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Non commutative symmetric functions

The algebra of noncommutative symmetric functions Sym is an algebra
generalizing the symmetric functions. Its component of degree n has dimention
2"~ One can index its bases by compositions.
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Non commutative symmetric functions

The algebra of noncommutative symmetric functions Sym is an algebra
generalizing the symmetric functions. Its component of degree n has dimention
2"~ One can index its bases by compositions.

A composition of size n is a sequence of integers | = (i1, b2, ..., i) of sum n.

Complete basis (analog of hy)

Sn= > aj ), -

1< <jp <+ <jn

For all n, define

For any composition | = (i1, i, ..., ir),

§'=5.5,---5,

-

2 2 2
For example, Sy(a1, az,a3) = a1 + a1a> + a1a3 + a3 + a»as + as.
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Ribbon basis

R =) (-1)V0s’.

J=1

For example, Ryy = §%% — 5% — 6% 1 &5
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Ribbon basis

R =) (-1)V0s’.

J=1

For example, Ryy = §%% — 5% — 6% 1 &5

Polynomial realization

Des(w)=/

For example, Ry1(a1,a2) = a1a2a132a1 + araraiazar.
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Tevlin's bases

In 2007 L. Tevlin defined the monomial (M;) and fundamental (L;) that are
analog of the monomial basis and elementary basis of Sym. They both have
binomial structure coefficients.
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Tevlin's bases

In 2007 L. Tevlin defined the monomial (M;) and fundamental (L;) that are
analog of the monomial basis and elementary basis of Sym. They both have
binomial structure coefficients.

Transition matrices
The transition matrices between the ribbon basis and the fundamental basis of
size 3 and 4 are:

1.
2 1
Ms = )
1
1. .
3 2 11
2 1.
13 . 21
My = ;
2 1
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641
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values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1}
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4}
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4}
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4,6}
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e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4,6}
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 1.
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 13.
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values k such that k + 1 is on the left).
For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
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values k such that k + 1 is on the left).
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(c) = .
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(0) = 3.
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e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(0) = 32.
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(0) = 32.
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(0) = 322.



Introduction
[e]e]e] lo}

Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.
e GC(o) is the composition associated with the values of descents ( i.e., the

values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(0) = 3221.
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Statistics on permutations

e Rec(o) is the composition associated with the values of recoils ( i.e., the
values k such that k + 1 is on the left).

For o = 25783641, the recoils are {1,4,6} so Rec(25783641) = 132.

e GC(o) is the composition associated with the values of descents ( i.e., the
values k = o; such that o; > oi+1) minus one.
For o = 25783641, GC(o) = 3221.

Combinatorial interpretation (F. Hivert, J.-C.

Thibon, 2009)

Novelli, L. Tevlin, J.-Y.

1 GC\ Rec || 4 31 22 211 13 | 121 | 112 [ 1111
o ¥ 4 1234
32 L1 1 R I 2341 | 241
2 1 3 4123 3412 3 3
1 3 s 1 22 it 2314
¥ 211 3142 | 273 3241
1 . 4312 4231
13 2134
21 121 773421
1 4213 3
i 112 3214
1111 4321
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particles hop back and forth (and in and out) of a one-dimensional lattice.
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We associate the composition 1213 with the above state of the ASEP.
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ASEP
The ASEP (Asymmetric Simple Exclusion Process) is a physical model in which
particles hop back and forth (and in and out) of a one-dimensional lattice.

1 q 1 q 1
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We associate the composition 1213 with the above state of the ASEP.

Combinatorial study of the ASEP

The ASEP is closely related with permutations. Let / be a composition
associated to a state of the ASEP, the un-normalized steady-state probability of

this state is given by
Z q#3172(¢7)

GC(o)=I

where #312(c) count the number of 31—2 patterns in o.
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2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.
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2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.
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2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.
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A segmented composition is a sequence of integers separeted by comas or bars.
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A segmented composition is a sequence of integers separeted by comas or bars.
We associate the segmented composition 12|11|2 with the above state of the
2-ASEP.
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The 2-ASEP is a generalization of the ASEP with two kinds of particles.
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A segmented composition is a sequence of integers separeted by comas or bars.
We associate the segmented composition 12|11|2 with the above state of the
2-ASEP.

What we want.
Let / be a segmented composition, the un-normalized steady-state probability
of the state of the 2-ASEP associated with [ is:

Z q#3172(0)

GC(o)=I

where the sum goes over all permutations.
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2-ASEP
The 2-ASEP is a generalization of the ASEP with two kinds of particles.

1 q 1 1 q q 1
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A segmented composition is a sequence of integers separeted by comas or bars.
We associate the segmented composition 12|11|2 with the above state of the
2-ASEP.

What we have.
Let / be a segmented composition, the un-normalized steady-state probability
of the state of the 2-ASEP associated with [ is:

Z q#3172(0)+#(31_§)(”)
GC(o)=I

where the sum goes over all partially signed permutations.
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Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = .

berspectives
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A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1]2|.
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|1.

berspectives
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|1.

berspectives
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|12.

berspectives
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|12.

berspectives
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Partially signed permutations
A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

berspectives
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A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, GC(25783641) = .

erspectives



Combinatorics of the 2-ASEP Generalization of Sym Conclusion and
oe

Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can
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e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
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e GC(0) is computed as previously, we add bars on the composition to
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For o = 25783641, GC(25783641) = 1|.
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retrieve the position of the overlined values in o.
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be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, GC(25783641) = 1]2|.
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A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, GC(25783641) = 1|2|.
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A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
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For o = 25783641, GC(25783641) = 1|2|2.
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A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, GC(25783641) = 1|2|22.
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Partially signed permutations

A partially signed permutation is a permutation where all values except 1 can
be overlined. For example, o = 25783641.

Statistics on partially signed permutations

e Rec(o) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, Rec(25783641) = 1|2|122.

e GC(0) is computed as previously, we add bars on the composition to
retrieve the position of the overlined values in o.
For o = 25783641, GC(25783641) = 1|2|221.

erspectives
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The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented
compositions (SCQSym) and its complete and ribbon bases.
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The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented
compositions (SCQSym) and its complete and ribbon bases.

Complete basis

Si-S5=51,+ S,

For example, S21|1 : 532|21 = 521|132\21 + 521|1\32\21-
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The algebra of segmented compositions

In 2007, J.-C. Novelli and J.-Y. Thibon defined the algebra of segmented
compositions (SCQSym) and its complete and ribbon bases.

Complete basis

Si-S5=51,+ S,
For example, S21|1 : 532|21 = 521|132\21 + 521|1\32\21-

Ribbon basis

Again we have

R =>(-1)V"0s’

J=<i

For example, Ryzja1 = Sozja1 — Sajar — Sozps + Sajs.



Introduction Combinatorics of the 2-ASEP Generalization of Sym Conclusion and perspectives
00000 oo} oe [e]

Analogue of Tevlin's bases
We define a monomial basis (M) and a fundamental basis (L;) in SCQSym.
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Analogue of Tevlin's bases
We define a monomial basis (M) and a fundamental basis (L;) in SCQSym.

Transition matrix
The coefficients in the transition matrices from the ribbon basis to the
fundamental basis are

M)y =#{o | GC(c) =1,Rec(c) = J}

I
wl.
—

M;s
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Other results

o Definition of g-analogs of the bases of SCQSym and study of the
transition matrices.
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e find o and 3 statistics on partially signed permutations.
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Other results

o Definition of g-analogs of the bases of SCQSym and study of the
transition matrices.

e Enumerative formula for the probabilities of the 2-ASEP

_1\ O
[r+1]qlz<7) g " alq)

I=J

where ¢)(q) = [k [k —1}2--- [2]{:71[1]1;

Perspectives

e find o and 3 statistics on partially signed permutations.
e Understand the refinement (GC, Rec) on the 2-ASEP.
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