2-species exclusion processes and combinatorial algebras

Sylvie Corteel Arthur Nunge

IRIF, LIGM

March 2017

Non commutative symmetric functions
The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1}. One can index its bases by compositions.

Non commutative symmetric functions
The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1}. One can index its bases by compositions.
A composition of size n is a sequence of integers $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of sum n.

Non commutative symmetric functions
The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1}. One can index its bases by compositions.
A composition of size n is a sequence of integers $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of sum n.
Complete basis (analog of h_{λ})
For all n, define

$$
S_{n}=\sum_{1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n}} a_{j_{1}} a_{j_{2}} \cdots a_{j_{n}} .
$$

Non commutative symmetric functions
The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1}. One can index its bases by compositions.
A composition of size n is a sequence of integers $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of sum n.
Complete basis (analog of h_{λ})
For all n, define

$$
S_{n}=\sum_{1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n}} a_{j_{1}} a_{j_{2}} \cdots a_{j_{n}} .
$$

For any composition $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$,

$$
S^{\prime}=S_{i_{1}} S_{i_{2}} \cdots S_{i_{r}} .
$$

Non commutative symmetric functions
The algebra of noncommutative symmetric functions Sym is an algebra generalizing the symmetric functions. Its component of degree n has dimention 2^{n-1}. One can index its bases by compositions.
A composition of size n is a sequence of integers $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of sum n.
Complete basis (analog of h_{λ})
For all n, define

$$
S_{n}=\sum_{1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n}} a_{j_{1}} a_{j_{2}} \cdots a_{j_{n}} .
$$

For any composition $I=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$,

$$
S^{\prime}=S_{i_{1}} S_{i_{2}} \cdots S_{i_{r}} .
$$

For example, $S_{2}\left(a_{1}, a_{2}, a_{3}\right)=a_{1}^{2}+a_{1} a_{2}+a_{1} a_{3}+a_{2}^{2}+a_{2} a_{3}+a_{3}^{2}$.

Ribbon basis

$$
R_{I}=\sum_{J \subseteq I}(-1)^{I(J)-l(l)} S^{J} .
$$

For example, $R_{221}=S^{221}-S^{41}-S^{23}+S^{5}$.

Ribbon basis

$$
R_{I}=\sum_{J \subseteq I}(-1)^{I(J)-l(l)} S^{J} .
$$

For example, $R_{221}=S^{221}-S^{41}-S^{23}+S^{5}$.
Polynomial realization

$$
R_{I}=\sum_{\operatorname{Des}(w)=I} w .
$$

For example, $R_{221}\left(a_{1}, a_{2}\right)=a_{1} a_{2} a_{1} a_{2} a_{1}+a_{2} a_{2} a_{1} a_{2} a_{1}$.

Tevlin's bases
In 2007 L . Tevlin defined the monomial $\left(M_{l}\right)$ and fundamental $\left(L_{l}\right)$ that are analog of the monomial basis and elementary basis of Sym. They both have binomial structure coefficients.

Tevlin's bases

In 2007 L . Tevlin defined the monomial $\left(M_{l}\right)$ and fundamental $\left(L_{l}\right)$ that are analog of the monomial basis and elementary basis of Sym. They both have binomial structure coefficients.

Transition matrices

The transition matrices between the ribbon basis and the fundamental basis of size 3 and 4 are:

$$
\begin{gathered}
\mathfrak{M}_{3}=\left(\begin{array}{cccc}
1 & . & . & . \\
. & 2 & 1 & . \\
. & . & 1 & . \\
. & . & . & .
\end{array}\right) \\
\mathfrak{M}_{4}=\left(\begin{array}{cccccccc}
1 & . & . & . & . & . & . \\
. & 3 & 2 & . & 1 & . & . & \cdot \\
. & . & 2 & . & 1 & . & . & \cdot \\
. & . & 1 & 3 & . & 2 & 1 & \cdot \\
. & . & . & . & 1 & . & . & \cdot \\
. & . & . & . & . & 2 & 1 & \cdot \\
. & . & . & . & . & . & 1 & . \\
. & . & . & . & . & . & . & 1
\end{array}\right)
\end{gathered}
$$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left).
For $\sigma=25783641$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left).
For $\sigma=25783641$, the recoils are $\{1,4\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left).
For $\sigma=25783641$, the recoils are $\{1,4\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=1$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=13$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=1322$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one. For $\sigma=25783641, \mathrm{GC}(\sigma)=$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one. For $\sigma=25783641, \mathrm{GC}(\sigma)=$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one. For $\sigma=25783641, \mathrm{GC}(\sigma)=$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one. For $\sigma=25783641, \mathrm{GC}(\sigma)=3$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one. For $\sigma=25783641, \mathrm{GC}(\sigma)=3$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one.
For $\sigma=25783641, \mathrm{GC}(\sigma)=32$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\sigma_{i}>\sigma_{i+1}$) minus one.
For $\sigma=25783641, \mathrm{GC}(\sigma)=32$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\left.\sigma_{i}>\sigma_{i+1}\right)$ minus one.
For $\sigma=25783641, \mathrm{GC}(\sigma)=322$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left). For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\left.\sigma_{i}>\sigma_{i+1}\right)$ minus one.
For $\sigma=25783641, \mathrm{GC}(\sigma)=3221$.

Statistics on permutations

- $\operatorname{Rec}(\sigma)$ is the composition associated with the values of recoils (i.e., the values k such that $k+1$ is on the left).
For $\sigma=25783641$, the recoils are $\{1,4,6\}$ so $\operatorname{Rec}(25783641)=132$.
- $\mathrm{GC}(\sigma)$ is the composition associated with the values of descents (i.e., the values $k=\sigma_{i}$ such that $\left.\sigma_{i}>\sigma_{i+1}\right)$ minus one.
For $\sigma=25783641, \mathrm{GC}(\sigma)=3221$.
Combinatorial interpretation (F. Hivert, J.-C. Novelli, L. Tevlin, J.-Y. Thibon, 2009)

$$
\left(\begin{array}{cccccccc}
1 & . & . & . & . & . & . & . \\
. & 3 & 2 & . & 1 & 1 & . & . \\
. & . & 2 & . & 1 & . & . & . \\
. & . & 1 & 3 & . & 2 & 1 & . \\
. & . & . & . & 1 & . & . & . \\
. & . & . & . & . & 2 & 1 & . \\
. & . & . & . & . & . & 1 & . \\
. & . & . & . & . & . & . & 1
\end{array}\right)
$$

GC \backslash Rec	4	31	22	211	13	121	112	1111
4	1234							
31		1243,1423 4123	1342 3412		2341	2413		
22			1324 3124		2314			
211			3142	1432,4132 4312		${ }_{4}^{24331}$	3241	
13					2134			
121						2143 4213	3421	
112							3214	
1111								4321

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition 1213 with the above state of the ASEP.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition 1213 with the above state of the ASEP.

ASEP

The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which particles hop back and forth (and in and out) of a one-dimensional lattice.

We associate the composition 1213 with the above state of the ASEP.

Combinatorial study of the ASEP

The ASEP is closely related with permutations. Let I be a composition associated to a state of the ASEP, the un-normalized steady-state probability of this state is given by

$$
\sum_{G C(\sigma)=1} q^{\# 31-2(\sigma)}
$$

where $\#_{31-2}(\sigma)$ count the number of 31-2 patterns in σ.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

A segmented composition is a sequence of integers separeted by comas or bars.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition $12|11| 2$ with the above state of the 2-ASEP.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition $12|11| 2$ with the above state of the 2-ASEP.

What we want.
Let I be a segmented composition, the un-normalized steady-state probability of the state of the 2-ASEP associated with I is:

$$
\sum_{\operatorname{GC}(\sigma)=1} q^{\#_{31-2}(\sigma)}
$$

where the sum goes over all permutations.

2-ASEP

The 2-ASEP is a generalization of the ASEP with two kinds of particles.

A segmented composition is a sequence of integers separeted by comas or bars. We associate the segmented composition $12|11| 2$ with the above state of the 2-ASEP.

What we have.
Let I be a segmented composition, the un-normalized steady-state probability of the state of the 2-ASEP associated with I is:

$$
\sum_{G C(\sigma)=I} q^{\#_{31-2}(\sigma)+\#_{(31, \overline{2})}(\sigma)}
$$

where the sum goes over all partially signed permutations.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2|$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 1$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 1$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 12$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 12$.

Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1 \mid$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2|$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2|$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2| 2$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2| 2$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2| 22$.

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can be overlined. For example, $\sigma=\overline{2} 57836 \overline{4} 1$.

Statistics on partially signed permutations

- $\operatorname{Rec}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \operatorname{Rec}(\overline{2} 57836 \overline{4} 1)=1|2| 122$.
- $\mathrm{GC}(\sigma)$ is computed as previously, we add bars on the composition to retrieve the position of the overlined values in σ. For $\sigma=\overline{2} 57836 \overline{4} 1, \mathrm{GC}(\overline{2} 57836 \overline{4} 1)=1|2| 221$.

The algebra of segmented compositions
In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

The algebra of segmented compositions
In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

Complete basis

$$
S_{I} \cdot S_{J}=S_{l \cdot J}+S_{l \mid J}
$$

For example, $S_{21 \mid 1} \cdot S_{32 \mid 21}=S_{21|32| 21}+S_{21|1| 32 \mid 21}$.

The algebra of segmented compositions
In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented compositions (SCQSym) and its complete and ribbon bases.

Complete basis

$$
S_{I} \cdot S_{J}=S_{I \cdot J}+S_{l \mid J}
$$

For example, $S_{21 \mid 1} \cdot S_{32 \mid 21}=S_{21|132| 21}+S_{21|1| 32 \mid 21}$.
Ribbon basis
Again we have

$$
R_{I}=\sum_{J \preceq I}(-1)^{I(J)-I(I)} S^{J}
$$

For example, $R_{22 \mid 41}=S_{22 \mid 41}-S_{4 \mid 41}-S_{22 \mid 5}+S_{4 \mid 5}$.

Analogue of Tevlin's bases
We define a monomial basis $\left(M_{l}\right)$ and a fundamental basis $\left(L_{l}\right)$ in SCQSym.

Analogue of Tevlin's bases
We define a monomial basis $\left(M_{l}\right)$ and a fundamental basis $\left(L_{l}\right)$ in SCQSym.
Transition matrix
The coefficients in the transition matrices from the ribbon basis to the fundamental basis are

$$
\begin{aligned}
& \left(\mathcal{M}_{n}\right)_{\iota, J}=\#\{\sigma \mid \mathrm{GC}(\sigma)=I, \operatorname{Rec}(\sigma)=J\} \\
& \mathcal{M}_{3}=\left(\begin{array}{cccc|cc|cc|c}
1 & . & . & . & . & . & . & . & . \\
. & 2 & 1 & . & . & . & . & . & . \\
. & . & 1 & . & . & . & . & . & . \\
. & . & . & 1 & . & . & . & . & . \\
\hline . & . & . & . & 3 & 1 & . & . & . \\
. & . & . & . & . & 2 & . & . & . \\
\hline . & . & . & . & . & . & 2 & . & . \\
. & . & . & . & . & . & 1 & 3 & . \\
\hline . & . & . & . & . & . & . & . & 6
\end{array}\right)
\end{aligned}
$$

Other results

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.

Other results

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$
[r+1]_{q}!\sum_{l \succeq J}\left(\frac{-1}{q}\right)^{I(I)-l(J)} q^{-\mathrm{st}(I, J)} c_{J}(q)
$$

where $c_{J}(q)=[k]_{q}^{j_{1}}[k-1]_{q}^{j_{2}} \cdots[2]_{q}^{j_{k}-1}[1]_{q}^{j_{k}}$

Other results

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$
[r+1]_{q}!\sum_{l \succeq J}\left(\frac{-1}{q}\right)^{l(l)-l(J)} q^{-\operatorname{st}(l, J)} c_{J}(q)
$$

where $c_{J}(q)=[k]_{q}^{j_{1}}[k-1]_{q}^{j_{2}} \cdots[2]_{q}^{j_{k-1}}[1]_{q}^{j_{k}}$

Perspectives

- find α and β statistics on partially signed permutations.

Other results

- Definition of q-analogs of the bases of SCQSym and study of the transition matrices.
- Enumerative formula for the probabilities of the 2-ASEP

$$
[r+1]_{q}!\sum_{l \succeq J}\left(\frac{-1}{q}\right)^{l(l)-l(J)} q^{-\operatorname{st}(l, J)} c_{J}(q)
$$

where $c_{J}(q)=[k]_{q}^{j_{q}^{j}}[k-1]_{q}^{j_{2}} \cdots[2]_{q}^{j_{k-1}}[1]_{q}^{j_{k}}$
Perspectives

- find α and β statistics on partially signed permutations.
- Understand the refinement (GC, Rec) on the 2-ASEP.

