ(x, z), x < y
0, otherwise

let 0 = 1|2| · · · |n and 1 = 123 · · · n

Theorem (M. Bruce, M. Dougherty, M. Hlavacek,
R. Kudo & I. Nicolas, 2016)
For 1 < k < n we have µPn,k(0, 1) = 0.
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{
x ∈ NCn | {n} ∈ x and 1 ∼x n− 1
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Lemma (M. Bruce, M. Dougherty, M. Hlavacek,
R. Kudo & I. Nicolas, 2016)
For n ≥ 3 the ground set of Pn,n−1 is precisely PEn.
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Corollary

We have
∣∣PE3

∣∣ = 3 and for n ≥ 4∣∣PEn
∣∣ = Cat(n)− 2Cat(n− 2).
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How about we study the poset (PEn,≤dref) a bit?
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Some Properties

Theorem ( , 2017)
For n ≥ 3 the poset (PEn,≤dref) is a graded lattice.
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left-modular: x that satisfies (y∨ x) ∧ z = y∨ (x∧ z)
for all y ≤ z
xi .. noncrossing partition with only non-singleton
block [i− 1] ∪ {n}

Proposition ( , 2017)

For i ∈ [n] the element xi is left-modular in (PEn,≤dref).
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Corollary

For n ≥ 3 the lattice (PEn,≤dref) is supersolvable.
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For n ≥ 3 the map λ is an EL-labeling of (PEn,≤dref).
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For n ≥ 3, the map λ restricts to an EL-labeling of Pn,n−1.
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recall: µPn,k(0, 1) = 0

Corollary

For 1 < k < n the order complex of Pn,k \ {0, 1} is homotopy
equivalent to a wedge of (n− 2)-dimensional spheres. The
number of these spheres is given by µPn,k(0, 1).
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What about µ(PEn,≤dref)
(0, 1)?

bounded below: for every x ∈ X there is a ∈ Ān such
that a / x and a <dref

∨
X

NBB: no nonempty subset of X is BB
NBB-base for x: X is NBB and

∨
X = x

Theorem (A. Blass, B. Sagan, 1997)

Let P = (P,≤) be a finite lattice and E any partial order on the
atoms of P . For x ∈ P we have

µP (0̂, x) = ∑
X
(−1)|X|,

where the sum runs over the NBB-bases for x.
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subsets of Ān correspond to certain graphs on [n]

{a1,4, a2,3, a2,4} ↔
1 2

3 4
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a1,5

a1,2 a2,5

a1,3 a2,3 a3,5

a1,4 a2,4 a3,4 a4,5
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NBB-Bases for 1 in (PEn,≤dref)

let {x1, x2, . . . , xn} be the left-modular chain from before
let Ai = {a ∈ Ān | a 6≤dref xi and a ≤dref xi+1}
let a E a′ if and only if a ∈ Ai, a′ ∈ Aj and i ≤ j

Proposition ( , 2017)

For n ≥ 3 the NBB-bases for 1 in (PEn,≤dref) are precisely those
maximal chains of (Ān,E), whose associated graph is a tree with
an edge between 1 and n such that:

the removal of this edge yields two trees on vertices [k] and
{k + 1, k + 2, . . . , n} for some k ∈ [n− 2], and
there is no edge between n− 1 and n.
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NBB-Bases for 1 in (PEn,≤dref)

let {x1, x2, . . . , xn} be the left-modular chain from before
let Ai = {a ∈ Ān | a 6≤dref xi and a ≤dref xi+1}
let a E a′ if and only if a ∈ Ai, a′ ∈ Aj and i ≤ j

Corollary
For n ≥ 3 we have

µ(PEn,≤dref)(0, 1) = (−1)n−1
(

Cat(n− 1)− 2Cat(n− 2)
)

.
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let {x1, x2, . . . , xn} be the left-modular chain from before
let Ai = {a ∈ Ān | a 6≤dref xi and a ≤dref xi+1}
let a E a′ if and only if a ∈ Ai, a′ ∈ Aj and i ≤ j

Corollary
For n ≥ 3 we have

µ(PEn,≤dref)(0, 1) = (−1)n−1 4
n

(
2n− 5
n− 4

)
.
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Type B

parking function of type B: a map f : [n]→ [n]  PFB
n

noncrossing partition of type B: noncrossing partition
of [2n] symmetric under rotation by 180◦  NCB

n

C B
n .. maximal chains of (NCB

n ,≤dref)

Theorem (P. Biane, 2001)

There is a bijection from C B
n to PFB

n .
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n with

k /∈ f , but l ∈ f for all l > k
PB

n,k .. poset induced by PFB
n,k

PEB
n .. ground set of PB

n,n
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PB

n,k .. poset induced by PFB
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PEB
n .. ground set of PB

n,n

Conjecture ( , 2017)

For n ≥ 0, we have µPB
n,n
(0, 1) = 0.
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PEB
n .. ground set of PB

n,n

Conjecture ( , 2017)
For n ≥ 0, we have∣∣∣PEB

n

∣∣∣ = (2n
n

)
− 3
(

2n− 3
n− 1

)
.
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PB

n,k .. poset induced by PFB
n,k

PEB
n .. ground set of PB
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Conjecture ( , 2017)
For n ≥ 0, we have

µ(PEB
n ,≤dref)

(0, 1) = (−1)n
(

2n− 3
n− 3

)
.
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(
NCB

3 ,≤dref
)

((1))

[3] ((1 2)) ((1 3)) ((1 −3)) [1] ((2 −3)) [2] ((2 3)) ((1 −2))

((1 2))[3] [1 3] ((1 2 −3))((1 −3))[2] ((1 2 3)) [2 3] [1]((2 3)) [1 2] ((1 −2 −3))

[1 2 3]

29 / 23



Two Posets of
Noncrossing

Partitions
Coming From

Undesired
Parking
Spaces

Henri Mühle
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3,3

((1))

((1 2)) [1] [2] ((2 3)) ((1 −2))

[1 3] [1]((2 3)) [1 2] ((1 −2 −3))

[1 2 3]
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