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Sequences

A sequence is a finite list of elements.

@ length

@ subsequence (not
necessarily consecutive)

@ addition (componentwise)

@ union
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Sequences

A sequence is a finite list of elements.

@ length
@ subsequence (not S=(5,3)
necessarily consecutive) T =(4,4,0)
@ addition (componentwise) SUT = (5,3,4,4,0)
@ union
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Two A-Functions

Let X = (x1,...,xn) and Y = (y1,...,¥m) be sequences.

o AW)= J] (xi—x)

1<i<j<n

o AV = I T -

1<i<n1<j<m

4/ 22



@ A partition is a non-increasing sequence A = (A1,...,A,) of
non-negative integers.

@ The length of a partition is the number of its positive parts.

o We freely think of partitions as Young diagrams.
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A partition is a non-increasing sequence A = (\1,...,A,) of
non-negative integers.

The length of a partition is the number of its positive parts.

We freely think of partitions as Young diagrams.

e pp=(n—1,...,1,0)
o (m")y=(m,...,m)
—_———
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Schur Functions

Let X' be a set of variables of length n and X a partition. If /(\) > n, then
sx(X') = 0; otherwise,

An—j
det (xij+n J)
1<i,j<n

The Schur function sy(X) is a symmetric homogeneous polynomial of
degree |A|.



Laplace Expansion of Matrices

d11 d12 413 4d14 4ais
a1 a2 a3 dax4 axs
431 432 433 d34 ass
d41 442 443 d44 d45
ds] ds2 a3 ds4  dsh




Laplace Expansion of Matrices
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Laplace Expansion of Matrices

ais
azs
a35
a45
ass

ai2
az
as2
a42
as2

7/ 22



Laplace Expansion of Matrices

a1l ais
ari azs
asi ass
asl a45

as1 ass
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Laplace Expansion of Matrices (formal statement)

Let A be an n x n matrix. For any subsequence K C [n],

(1) det(A) = Z 5(sort(K, J)) det (AKJ) det (A[n]\K [n]\J)
JC[n]:
1(N)=I(K)
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Laplace Expansion of Matrices (formal statement)

Let A be an n x n matrix. For any subsequence K C [n],

(1) det(A) = Z 5(sort(K, J)) det (AKJ) det (A[n]\K [n]\J)
JC[n]:
I(N)=I(K)

Q det(A) = Z e(sort(/, K))det (A ) det (App s [\ )
I1C[n]:

I(1)=I(K)
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Laplace Expansion of Schur Functions (Dehaye '12) (1/2)

X1 X1 X1 X1 X1
XZAI+5—1 x§\2+5_2 X2>\3+5—3 x§\4+5_4 X2>\5+5—5
X?:\1+5*1 X?f\2+5*2 X?f\3+5*3 X?f\4+5*4 X??\5+5*5
51 X£\2+5—2 X2\3+5—3 (M54 As+5-5

A1+5-—1 Ao+5—-2 A3+5-3 A+5—4 A5+5—5
X5 X5 X5 X5 X5
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Laplace Expansion of Schur Functions (Dehaye '12) (1/2)




Laplace Expansion of Schur Functions (Dehaye '12) (1/2)

ng (

At p3) U (v + p2)
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Laplace Expansion of Schur Functions (Dehaye '12) (1/2)

r+2-1
XI/1-|—2—1
X§/1+2_1

v1+2—-1
X

v1+2—1
X5

s\(X) = Z e(sort)s,(S)s (T)—n—
S, TCX:

sort

SUz T =X
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Laplace Expansion of Schur Functions (Dehaye '12) (2/2)

A+ ps Z (4 p3) U (v + p2)

A(S)A(T)

s\(X) = e(sort)s, (S8)s, (T)—r—

=2 A)
SU3,27'sth
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Concatenation of Partitions

Definition

Let 1 and v be two partitions of length at most m and n, respectively.
The (m, n)-concatenation of ;1 and v, denoted p *m , v, is the partition
that satisfies

WxmaV + pmin = (1 + pm) U (v + pn)

if it exists; otherwise, we set %, , v = 0o. Here, oo is just a symbol with
the property that s, (X) = 0 for any set of variables X.
The sign of the concatenation is given by (u, v) = (sort).
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Concatenation of Partitions

Definition

Let 1 and v be two partitions of length at most m and n, respectively.
The (m, n)-concatenation of ;1 and v, denoted p *m , v, is the partition
that satisfies

WxmaV + pmin = (1 + pm) U (v + pn)

if it exists; otherwise, we set %, , v = 0o. Here, oo is just a symbol with
the property that s, (X) = 0 for any set of variables X.
The sign of the concatenation is given by (u, v) = (sort).

(5, 1) *2 .4 (3, 3) = o0
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Concatenation of Partitions

Definition

Let 1 and v be two partitions of length at most m and n, respectively.
The (m, n)-concatenation of ;1 and v, denoted p *m , v, is the partition
that satisfies

WxmaV + pmin = (1 + pm) U (v + pn)

if it exists; otherwise, we set %, , v = 0o. Here, oo is just a symbol with
the property that s, (X) = 0 for any set of variables X.
The sign of the concatenation is given by (u, v) = (sort).

(5,1) %32 (3,3) = (7,4,3,2,0) — ps = (3,1,1,1,0)
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First Concatenation Identity for Schur Functions

Lemma (Dehaye '12)

Let the set X consist of m + n variables. For any pair of partitions x and
v with at most m and n parts, respectively, it holds that

(s v)su(S)su(T)
A(S;T) |

S/‘*m,nl’ (X) = Z
S, TCX:
SUmnTEX




X1 X1 X1 X1 X1
X£\1+5_1 X2>\2+5—2 X2>\3+5—3 X2>\4+5—4 X2>\5+5—5
X;1+5*1 X3)\2+572 X3)\3+573 X§\4+574 ng5+5*5
X/\1+5—1 Xj\2+5—2 X[i\3+5_3 X>\4+5—4 X/\5+5—5

AMA5—1  _do4+5-2  _A3+5-3  _M+5-4  _As+5-5
X5 X5 X5 X5 X5



Laplace Expansion of Schur Functions (Transposed)

/\1+5 1 )\2+5 2 )\3-1-5 3 )\4-1-5 4 /\5+5 5
)\1+5 1 )\2+5 2 >\3+5 3 )\4+5 —4 )\5+5 -5
X2 X2 X2 X2 X2
)\1+5 1 )\2+5 2 >\3+5 3 )\4+5 4 >\5+5 5
X3 X3 X3 X3 X3
/\1+5 1 )\2+5 2 )\3+5 3 >\4+5 4 /\5+5 5

,\1+5 1 >\2+5 2 A3+5 3 ,\4+5 4 >\5+5 5
X5 X5 X5 X5 X5



Laplace Expansion of Schur Functions (Transposed)

)\1-1-5 1 )\2+5 2 )\3-1-5 3 /\4+5 4 )\5-1-5 5

51
)\1 +5—1 A2+5—2 )\3+5 3 )\4—|-5 —4 >\5+5 5
=7 =) =) =) =)

t)\l +5—-1 t>\2+572 t>\3 +5-3 t>\4+5 4 t/\5 +5-5
1 1 1 1 1
A1+5-—1 Ao+5—-2 A3+5—3 Ag+5—4 A5+5—5

t2 t2 t2 t2 t2
A1+5—-1 A2+5-2 A3+5-3 Aa+5—4 A5+5—5

t3 t3 t3 t3 t3



Laplace Expansion of Schur Functions (Transposed)
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Second Concatenation ldentity for Schur Functions

Lemma (HR '16)

Let S and T be sets consisting of m and n variables, respectively. For any
partition J, it holds that

ssuT) = Y ’Zzg(_‘?;”(T) .
u*,fii;/::)\ ,




Staircase Walks

Let P(m, n) be the set of all staircase walks going from the top-right to
the bottom-left of an m x n rectangle.

y)
A )

This is an example of a staircase walk 7 € 3(3, 6).



Staircase Walks

Let P(m, n) be the set of all staircase walks going from the top-right to
the bottom-left of an m x n rectangle.

Vi
A )

To 7 € P(3,6), we associate the partition pr = (5,5,2) C (6°).



Staircase Walks

Let P(m, n) be the set of all staircase walks going from the top-right to
the bottom-left of an m x n rectangle.

y)
A )

To m € P(3,6), we also associate the partition v, = (4,1,1) C (63).
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Staircase Walks

Let P(m, n) be the set of all staircase walks going from the top-right to
the bottom-left of an m x n rectangle.

|

y)
A )

To m € PB(3,6), we associate the sequences
v(r) = (2,3,7) C [9] and h(r) = (1,4,5,6,8,9) C [9].



How the attributes of 7 interact

Let 7 € PB(m, n).
e Forie[m] (ttx); + m—i=m+n—v(m),.
e For j € [n], (V;)j—i- n—j=m+n— h(m);.




How the attributes of 7 interact
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How the attributes of 7 interact

Let 7 € PB(m, n).
e Forie[m] (ttx); + m—i=m+n—v(m),.
e For j € [n], (V;)j—i- n—j=m+n— h(m);.

|
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A )



How the attributes of 7 interact

Let 7 € PB(m, n).
e Forie[m] (ttx); + m—i=m+n—v(m),.
e For j € [n], (V;)j—i- n—j=m+n— h(m);.

IN



Labeled Staircase Walks and Concatenation

Lemma (HR '16)

For a fixed partition A of length at most m + n, there is a 1-to-1
correspondence between B(m, n) and {(x,v) : L *xm o v = A} given by

= (,u/ﬂ' + )\V(T()’ V7/1— + >\h(7'l')) o

Moreover, (u,r I A v+ )\h(vr)) = (—1)|V"|-

£ . F+ [ 1]
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Complement of a Partition

Definition

The (m, n)-complement of a partition \ contained in the rectangle (m") is
given by
A=(m—Ap,...,m—XA1) C (m").
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New Proof for the Dual Cauchy Identity

Dual Cauchy ldentity
Let X and ) be two sets of variables, then

Y sa(X)sv(V) =[]+ ).
A XEX
yey




New Proof for the Dual Cauchy Identity

Dual Cauchy ldentity
Let X and ) be two sets of variables, then

Y sa(X)sv(V) =[]+ ).
A XEX
yey

Ihs = Z HX s; (X7 sw (D)

AC(m") xeX

= H xM Z (_1)|V”‘5uw(X_1)Sy;r(—y)

xXEX weP(n,m)

= H xMA (Xfl, —y) = rhs
xeX



Littlewood-Schur Functions

Let X and ) be two sets of variables. Define

LS\(X;Y) = Z X)s,(Y)

where c;},, are Littlewood-Richardson coefficients.




Littlewood-Schur Functions

Definition
Let X and ) be two sets of variables. Define

LS\(X;Y) = Z X)s,(Y)

where c;},, are Littlewood-Richardson coefficients.

The Littlewood-Schur function LSy(&X'; V) is a homogeneous polynomial of
degree |A| which is symmetric in both X’ and ).



Application: Ratios Theorem

Let U(N) be the group of unitary matrices of size N
endowed with its unique Haar measure of volume 1,
and let x, stand for the characteristic polynomial of the matrix g € U(N).

Average of Ratios of Characteristic Polynomials

/ HozEA Xg(a) HﬁeB Xg*l(ﬁ) dg
U

(N) H(SeD Xg(5) H«,ec Xg—l(’Y)




Thank you for your attention!

22 /22



» Littlewood-Schur functions: other names
» Littlewood-Schur functions: determinantal formula
» index of a partition

» Littlewood-Schur functions: concatenation identities

» link to Number Theory
» Ratios Theorem: new expression
» Ratios Theorem: proof




Other Names for Littlewood-Schur Functions

Littlewood-Schur functions are also called:
@ hook Schur functions (Berele and Regev 1987)
@ supersymmetric polynomials (Nicoletti et al. 1981)
@ super-Schur functions (Brenti 1993)
e Macdonald denotes them s)(x/y)



Determinantal Formula for Littlewood-Schur Functions

Theorem (Moens and van der Jeugt '02)

Let X and ) be sets of variables with n and m elements, respectively, and
let \ be a partition with (m, n)-index k. If k is negative, then
LS\(—&;Y) = 0; otherwise,

VY —e() 2 X)
) =N A ) .
((X—Y)fl)xe)( (XAJ'JF"*'"*J) x€X
det ()\/_,_ ) yey . 1<j<n—k
}/" m—n—i I e
1Sy§€y k

where g(A\) = (—1)|A[n—k1|(_1)mk(_1)k(k—1)/z_
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Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.




Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.




Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.

The (3,4)-index of A\ = (5,4,1) is 2.



Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.

—

The (2,4)-index of A = (5,4,1) is 1.




Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.

The (3,2)-index of A = (5,4,1) is 0.



Index of a Partition

Definition

The (m, n)-index of a partition A is the largest integer k with the
properties that (m+ 1 — k,n+1— k) & X and k < min{m, n}.

The (2,1)-index of A = (5,4,1) is -1.



Concatenation Identities for Littlewood-Schur Functions

Proposition (HR '16)
Let X and ) be sets of variables with n and m elements, respectively and

let the partition A have (m, n)-index k. If A\j,_x = %/ n—k— v for some
integer 0 < / < min{n — k, n}, then LS)\(—X;)) =

e(1 VLS, 10y (=S VILSuun s pmia—sy (“ T3 D)
A(T;S) :

>

S, TCX:
sort

SUpnyT=X




Concatenation Identities for Littlewood-Schur Functions

Proposition (HR '16)

Let 0 </ < min{n— k,n}. Let S, T and ) be sets containing /, n —/ and
m variables, respectively. Suppose that k is the (m, n)-index of a partition
A, then LS\(—(SUT);Y) =

L AV; S)A(T:U)
pz:;) u,vzc:y; ; AV, U)A(T;S)

Uy ngty H«*I—p,n—k—l+pl’:>\[n—k]
p,m—pV =

xe(p, V)LSM_<(m_k)/7p> (=S u)LSVUA(n+1—k,n+2—k,.“ ) (=T V).
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Link to Number Theory

Some families of L-functions behave like the family of characteristic
polynomials of unitary matrices.

1 [T aeaC /24 it +0) [TpesC (1/2— it + B)
TJo IlsepC /24 it+0)[]ec¢(1/2—it+7)
/ [Tocaxe (e™) [ 1penxg (e
U(N) HJeD Xe (e79) H'yec Xg—1 (e77)
as N = log T /27 goes to oco.

dg



Ratios Theorem

Ratios Theorem (HR '16)

Let A, B, C and D be sets of variables with elements in C \ {0}. Suppose
that all elements of C U D have absolute value strictly less than 1 and that
I(CUD) < N. If the elements of AU B! are pairwise distinct, then

/ [Tacaxe(@)Ilgen Xg—l(B)d
g
) Ilsep xg(8) Il ec xg—1(7)
ey BT O D)) e) mmliA) )

k_—k —k
T A B)A(DLC) 2 D)) (P)

N—I(D)+I(A)+I(B)—k _
e (D)+I(A)+I(B) (S)A(C~L: T)A(S; D)

S, TCA: A(T:S)
SUk,I(A)fkTS%’tA

N—1(C)+I(A)+I(B)—k _
el (OFHAHB) =k xyA(D~L; Y)A(X; C)

X, YCB: A(Y; X)
XUk,I(B)—kySgtB

xA(T; x " Haw; s71).

v
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Ratios Theorem: First Lines of the Proof

J 2@ 1 =) TL a=om™ T[T 0-70)"ds

x€AUB~! deD vec
PER(g) PER(g) PER(g)

/ P (R(g) S LSy (— (AUB™Y) : D)sy(R )Zsﬂ s«(R(g))dg
U(N) h

ZLS(A+<I(B)N> ~(AUB™1):D)s\(C)
)\
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