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Standard Young Tableaux

Irreducible representations of Sp:
Specht modules Sy, for all A+ n.

Basis for Sy: Standard Young Tableaux of shape A:
A= (2 2, 1)

Hook Iength formula [Frame Robinson-Thrall]:

Al 51
HueAhu74*3*2>:<1>:<l

dimSy = #{SYTs of shape A\} = f* =

Hook length of box u = (i,j) € Xt hy =X —j+ N —i+1=# [ 5
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
ey

M= |\ p|! - det | —————— .
M= =i+
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
1 £(2)
FMB = | \/p|! - det {—] .
(Ai_ﬂj_""f)! ij=1

Littlewood-Richardson:

="y F
v
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Counting skew SYTs

Outer shape A, inner shape p, e.g. for A = (5,4,4,2),u = (3,2,1) 4]

00| 1| N

719

Jacobi-Trudi[Feit 1953]:
ey

1
A/ul (N = pj =i+ j)! ij=1

Littlewood-Richardson:
="y F
174

No product formula, e.g. A/ = 0p42/6n: | Font2/0n — Eonta:

x2 3 Xt
14+ Eix+ EQE + E3§ + E4H + ... = sec(x) + tan(x).

Euler numbers: 2,5,16,61....
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Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

A=/t > 1 h(lu),

De&(N/u) ueA\D

where E(A\/p) is the set of excited diagrams of A/ .

Excited diagrams:

E(M/p) ={D C X\: obtained from p via B} g EE}
| L E ] |

3 5 5 7 9

q q q q q

1 1 1 1 1
f£(4321/21) :7!( =61
14,33+13433,5+13.3345+12.33.52+12432,52‘7
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Hook-Length formula for skew shapes

q

sxu(l, 0,47, ..) =

TESSYT(4321/21)

1T _ q3 q5
BEEE Ny B (e R (DK

9

q’ q

s O e N R (R L D ()

Theorem (Morales-Pak-P)

>

T A
a = Z H I:]_qh(i,j):|'
) (i, ))EINN\D

TESSYT(A /1) DEE(N/ 1

Theorem (Morales-Pak-P)

ORPEESD ol (=11

TERPP(N/ 1) SEPD(\/p) u€ES

where PD(\/ ) is the set of pleasant diagrams.
Other recent proof by [M. Konvalinka]
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Algebralc proof for SSYTs:

- & . T [Ikeda-Naruse, Kreiman]: Let w < v be Grassman-
' 6 e/“) ~ nian permutations whose unique descent is at po-
T 15 S S sition d with corresponding partitions p C A C
S d x (n—d). Then
2 3 4 4 A
W
R EE o | Xl,= >°  TT Oy = yeta—isn)-
o & De&(N/u) (i.j)eD

v = 245613, w = 361245
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Algebralc proof for SSYTs:

- g . T [Ikeda-Naruse, Kreiman]: Let w < v be Grassman-
' 6 «,’N} ~ nian permutations whose unique descent is at po-
T 15 S S sition d with corresponding partitions p C A C
S d x (n—d). Then
2 3 4 4 A
W
e o | Xull,= > TT Outas) = -
R e De&(N/u) (i.j)eD

v = 245613, w = 361245
Factorial Schur functions:

(d) det[0g — 1)+ (5 — 3]y
su’(xla) == =,
[Ti<icj<a (i =)

[Knutson-Tao, Lakshmibai-Raghavan—Sankaran] Schubert class at a point:

Xull,= DD (vays s Yoy ¥, - Yne1).
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Algebralc proof for SSYTs:

[Ikeda-Naruse, Kreiman]: Let w < v be Grassman-

¢ 6 fy&/& nian permutations whose unique descent is at po-
T 15 S S sition d with corresponding partitions p C A C
S d x (n—d). Then
2 3 4 4 A
W
R o | Xull,= > TT Outas) = -
B e De&(N/u) (i.j)eD

o
v = 245613, w = 361245
Factorial Schur functions:

(d) det[0g — 1)+ (5 — 3]y
su’(xla) == =,
[Ti<icj<a (i — X))

[Knutson-Tao, Lakshmibai-Raghavan—Sankaran] Schubert class at a point:

Xull,= DD (vays s Yoy ¥, - Yne1).

Evaluationat y = 1,9, ..., v(d +1— ) =X+ d+1—i, x — Yo(iy = gritdti—i
— Jacobi-Trudi

wjtd—j, . i
@ (g0, 1,q,...) = = ) T
sy (g, 1, q,...) = H‘<l(qk+d+1,,~7q>\j+d+l—j)

i<j

...[simplifications]... = det[h/\l._,-_uj_,.j(l7 q,-- ) =s\.1,q,...)
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Combinatorial proofs:

Hillman-Grassl algorithm/map ®: Reverse Plane Partitions of shape A to Arrays of

shape A:
RRP P = [O[1]2] - [O[Z]2] - [O[O]]  [O[0[1]  [O[O[T],[O[0[0
1[1]3] 1[1]3] 0]0[3] 0]0[2] 0[0[1] [0]0]0]

HH% 17070] — [1[OJl] =: Array A = ®(P)
0j0j0]  [0[of0]  [0joM  [00R ' [0]012)
\ [1]

Weight(P) =0+1+2+1+1+3+2=10= 3, A; jhook(i,j) =
154+ 1%2+2%1+1x%1= weight(A)



Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond

Combinatorial proofs:

Hillman-Grassl algorithm/map ®: Reverse Plane Partitions of shape A to Arrays of
shape A:

0[1] — [0]O]1] — [O]O[T] [O]O]O]
0[3] ' [0[0]2] ' [0[0]1]'[0[0]0]

RRP P = [OTITZ] - [OTI2]

'

[
]
=

(X
J9

55 R i -0

Weight(P)=04+1+24+14+1+342=10= Z,—J A; jhook(i,j) =

1%54+1%2+2%1+1%1= weight(A)
0 0[0 0 0[0 0 [0
(1] @ of1 (1) @ [o]1 (1) @ [1]0
0[2 o[1] [1]2 110 2[2 10
L] 1 2] 1] 13] 1]

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection to the SSYTs of shape \/u to the
excited arrays (diagrams in E(\/p) with nonzero entries on the broken diagonals) .
d
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Combinatorial proofs:
[0] 0J0 [0] 0 [0] 0Jo0
1] @ _J0]1 1] @ |0 1] @ [1]0
0]2 0[1 12 1 2]2 1]0
1] 1] 2] 1] 3] 1]

Theorem (Morales-Pak-P)

The restricted Hillman-Grassl map is a bijection to the SSYTs of shape \/u to the
excited arrays (diagrams in £(A\/u) with nonzero entries on the broken diagonals) .

di

Ay
Proof sketch:

Ap

dq (D)

Issue: enforce Os on p and strict increase down columns on A/p.

Show ®~1(A) is column strict in \/u + support in A/ via properties of RSK (each
diagonal of P is shape of RSK tableau on the corresponding subrectangle of A)
Thus, ®~1 is injective: restricted arrays — SSYTs of shape \/p.

Bijective: use the algebraic identity.
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Hillman-Grassl on skew RPPs
Without the restriction of strictly increasing columns, we have skew reverse plane

partitions and a wider class of arrays/diagrams, called pleasant diagrams: PD(\/u).
— supersets of £(\/p), identified by the “high peaks”.

i ] e

AMp S D* = 01(9)
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Hillman-Grassl on skew RPPs

Without the restriction of strictly increasing columns, we have skew reverse plane
partitions and a wider class of arrays/diagrams called pleasant diagrams: PD(\/p).
— supersets of £(A/p), identified by the * hlgh peaks”.

i

AMp S

Theorem (MPP)

The HG map is a bijection between skew RPPs of shape \/u and arrays with certain
nonzero entries (at the “high peaks”):

SRR ol (==t

TERPP(N/ ) SEPD(M\/p) uES

£, (82 B £ &

With?P- partltlons/llmlt comblnatorlal proof of orlglnal Naruse Hook-Length Formula
for Ak,




Lattice paths

Non-intersecting lattice paths

Theorem[Lascoux-Pragacz, Hamel-Goulden] If (61,...,6k) is a Lascoux—Pragacz
decomposition (i.e. maximal outer border strip decomposition) of A\/u, then

K
Sx/p = det [59/#91 ]f,j:l‘

where sz = 1 and So;40; = 0 if the 0;#0; is undefined.

(Here 0y is the border strip following the inner border of A and 6; are obtained from
the inner border of the remaining partition, until px is hit, then the border strips are
obtained from each connected part etc, and ordered by their corners. The strip 6;#0;
is the shape of 6; between the diagonals of the endpoints of 8; and 6;. )

040505 0,
RN ==
feadl| -1
I r ikl
HTT A (]
Bal = | A= T det
= [P
ST
HT =
(=]
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'fi

s0(1,9,4°,...,) = > H 1— i)

vi(a, b)—>(c d), (i 71)67
CcA

¢ g
sﬁ (1,4, ... 1(73 i; 13 gl))gl2 2333(21;)411(137)_42) + —9(-a22(-g)(1-q%)

gt q i
4 0=a-a?20-a*)(1-a") | 1-02(1=a)1-e")? | (1-a2(1-a>)(1—c*)?

Proofs: induction on |A/p|, or [multivariate] Chevalley formula for factorial Schurs.
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'ff

s0(1,9,4°,...,) = > H 1— i)

vi(a, b)—>(c d), (i u)ew
CcA

Excited diagrams for A/u — Nonlntersecting Lattice Paths:

=] ] =]
5] [T Eailza
l—-‘F—!—'\ f T 1 LI}
] - - A ]
[§] (IR
¥4 + t
- ] =1 [# ]
5] el KT | il
| ] | ] 1 ]

Multivariate: tilings and beyond
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NHLF for border strips

Lemma (MPP)
For a border strip 8 = \/u with end points (a, b) and (c,d) we have

A'fi

59(17qaq27"'7): Z H l—qh(”J

RECEH b)—>(c d), ()€
CA

Excited diagrams for A/u — Nonlntersecting Lattice Paths:

P ] ]
5] H?iﬂ 7
l"”:’"\ I HI 1 LI}
=1 o o i ]
il [INES
r'\""'\ l LN}
o fammad =1 [d ]
] =1 1] | 9]
| J | J ] J
(] ] ¢
= K
S\ / ulLascoux-Pragacz det [50/-#9j ]11 15}_0,(“_, Strip det [ Z H ]

v:(aj;bi)—(cj,d; )“6’Y

Lindstrom— Gessel— Viennot E H (A/ /1) NILP E H 7,1
— qhu

NILP:~y ... u€1U.. DEED(A/ ) u€D
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Asymptotics of the number of skew SYTs

A= T, A/ | =n— oo

Pl R P = G~ 2

Question: What is the asymptotic value of fA#, |\/u| = nas n— co and X, u
change under various regimes:

0. If u =0, then f* ~ /nl(1+ O(1/n)) for X\ ~ Plancherel.
1. [Stanley, 2001]: when p is fixed, A" — (a; b) (Frobenius limit):
P X 5u(0F 0 )1+ O(1/m)),

where pj,p; are the corresponding specializations.
Similar results in [Corteel-Goupil-Schaeffer]
[Okounkov-Olshanski]
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Tool

Naruse Hook-Length formula:
1
B = —.
> T
De&(N/u)ueb

Define the "naive” hook-length formula:

1
Fv/m) = ] =
uex/p
5 ol4 1‘ F((675:57372:27 1)/(3’27 1: 1)) = 544.1.543.2.744é.144.1.442.3.1.1
714]2]1
!
1]
Corollary

F(\p) < £M0 < €N/ ) F(N 1)
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General bounds: size of £(A/u)

F(\ /) < FME < JENm)|F(A/ 1)

E(A/p) = { Non-intersecting Lattice Paths in A/u }
| [ | [ |

| |
15 I e
g EEp) 3
— o o l
K} fang
mgpan 3
o [ l I l l o
g el I 7
o o o
Lemma (MPP)

IfIN/p| = n then E(\/p) < 2".

Lemma (MPP)
If d is the Durfee square size of A\, then E(A\/u) < .
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The “linear” regime
a(\) = (a1,a2,...), b(A) = (b1, bz,...) — Frobenius coordi-

nates of \. Let o = (au,...,ax), B:=(B1,-..,Bk) be fixed
sequences in Ri.

Thoma—Vershik—Kerov (TVK) limit if a;/n — o and b;/n — (i as n — oo, for all

1<i<k
Theorem (MPP)

Let {\(" /u(M} be a sequence of skew shapes with a TVK limit, i.e. suppose
X" = (a, B), where ay, 81 > 0, and (") — (=, 7) for some a, 8,7, T € ]Ri, Then

where

and

log I +o(n) as n— oo,

c=rylogvy— Z(a, — 7;) log(aj — 7;) Z(ﬁ, — 1) log(Bi — 7i)

i=1

k

v= (ei+Bi —mi — 7).

i=1
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The stable shape: /n scale

Theorem (MPP)

Let w, 7 : [0,a] — [0, b] be continuous non-increasing functions, and suppose that
area(w/m) = 1. Let {\"/u(M} be a sequence of skew shapes with the stable shape
w/m, ie. [AM]/v/n = w, [W{M]/\/n — 7. Then

n n 1
Iogf)‘( /“()Nﬁnlogn as n— oo.
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The stable shape: /n scale

1

Theorem (MPP)

Suppose (VN — L)w C [MM](V/N + L)w for some L > 0, and similarly for (" wrt T,
then

—(1+c(w/m)) n+o(n) < log A/l —%n logn < —(1+c(w/m)) n+log EAM /umy40(n),

as n — oo, where
c(w/m) = ﬂ log h(x, y)dxdy,
w/m

where h(x, y) is the hook length from (x,y) to w.
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Subpolynomial depth, “thin” shapes

Suppose
> depth:= max e/, hu =: g(n) = n°()
(subpolynomial growth).

8

Theorem (MPP)

Let {v, = )\(")/u(")} be a sequence of skew partitions with a subpolynomial depth
shape associated with the function g(n). Then

log f¥" = nlogn — ©(nlogg(n)) as n— co.
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Thick ribbons

Theorem (MPP)

Let vi := (02k/0k), where 6y = (k — 1,k —2,...,2,1). Then
1 3 1 1 1 1 7
6 §|0g2+§|og3+o(l) < - (Iogf’*k — Enlogn) < i Elog2+2log3+o(1),

where n = |y| = k(3k — 1)/2.

Update: There exists a ¢, s.t. ¢ = limp— 00 % (log fk — %nlog n).
Jay Pantone’s implementation (method of differential approximants) on 150+ terms
of the sequence {log f7«} to approximate ¢ ~ —0.1842.
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Thin ribbons

Zigzag: py = Ok4+2/0k, En = |{o € Sn: 0(1) < 0(2) > 0(3) < --- }| — Euler numbers,
alternating permutations.

fPr = Eppt1; Em ~ ml(2/m)"4/m(1 4 o(1))
From theorem: F(py) = n!/3%, £(px) = Ck, so
(2k +1)! (2k + 1)!C
T < BEypy1 < T

Problem: If v, := A/ is a border strip (ribbon of thickness 1, n boxes) approaching a
given curve ~ under rescaling by n, what is log {7 — nlog n in terms of 47 Is it true
that M — ¢() for some constant ¢(y)? (Permutations with certain
descent sequences)
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: tilings and beyond

Image: Leonid Petrov
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Lozenge tilings with multivariate weights

Plane partitions with base p, height d

weights of horizontal lozenges = z; — y;

Multivariate: tilings and beyond
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Lozenge tilings with multivariate weights
Plane partitions with base p, height d

weights of horizontal lozenges = z; — y;

>S> Y2
e

XX
X
W
X))

00
0N
%)
N
X

7
()

X
v

/\

X5
N
%

’

Theorem (Morales-Pak-P)
Consider tilings with base p and height d, we have that

ST T (= ) = detlAr G, )20,

TeQ q ()T

Multivariate: tilings and beyond

£(p) +d,

where
b =y1) 06 Va0 ) when j = £(p) + 1
(xi=xi1) (i —Xgp()) i
Ay d) = q G i) whenj=i—d, ... 0un),

(xi—=xi1) (i —xg4j)’

0, when j < i—d.
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Theorem (Morales-Pak-P)

Consider tilings of the a x b X ¢ X a x b X ¢ (base a x b, height c) hexagon with
horizontal lozenges having weights x; — y;, i.e. tilings Q, , . with rectangular base
© = a X b and height c. The partition function is given by

(xi—=y1)-(Xi—Yeya—j) . atc
(xi—%i+1) i*Xc+:) ifj>a
_ _v) = (Xi—y1) - (Xi—Y¥btc) P
e TE%: .HT(X‘ il ey B R
a,b,c (ij)€ 0’ _] <i—c it

Consider a path P(d,...) consisting of vertical lozenges (i.e. not the horizontal
lozenges) passing through the points (i, d;) (ith vertical line, distance of the midpoint
d; + 1/2 from the top axes) (necessarily |d; — di11| <1, d; < d;j11 ifi < b and
d; > d,'+1 ifi > b, and di = a+b)-

The probability that such path exists is given by

det[A,"j(;L, d)] det[/_\,-,j(ﬁ, c—d— 1)] = (3 1)
V4

where d := di, £(p) = b, p1 = a and p is given

by its diagonals — (dy — d,d» — d,...), and [i is the i=(2,0)
complement of i in a x b. The matrix A is defined

as in previous Theorem with the substitution of x;

by Xatc+1—i and y; by ybicr1—j-

20
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Excited diagrams and factorial Schur functions

Factorial Schur functions.

d
det[(x; —a1) - (5 — a#i+d*")]i,j:1

H1§i<j§d (xi — X))

sﬁd)(x|a) =

)

where x = (x1,x2,...,xq4) and a = (a1, a2, ...) is a sequence of parameters.

Excited diagrams £(\/p): Start with A\/p. Move cells of y inside A via:

B —

21



Excited diagrams and factorial Schur functions
Factorial Schur functions.

d
det [(XJ —a1) - (Xj - au,-erfi)];’j:l
[Ti<icj<a (xi — X))

where x = (x1,x2,...,%4) and a = (a1, a2, ...) is a sequence of parameters.
Excited diagrams £(\/p): Start with A/u. Move cells of i inside A via:

0w

sﬁd)(x|a) =

)

Theorem (lkeda-Naruse Multivariate “Hook-Length Formula™)
Let u C A Cdx (n—d). Let v be the Grassmannian permutation with unique

descent at position d corresponding to X, i.e. v(d' +1—i)=X;+(d'+1—1i) and

v(j)=d'+j— A} Then

d
SO0y Y@y -2 ¥n1) = S T Gue=isn) = Yu(a+p)
De&(N/p) (i.j)ED

Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond

21
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Excited diagrams and factorial Schur functions
Excited diagrams £(\/p): Start with A/p. Move cells of 1 inside A via:

-

Theorem (lkeda-Naruse Multivariate “Hook-Length Formula™)

Let p C A Cdx (n—d). Let v be the Grassmannian permutation with unique
descent at position d corresponding to A, i.e. v(d'+1—i)=X;+(d'+1—1i) and
v(j)=d'+j—X}. Then

S;(Ld)(yvu), Y@ ovee) = Y0 T Gea—ir) = Yerari)
De&(\/p) (i.j)eD

Y1 Y2 ys ya ys Yo

21
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Product formulas

@ (ii) (i)
®(n) ;=112 (n— 1), W(n) :=111- 311 (2n — 3)I1,
W(nm k)= (k+1)1- (k+3)---(k+2n=3)I1, A(n) :=(n—2)(n—4)!---
Theorem (MPP)

For nonnegative integers a, b, c,d, e, let n be the size of the corresponding skew
shape, then for the shapes in (i), (i), (iii) we have the following product formulas for
the number of skew SYTs:

£sh(i) _ i d(a)d(b)d(c)d(d)P(e)P(a+ b+ c)P(c+d+e)d(a+b+c+e+d)
T d(at+b)d(e+d)P(atct+d)d(b+cte)d(atbt2ctetd)

poniy _ ) PQ)(B)O(C)D(a+ b+ c) W(e)W(a+ b+ <)
T d(a+ b)d(b+c)P(a+c) V(a+c)W(b+c)W(a+ b+2c)’
£ShCi) _ nl ®(a)P(b)P(c)P(a+ b+ c)V(c;d + e)W(a+ b+ c;d + e) A(2a + 2¢c)A(2b + 2¢)
T d(a+ b)d(b+ c)P(a+ c)W(a+ c)W(b+ c)W(a+ b+ 2¢;d + e)A(2a + 2¢c + d)A(2b + 2¢ + e)

22
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Merci

Happy Birthday Jean-Yves Thibon!
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