Insertion algorithms for shifted domino tableaux

Zakaria Chemli, Mathias Pétréolle

Séminaire Lotharingien de Combinatoire

Z. Chemli, M. Pétréolle

Insertion algorithms

SLC 2017 1 / 15

< □ > < □ > < □ > < □ > < □ > < □



SLC 2017 4 / 15

A partition λ of *n* is a non-increasing sequence $(\lambda_1, \lambda_2, \ldots, \lambda_k)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$. We represent a partition by its Ferrers diagram.

- 4 @ ト 4 ヨ ト 4 ヨ

A partition λ of *n* is a non-increasing sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda = (5,4,3,3,1)$

A partition λ of *n* is a non-increasing sequence $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. We represent a partition by its Ferrers diagram.

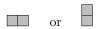
Figure: A Young tableau of shape $\lambda = (5,4,3,3,1)$

A Young tableau is a filling of a Ferrers diagram with positive integers such that rows are non-decreasing and columns are strictly increasing.

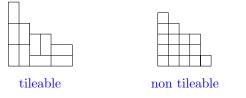
Two adjacent boxes form a domino:

イロト イポト イヨト イヨ

Two adjacent boxes form a domino:



A diagram is tileable if we can tile it by non intersecting dominos.

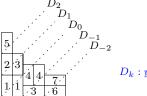


Given a tiled partition λ , a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

Given a tiled partition λ , a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

$$\begin{array}{c} D_{2} \\ D_{1} \\ D_{0} \\ D_{-1} \\ D_{-2} \\ \hline \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 3 \\ 6 \\ \end{array}$$

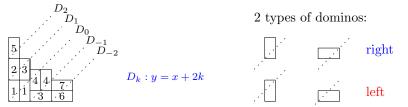
Given a tiled partition λ , a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.



 $D_k: y = x + 2k$

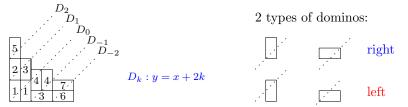
2 types of dominos:

Given a tiled partition λ , a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.



We do not allow tillings such that we can remove a domino strictly above D_0 and obtain a domino tableau.

Given a tiled partition λ , a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.



We do not allow tillings such that we can remove a domino strictly above D_0 and obtain a domino tableau.

A tilling is acceptable iff there is no vertical domino d on D_0 such that the only domino adjacent to d on the left is strictly above D_0 .



Given an acceptable tilling, a shifted domino tableau is:

• a filling of dominos strictly above D_0 by x

Given an acceptable tilling, a shifted domino tableau is:

- a filling of dominos strictly above D_0 by x
- \bullet a filling of other dominos with integers in $\{1' < 1 < 2' < 2 < \cdots\}$

Given an acceptable tilling, a shifted domino tableau is:

- a filling of dominos strictly above D_0 by x
- a filling of other dominos with integers in $\{1' < 1 < 2' < 2 < \cdots\}$
- columns and rows are non decreasing
- an integer without ' appears at most once in every column
- an integer with ' appears at most once in every row

Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

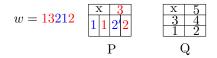
• P and Q have same shape

$$w = 13212 \qquad \boxed{\begin{array}{c} x & 3 \\ 1 & 2 & 2 \\ \end{array}} \qquad \boxed{\begin{array}{c} x & 5 \\ 3 & 4 \\ 1 & 2 \\ \end{array}} \qquad P \qquad Q$$

Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

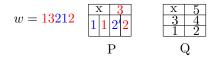
- P and Q have same shape
- P is without ' on D₀



Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

- P and Q have same shape
- P is without ' on D_0
- Q is standard without '



Let w_1 be a word in $\mathbb{N} \times \{L\}$ with P-tableau of shape μ , and w_2 be a word in $\mathbb{N} \times \{R\}$ with P-tableau of shape ν . Let λ be the shape of the P-tableau of the word w_1w_2 . We have:

$$\sum_{T, sh(T)=\lambda} x^T = P_{\mu} P_{\nu}$$

, where P_{μ} is a P-Schur function.

Let w_1 be a word in $\mathbb{N} \times \{L\}$ with P-tableau of shape μ , and w_2 be a word in $\mathbb{N} \times \{R\}$ with P-tableau of shape ν . Let λ be the shape of the P-tableau of the word w_1w_2 . We have:

$$\sum_{T, sh(T)=\lambda} x^T = P_{\mu} P_{\nu}$$

, where P_{μ} is a P-Schur function.

Theorem (Chemli, P. (2016))

Two words belong to the same class of the super shifted plactic monoid iff they have the same P-tableau.

The algorithm f is bijective, with an explicit inverse

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

• P and Q have the same shape

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

- P and Q have the same shape
- P is standard without '

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

- P and Q have the same shape
- P is standard without '
- Q is standard without ' in D₀

Conjecture 1

If σ is a signed permutation (that we identify with a bicolored standart word) then

$$f(\sigma) = (P, Q) \Leftrightarrow g(\sigma^{-1}) = (Q, P)$$

Conjecture 1

If σ is a signed permutation (that we identify with a bicolored standart word) then

$$f(\sigma) = (P, Q) \Leftrightarrow g(\sigma^{-1}) = (Q, P)$$

Conjecture 2

Algorithm *f* commutes with standardization and truncation.

• If σ is a signed permutation, what can we relate $f(\sigma)$ and $f(\sigma^{-1})$?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f(\sigma^{-1})$?
- Extend g to all words

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f(\sigma^{-1})$?
- Extend g to all words
- Enumerative consequences

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f(\sigma^{-1})$?
- Extend g to all words
- Enumerative consequences
- Cauchy identity

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f(\sigma^{-1})$?
- Extend g to all words
- Enumerative consequences
- Cauchy identity
- Hook formula for shifted domino tableaux

Thank you for your attention!

イロト イヨト イヨト イ