

On (rational) Shi tableaux

Robin Sulzgruber

78th Séminaire Lotharingien de Combinatoire March 26th-29th 2017 • Ottrott • France

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 1 / 33

-		<u> </u>		
	bun.	S		bo
TXU.				ULEI
			-0	

E 996

・ロト ・四ト ・ヨト ・ヨト

Definition Let V be a Euclidean vector space, $\alpha \in V$ a non-zero vector and $k \in \mathbb{Z}$. Define the affine hyperplane

$$H_{\alpha,k} = \{x \in V : \langle x, \alpha \rangle = k\}.$$

(日) (同) (三) (三)

Definition Let V be a Euclidean vector space, $\alpha \in V$ a non-zero vector and $k \in \mathbb{Z}$. Define the affine hyperplane

$$H_{\alpha,k} = \{x \in V : \langle x, \alpha \rangle = k\}.$$

Define the reflection in $H_{\alpha,k}$ as

$$s_{lpha,k}(x) = x + 2 rac{k - \langle x, lpha
angle}{\langle lpha, lpha
angle} lpha \, .$$

(人間) トイヨト イヨト

Definition Let V be a Euclidean vector space, $\alpha \in V$ a non-zero vector and $k \in \mathbb{Z}$. Define the affine hyperplane

$$H_{\alpha,k} = \{ x \in V : \langle x, \alpha \rangle = k \}.$$

Define the reflection in $H_{\alpha,k}$ as

$$s_{\alpha,k}(x) = x + 2 \frac{k - \langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Definition An irreducible crystallographic root system is a finite subset $\Phi \subseteq V$ with some properties.

- 4 @ > - 4 @ > - 4 @ >

Definition Let V be a Euclidean vector space, $\alpha \in V$ a non-zero vector and $k \in \mathbb{Z}$. Define the affine hyperplane

$$H_{\alpha,k} = \{ x \in V : \langle x, \alpha \rangle = k \}.$$

Define the reflection in $H_{\alpha,k}$ as

$$s_{\alpha,k}(x) = x + 2 \frac{k - \langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Definition An irreducible crystallographic root system is a finite subset $\Phi \subseteq V$ with some properties.

The Weyl group of Φ is the group generated by the reflections $s_{\alpha,0}$ for $\alpha \in \Phi^+$.

< ロト < 同ト < ヨト < ヨト

-			<u> </u>			
_	<u></u>	D 1 12			~ × ·	 0
1	U.			112	PII	 1.4
					o	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Robin Sulzgruber

On (rational) Shi tableaux

▶ ▲ ≣ ▶ ≣ ∽ ۹ . March 2017 3 / 33

<ロ> (日) (日) (日) (日) (日)

Roh	in S	11170	C 12 1 1	hor
1,00		JUIZE	s u	Der

On (rational) Shi tableaux

▶ ▲ 王 ▶ 王 ∽ ९ ୯ March 2017 3 / 33

イロト イヨト イヨト イヨト

The reflections $s_{\alpha_1,0}, s_{\alpha_2,0}$ generate the symmetric group \mathfrak{S}_3 .

Robin Sulzgruber

On (rational) Shi tableaux

▲ ≣ ▶ ≣ ∽ � @ March 2017 3 / 33

-		<u> </u>		
	hun '	_	- COL 10 1	bo
1.0			נוואעו	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition The affine arrangement of Φ is defined as

$$\mathsf{Aff} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \mathbb{Z} \big\}.$$

<ロ> (日) (日) (日) (日) (日)

Definition The affine arrangement of Φ is defined as

$$\mathsf{Aff} = \{ H_{\alpha,k} : \alpha \in \Phi^+, k \in \mathbb{Z} \}.$$

イロト イヨト イヨト イヨト

On (rational) Shi tableaux

Definition The affine arrangement of Φ is defined as

$$\mathsf{Aff} = \{ H_{\alpha,k} : \alpha \in \Phi^+, k \in \mathbb{Z} \}.$$

The regions of the affine arrangement are called alcoves.

Definition The affine arrangement of Φ is defined as

$$\mathsf{Aff} = \{ H_{\alpha,k} : \alpha \in \Phi^+, k \in \mathbb{Z} \}.$$

The regions of the affine arrangement are called alcoves.

The affine Weyl group \widetilde{W} is the group generated by all reflections in the hyperplanes of Aff. It acts simply transitively on the set of alcoves.

-		<u> </u>		
	bun.	S		bo
TXU.				ULEI
			-0	

<ロ> (日) (日) (日) (日) (日)

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \{0, 1\} \big\}.$$

イロト イ団ト イヨト イヨト

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha,k} : \alpha \in \Phi^+, k \in \{0,1\} \big\}.$$

< ロ > < 同 > < 三 > < 三

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \{\mathsf{0}, \mathsf{1}\} \big\}.$$

Theorem (Shi 1987, 1997) The Shi arrangement has $(h + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+h)$$

dominant regions.

< ∃ > <

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha,k} : \alpha \in \Phi^+, k \in \{0,1\} \big\}.$$

Theorem (Shi 1987, 1997) The Shi arrangement has $(h + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+h)$$

dominant regions.

 $(n+1)^{n-1}$

→ 3 → 4 3

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \{\mathsf{0}, \mathsf{1}\} \big\}.$$

Theorem (Shi 1987, 1997) The Shi arrangement has $(h + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+h)$$

dominant regions.

 $(n+1)^{n-1} = 4^2 = 16$

- 4 同 6 4 日 6 4 日 6

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \{\mathsf{0}, \mathsf{1}\} \big\}.$$

Theorem (Shi 1987, 1997) The Shi arrangement has $(h + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+h)$$

dominant regions.

$$(n+1)^{n-1} = 4^2 = 16$$
$$\frac{1}{n+1} \binom{2n}{n}$$

On (rational) Shi tableaux

Definition The Shi arrangement is defined as

$$\mathsf{Shi} = \big\{ \mathsf{H}_{\alpha, \mathsf{k}} : \alpha \in \Phi^+, \mathsf{k} \in \{0, 1\} \big\}.$$

Theorem (Shi 1987, 1997) The Shi arrangement has $(h + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+h)$$

dominant regions.

On (rational) Shi tableaux

-		<u> </u>		
	hun '	_	- COL 10 1	bo
1.0			נוואעו	

<ロ> (日) (日) (日) (日) (日)

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \big\{ H_{\alpha,k} : \alpha \in \Phi^+, -m < k \le m \big\}.$$

(日) (同) (三) (三)

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \big\{ H_{\alpha,k} : \alpha \in \Phi^+, -m < k \le m \big\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Robin Sulzgruber

▲ ≣ ▶ ≣ 少へへ March 2017 6 / 33

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \big\{ H_{\alpha,k} : \alpha \in \Phi^+, -m < k \le m \big\}.$$

Theorem (Athanasiadis 2004, Yoshinaga 2004) The Shi arrangement has $(mh + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r (d_i + mh)$$

dominant regions.

★ ∃ ►

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \big\{ H_{\alpha,k} : \alpha \in \Phi^+, -m < k \le m \big\}.$$

Theorem (Athanasiadis 2004, Yoshinaga 2004) The Shi arrangement has $(mh + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+mh)$$

dominant regions.

 $(mn+1)^{n-1}$

- 4 回 ト - 4 回 ト

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \big\{ H_{\alpha,k} : \alpha \in \Phi^+, -m < k \le m \big\}.$$

Theorem (Athanasiadis 2004, Yoshinaga 2004) The Shi arrangement has $(mh + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+mh)$$

dominant regions.

 $(mn+1)^{n-1} = 49$

- 4 @ > - 4 @ > - 4 @ >

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \{ H_{\alpha,k} : \alpha \in \Phi^{+}, -m < k \leq m \}.$$

Theorem (Athanasiadis 2004, Yoshinaga 2004) The Shi arrangement has $(mh + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+mh)$$

dominant regions.

$$(mn+1)^{n-1} = 49$$
$$\frac{1}{mn+1} \binom{mn+n}{n}$$

A B A A B A

Definition The *m*-Shi arrangement is defined as

$$\mathsf{Shi}^{m} = \{ H_{\alpha,k} : \alpha \in \Phi^{+}, -m < k \leq m \}.$$

Theorem (Athanasiadis 2004, Yoshinaga 2004) The Shi arrangement has $(mh + 1)^r$ regions and

$$\frac{1}{|W|}\prod_{i=1}^r(d_i+mh)$$

dominant regions.

$$(mn+1)^{n-1} = 49$$
$$\frac{1}{mn+1} \binom{mn+n}{n} = 12$$

< ∃ > <

Walls and floors

-		<u> </u>		
	bub.	~	- COL 10 1	box
TXU			נוואעו	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition A hyperplane $H_{\alpha,k}$ is called wall of an alcove if it supports a facet of the alcove.

(日) (同) (三) (三)

Definition A hyperplane $H_{\alpha,k}$ is called wall of an alcove if it supports a facet of the alcove.

A wall is called floor if it separates the alcove from the fundamental alcove.

→ Ξ →

Walls and floors

Definition A hyperplane $H_{\alpha,k}$ is called wall of an alcove if it supports a facet of the alcove.

A wall is called floor if it separates the alcove from the fundamental alcove.

(日) (同) (三) (三)

The height of a hyperplane

-		<u> </u>		
	hun '	_	- COL 10 1	bo
1.0			נוואעו	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト
The height of a hyperplane

Definition Define the height of a hyperplane $H_{\alpha,k}$ as $|ht(\alpha) - hk|$.

The height of a hyperplane

Definition Define the height of a hyperplane $H_{\alpha,k}$ as $|ht(\alpha) - hk|$.

<ロ> (日) (日) (日) (日) (日)

Shi alcoves

-		<u> </u>		
	hun '	_		bo
1.0				ULEI
			-0	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Shi alcoves

Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the m-Shi arrangement are in bijection with alcoves whose floors have height less than mh + 1.

(日) (同) (三) (三)

Shi alcoves

Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the m-Shi arrangement are in bijection with alcoves whose floors have height less than mh + 1.

Robin Sulzgruber

On (rational) Shi tableaux

On (rational) Shi tableaux

March 2017 10 / 33

March 2017 10 / 33

Inverse Shi alcoves

-		<u> </u>		
	bun.	S		bo
TXU				ULEI
			-0	

E 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Inverse Shi alcoves

Theorem (Fishel, Vazirani 2010) The regions of the *m*-Shi arrangement are in bijection with the alcoves inside the simplex bounded by the hyperplanes of height mh + 1.

(日) (周) (三) (三)

Inverse Shi alcoves

Theorem (Fishel, Vazirani 2010) The regions of the *m*-Shi arrangement are in bijection with the alcoves inside the simplex bounded by the hyperplanes of height mh + 1.

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 11 / 33

On (rational) Shi tableaux

March 2017 12 / 33

March 2017 12 / 33

On (rational) Shi tableaux

A rational analogue

Robin Sulzgrube	
1 (())()()() () () () () () () () () () (ł

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition Let p be a positive integer relatively prime to the Coxeter number h. An alcove is called *p*-stable if its inverse lies inside the simplex bounded by the hyperplanes of height p.

(日) (同) (三) (三)

Definition Let p be a positive integer relatively prime to the Coxeter number h. An alcove is called *p*-stable if its inverse lies inside the simplex bounded by the hyperplanes of height p.

Theorem (Thiel 2015) The number of *p*-stable alcoves equals p^r . The number of dominant *p*-stable alcoves equals

$$\frac{1}{|W|}\prod_{i=1}^r(p+e_i).$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

On (rational) Shi tableaux

March 2017 14 / 33

On (rational) Shi tableaux

March 2017 15 / 33

On (rational) Shi tableaux

March 2017 15 / 33

-		<u> </u>		
	hun '	_		bo
1.0				ULEI
			-0	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_{\circ})$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_{\circ})$ and A_{\circ} .

< ロ > < 同 > < 三 > < 三

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_\circ)$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_\circ)$ and A_\circ .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_\circ)$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_\circ)$ and A_\circ .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_\circ)$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_\circ)$ and A_\circ .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

w = [4, 2, 0]

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_\circ)$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_\circ)$ and A_\circ .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

w = [4, 2, 0]

$$t^4(lpha_1, w) = 1$$

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_\circ)$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_\circ)$ and A_\circ .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

w = [4, 2, 0]

 $t^{4}(\alpha_{1}, w) = 1$ $t^{4}(\alpha_{2}, w) = 1$

Definition (Fishel, Tzanaki, Vazirani 2011) Let $w(A_{\circ})$ be a dominant Shi alcove and $\alpha \in \Phi^+$. Define $t^{mh+1}(\alpha, w)$ as the number of Shi hyperplanes of the form $H_{\alpha,k}$ that separate $w(A_{\circ})$ and A_{\circ} .

The Shi tableau of w is the collection of the numbers $t^{mh+1}(\alpha, w)$ for $\alpha \in \Phi^+$.

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 16 / 33

D		<u> </u>		
RO	hin	S	70711	he

イロト イヨト イヨト イヨト

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^p(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha,k}$ with height less than *p* that separate $w(A_{\circ})$ and A_{\circ} .

イロト イヨト イヨト

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^p(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha,k}$ with height less than *p* that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

イロト 不得下 イヨト イヨト

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^p(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha,k}$ with height less than *p* that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^p(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha,k}$ with height less than *p* that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^{p}(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha, k}$ with height less than p that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

On (rational) Shi tableaux

March 2017 17 / 33

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^{p}(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha, k}$ with height less than p that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

w = [-3, 2, 7]

 $t^5(\alpha_1, w) = 1$ $t^5(\alpha_2, w) = 1$

Definition Let $w(A_{\circ})$ be dominant and *p*-stable and $\alpha \in \Phi^+$. Define $t^p(\alpha, w)$ as the number of hyperplanes of the form $H_{\alpha,k}$ with height less than *p* that separate $w(A_{\circ})$ and A_{\circ} .

The rational Shi tableau of w is defined as the collection of numbers $t^{p}(\alpha, w)$ for $\alpha \in \Phi^{+}$.

The Main Conjecture

-		<u> </u>		
	bun.	S		bo
TXU				ULEI
			-0	

<ロ> (日) (日) (日) (日) (日)
Conjecture Every dominant *p*-stable element $w \in \widetilde{W}$ is uniquely determined by its rational Shi tableau.

A B A A B A

Conjecture Every dominant *p*-stable element $w \in \widetilde{W}$ is uniquely determined by its rational Shi tableau.

Theorem The conjecture is true in type A_{n-1} .

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Conjecture Every dominant *p*-stable element $w \in \widetilde{W}$ is uniquely determined by its rational Shi tableau.

Theorem The conjecture is true in type A_{n-1} .

Open Problem Characterise the set of rational Shi tableaux.

-		<u> </u>		
	bun.	~	- COL 10 1	box
1.0			נוואעו	

Example Consider the affine permutation of type A_4

w = [7, -1, 11, 3, -5].

Example Consider the affine permutation of type A_4

w = [7, -1, 11, 3, -5].

Then the alcove of w^{-1} is contained in the simplex bounded by the hyperplanes of height p = 8.

Example Consider the affine permutation of type A_4

w = [7, -1, 11, 3, -5].

Then the alcove of w^{-1} is contained in the simplex bounded by the hyperplanes of height p = 8. The Shi tableau of w is given by

 $\alpha_{15}\,\mathbf{2}\,\alpha_{25}\,\mathbf{1}\,\alpha_{35}\,\mathbf{2}\,\alpha_{45}\,\mathbf{1}$

・ロン ・四 ・ ・ ヨン ・ ヨン

 $\alpha_{14}\,\mathbf{1}\,\alpha_{24}\,\mathbf{2}\,\alpha_{34}\,\mathbf{0}$

 $\alpha_{13} \, \mathbf{2} \, \alpha_{23} \, \mathbf{1}$

 $\alpha_{12} \, \mathbf{0}$

To Dyck paths via row-sums and column-sums

 $\alpha_{15}\,\mathbf{2}\,\alpha_{25}\,\mathbf{1}\,\alpha_{35}\,\mathbf{2}\,\alpha_{45}\,\mathbf{1}$

 $\alpha_{14}\, {\bm 1}\, \alpha_{24}\, {\bm 2}\, \alpha_{34}\, {\bm 0}$

 $\alpha_{13}\,\mathbf{2}\,\alpha_{23}\,\mathbf{1}$

 $\alpha_{12}\,\mathbf{0}$

-		~		
Ro	hun	- S	ZOTIL	her
1.0		Ju	IZETU	Dei

< □ > < ---->

- - E

To Dyck paths via row-sums and column-sums

 $\alpha_{15}\,2\,\alpha_{25}\,1\,\alpha_{35}\,2\,\alpha_{45}\,1$

 $\alpha_{14}\, {\bm 1}\, \alpha_{24}\, {\bm 2}\, \alpha_{34}\, {\bm 0}$

 $\alpha_{13} \, 2 \, \alpha_{23} \, 1$

 $\alpha_{12}\,\mathbf{0}$

Image: A math a math

_		<u> </u>		
D ~	bub.	· • · · ·	T (7 1 1 1	b or
1.0			וויצעו	uen

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ March 2017 20 / 33

To long cycles (Ceballos, Denton, Hanusa 2016)

Robin Sulzgruber

On (rational) Shi tableaux

▶ < ≣ ▶ ≣ ∽ ९ ୯ March 2017 21 / 33

イロト イ団ト イヨト イヨト

To long cycles (Ceballos, Denton, Hanusa 2016)

Robin Sulzgruber

On (rational) Shi tableaux

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ March 2017 21 / 33

To long cycles (Ceballos, Denton, Hanusa 2016)

(4, 2, 6, 9, 7, 11, 13, 12, 10, 8, 5, 3, 1)

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 21 / 33

3

A (10) F (10) F (10)

-		<u> </u>		
	hun '	_	- COL 10 1	bo
1.0			נוואעו	

• • • • • • • • • • • •

(4, 2, 6, 9, 7, 11, 13, 12, 10, 8, 5, 3, 1)

-		~		
	bun.	S	T (7 1 1 1	h o *
TXU			וויצעו	U.EI

• • • • • • • • • • • •

(4, 2, 6, 9, 7, 11, 13, 12, 10, 8, 5, 3, 1)

(4, 2, 6, 9, 7, 11, 13, 12, 10, 8, 5, 3, 1)

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 22 / 33

3

< ロ > < 同 > < 三 > < 三

-		<u> </u>		
	bub.	~	- COL 10 1	box
TXU			נוואעו	

イロト イヨト イヨト イヨト

On (rational) Shi tableaux

 March 2017
 23 / 33

<ロ> (日) (日) (日) (日) (日)

40	35	30	25	20	15	10	5	0
32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	-1	-6	-11	-16
16	11	6	1	-4	-9	-14	-19	-24
8	3	-2	Л	-12	-17	-22	-27	-32
0	-5	-10	-15	-20	-25	-30	-35	-40

 March 2017
 23 / 33

<ロ> (日) (日) (日) (日) (日)

3 March 2017 23 / 33

-

- 4 ≣ ▶

Image: A image: A

March 2017 23 / 33

-		<u> </u>		
	hun '	_	- COL 10 1	bo
1.0			נוואעו	

3 March 2017 24 / 33

-

- ∢ ⊢⊒ →

- ∢ ∃ ▶

÷	÷	÷	÷	÷		÷	÷	÷	÷	÷
-14	-13	-12	-11	-10)	-19	-18	-17	-16	-15
-9	-8	-7	-6	(-5))	-14	-13	-12	-11	-10
-4	-3	(-2)	-1	0		-9	-8	-7	-6	-5
	2	3	4	5		-4	-3	-2	-1	0
6	$\overline{7}$	8	9	10		1	2	3	4	5
11	(12)	13	14	15		6	7	8	9	(10)
16	(17)	18	19	20		11	12	13	14	15
21	22	23	24	25		16	17	18	19	20
÷	÷	÷	÷	÷		÷	÷	÷	÷	÷

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 24 / 33

(日) (周) (三) (三)

э

March 2017 24 / 33

Robin Sulzgruber

On (rational) Shi tableaux

March 2017 24 / 33

This is the end.

Thank you!

			~		
	<u> </u>	b 1 10		T (7 1 1 1	b or
1.5				וויצעו	uen

On (rational) Shi tableaux

▶ ▲ ≣ ▶ ■ つへで March 2017 25 / 33

<ロ> (日) (日) (日) (日) (日)

Shi coordinates

-		<u> </u>		
	bub.	~	- COL 10 1	box
TXU			נוואעו	

E 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Shi coordinates

March 2017 26 / 33

March 2017 27 / 33

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Sign types

On (rational) Shi tableaux

March 2017 28 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 28 / 33

On (rational) Shi tableaux

March 2017 29 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 29 / 33

On (rational) Shi tableaux

March 2017 30 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 30 / 33

On (rational) Shi tableaux

March 2017 31 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 31 / 33

On (rational) Shi tableaux

March 2017 32 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 32 / 33

On (rational) Shi tableaux

March 2017 33 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

On (rational) Shi tableaux

March 2017 33 / 33