Insertion algorithms for shifted domino tableaux

Zakaria Chemli, Mathias Pétréolle

Séminaire Lotharingien de Combinatoire

Plan

(1) Shifted domino tableaux
(2) Insertion algorithms

Plan

(1) Shifted domino tableaux

(2) Insertion algorithms

Introduction

Young tableaux: (Young)

- Schur functions
- Plactic monoid (Lascoux, Schützenberger)

9		
8		
6		
3	5	8
1	2	4
		4

Domino tableaux: (Young)

- Product of two Schur functions
- Super plactic monoid (Carré, Leclerc)

7 9 17			
34	44	$4 \mid 5$	
			6
11		3	2

Shifted Young tableaux: (Sagan, Worley)
Shifted domino tableaux: (Chemli)

- P- and Q-Schur functions
- Shifted plactic monoid (Serrano)

x	x	8
x	5^{\prime}	8^{\prime}
1	2	4
	2	4

Young tableaux

A partition λ of n is a non-increasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Young tableaux

A partition λ of n is a non-increasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

Figure: The Ferrers diagram of $\lambda=(5,4,3,3,1)$

Young tableaux

A partition λ of n is a non-increasing sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We represent a partition by its Ferrers diagram.

$\begin{aligned} & 9 \\ & 5 \\ & \hline \\ & \hline \end{aligned} \mathbf{7} 9$			
	3		
		3	

Figure: A Young tableau of shape $\lambda=(5,4,3,3,1)$

A Young tableau is a filling of a Ferrers diagram with positive integers such that rows are non-decreasing and columns are strictly increasing.

Domino tilling

Two adjacent boxes form a domino:

Domino tilling

Two adjacent boxes form a domino:
\square
\square or

A diagram is tileable if we can tile it by non intersecting dominos.

tileable

non tileable

Domino tableaux

Given a tiled partition λ, a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

Domino tableaux

Given a tiled partition λ, a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

Domino tableaux

Given a tiled partition λ, a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

2 types of dominos:

$$
D_{k}: y=x+2 k
$$

left

Domino tableaux

Given a tiled partition λ, a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

We do not allow tillings such that we can remove a domino strictly above D_{0} and obtain a domino tableau.

Domino tableaux

Given a tiled partition λ, a domino tableau is a filling of dominos with positive integers such that columns are strictly increasing and rows are non decreasing.

2 types of dominos:

We do not allow tillings such that we can remove a domino strictly above D_{0} and obtain a domino tableau.
A tilling is acceptable iff there is no vertical domino d on D_{0} such that the only domino adjacent to d on the left is strictly above D_{0}.

Shifted domino tableaux

Given an acceptable tilling, a shifted domino tableau is:

- a filling of dominos strictly above D_{0} by x

Shifted domino tableaux

Given an acceptable tilling, a shifted domino tableau is:

- a filling of dominos strictly above D_{0} by x
- a filling of other dominos with integers in $\left\{1^{\prime}<1<2^{\prime}<2<\cdots\right\}$

Shifted domino tableaux

Given an acceptable tilling, a shifted domino tableau is:

- a filling of dominos strictly above D_{0} by x
- a filling of other dominos with integers in $\left\{1^{\prime}<1<2^{\prime}<2<\cdots\right\}$
- columns and rows are non decreasing
- an integer without ' appears at most once in every column
- an integer with ' appears at most once in every row

Plan

(1) Shifted domino tableaux

(2) Insertion algorithms

Insertion algorithm

We consider bicolored words of positive integers, namely elements of $\left(\mathbb{N}^{*} \times\{L, R\}\right)^{*}$, for exemple $\mathrm{w}=123232$

Insertion algorithm

We consider bicolored words of positive integers, namely elements of $\left(\mathbb{N}^{*} \times\{L, R\}\right)^{*}$, for exemple $\mathbf{w}=123232$

Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

- P and Q have same shape

$$
w=13212
$$

Insertion algorithm

We consider bicolored words of positive integers, namely elements of $\left(\mathbb{N}^{*} \times\{L, R\}\right)^{*}$, for exemple $\mathbf{w}=123232$

Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

- P and Q have same shape
- P is without ' on D_{0}

$$
w=13212
$$

Insertion algorithm

We consider bicolored words of positive integers, namely elements of $\left(\mathbb{N}^{*} \times\{L, R\}\right)^{*}$, for exemple $\mathbf{w}=123232$

Theorem (Chemli, P. (2016))

There is a bijective algorithm f, with a bicolored word as input and a pair (P, Q) of shifted domino tableaux as output such that:

- P and Q have same shape
- P is without ' on D_{0}
- Q is standard without '

$$
w=13212
$$

Algebraic consequences

Theorem (Chemli, P. (2016))

Let w_{1} be a word in $\mathbb{N} \times\{L\}$ with P-tableau of shape μ, and w_{2} be a word in $\mathbb{N} \times\{R\}$ with P-tableau of shape ν. Let λ be the shape of the P-tableau of the word $w_{1} w_{2}$. We have:

$$
\sum_{T, \operatorname{sh}(T)=\lambda} x^{T}=P_{\mu} P_{\nu}
$$

, where P_{μ} is a P-Schur function.

Algebraic consequences

Theorem (Chemli, P. (2016))

Let w_{1} be a word in $\mathbb{N} \times\{L\}$ with P-tableau of shape μ, and w_{2} be a word in $\mathbb{N} \times\{R\}$ with P-tableau of shape ν. Let λ be the shape of the P-tableau of the word $w_{1} w_{2}$. We have:

$$
\sum_{T, \operatorname{sh}(T)=\lambda} x^{T}=P_{\mu} P_{\nu}
$$

, where P_{μ} is a P-Schur function.

Theorem (Chemli, P. (2016))

Two words belong to the same class of the super shifted plactic monoid iff they have the same P-tableau.

Inverse and dual algorithms

Theorem (Chemli, P. (2016))

The algorithm f is bijective, with an explicit inverse

Inverse and dual algorithms

Theorem (Chemli, P. (2016))

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output

Inverse and dual algorithms

Theorem (Chemli, P. (2016))

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

- P and Q have the same shape

Inverse and dual algorithms

Theorem (Chemli, P. (2016))

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

- P and Q have the same shape
- P is standard without '

Inverse and dual algorithms

Theorem (Chemli, P. (2016))

The algorithm f is bijective, with an explicit inverse

Theorem (Chemli, P. (2016))

There is an algorithm g with a bicolored standard word as input and a pair (P, Q) of shifted domino tableaux as output such that :

- P and Q have the same shape
- P is standard without '
- Q is standard without ' in D_{0}

Conjectures

Conjecture 1

If σ is a signed permutation (that we identify with a bicolored standart word) then

$$
f(\sigma)=(P, Q) \Leftrightarrow g\left(\sigma^{-1}\right)=(Q, P)
$$

Conjectures

Conjecture 1

If σ is a signed permutation (that we identify with a bicolored standart word) then

$$
f(\sigma)=(P, Q) \Leftrightarrow g\left(\sigma^{-1}\right)=(Q, P)
$$

Conjecture 2

Algorithm f commutes with standardization and truncation.

What is missing?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f\left(\sigma^{-1}\right)$?

What is missing?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f\left(\sigma^{-1}\right)$?
- Extend g to all words

What is missing?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f\left(\sigma^{-1}\right)$?
- Extend g to all words
- Enumerative consequences

What is missing?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f\left(\sigma^{-1}\right)$?
- Extend g to all words
- Enumerative consequences
- Cauchy identity

What is missing?

- If σ is a signed permutation, what can we relate $f(\sigma)$ and $f\left(\sigma^{-1}\right)$?
- Extend g to all words
- Enumerative consequences
- Cauchy identity
- Hook formula for shifted domino tableaux

Thank you for your attention!

