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Setting the stage

Definition Let V be a Euclidean
vector space, α ∈ V a non-zero
vector and k ∈ Z. Define the
affine hyperplane

Hα,k =
{
x ∈ V : 〈x , α〉 = k

}
.

Define the reflection in Hα,k as

sα,k(x) = x + 2
k − 〈x , α〉
〈α, α〉 α .

Definition An irreducible
crystallographic root system is a
finite subset Φ ⊆ V with some
properties.

The Weyl group of Φ is the
group generated by the
reflections sα,0 for α ∈ Φ+.
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The root system of type A2

The reflections sα1,0, sα2,0 generate the symmetric group S3.
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The root system of type A2

α2 = e2 − e3

α1 + α2 = e1 − e3

α1 = e1 − e2

The reflections sα1,0, sα2,0 generate the symmetric group S3.
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The root system of type A2

Hα2,0

Hα1,0

Hα1+α2,0

α2 = e2 − e3

α1 + α2 = e1 − e3

α1 = e1 − e2
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The affine Weyl group

Definition The affine
arrangement of Φ is defined as

Aff =
{
Hα,k : α ∈ Φ+, k ∈ Z

}
.

The regions of the affine
arrangement are called alcoves.

The affine Weyl group W̃ is the
group generated by all reflections
in the hyperplanes of Aff. It acts
simply transitively on the set of
alcoves.
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The Shi arrangement

Definition The Shi arrangement
is defined as

Shi =
{
Hα,k : α ∈ Φ+, k ∈ {0, 1}

}
.

Theorem (Shi 1987, 1997) The
Shi arrangement has (h + 1)r

regions and

1

|W |
r∏

i=1

(di + h)

dominant regions.

(n + 1)n−1 = 42 = 16

1

n + 1

(
2n

n

)
=

6 · 5 · 4
4 · 3 · 2 · 1 = 5
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The m-Shi arrangement

Definition The m-Shi arrangement is
defined as

Shim =
{
Hα,k : α ∈ Φ+,−m < k ≤ m

}
.

Theorem (Athanasiadis 2004, Yoshinaga
2004) The Shi arrangement has
(mh + 1)r regions and

1

|W |
r∏

i=1

(di + mh)

dominant regions.

(mn + 1)n−1 = 49

1

mn + 1

(
mn + n

n

)
= 12
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Walls and floors

Definition A hyperplane Hα,k is
called wall of an alcove if it
supports a facet of the alcove.

A wall is called floor if it
separates the alcove from the
fundamental alcove.

[4, 2, 0]
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The height of a hyperplane

Definition Define the height of a hyperplane Hα,k as |ht(α)− hk|.

[1, 2, 3]

13 10 7 4 1 2 5 8

11

14

14 11 8 5 2 1 4 7

10

13

7

4

1

2

5
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Shi alcoves

Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the
m-Shi arrangement are in bijection with alcoves whose floors have height
less than mh + 1.

[4, 2, 0]

[1, −1, 6]

[2, 0, 4]

[1, 0, 5]

[1, 2, 3]

[2, 1, 3]

[2, 3, 1]

[3, 1, 2]

[1, 3, 2][3, 2, 1]

[−1, 3, 4]

[0, 1, 5]
[0, 2, 4]

[−2, 5, 3]
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Inverse Shi alcoves

Theorem (Fishel, Vazirani 2010) The regions of the m-Shi arrangement are
in bijection with the alcoves inside the simplex bounded by the
hyperplanes of height mh + 1.
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A rational analogue

Definition Let p be a positive integer relatively prime to the Coxeter
number h. An alcove is called p-stable if its inverse lies inside the simplex
bounded by the hyperplanes of height p.

Theorem (Thiel 2015) The number of p-stable alcoves equals pr . The
number of dominant p-stable alcoves equals

1

|W |
r∏

i=1

(p + ei ).
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Shi tableaux

Definition (Fishel, Tzanaki, Vazirani 2011) Let w(A◦) be a dominant Shi
alcove and α ∈ Φ+. Define tmh+1(α,w) as the number of Shi hyperplanes
of the form Hα,k that separate w(A◦) and A◦.

The Shi tableau of w is the collection of the numbers tmh+1(α,w) for
α ∈ Φ+.

[4, 2, 0][2, 0, 4]

[1, 2, 3]

[0, 2, 4]

[0, 4, 2]

w = [4, 2, 0]

t4(α1,w) = 1

t4(α2,w) = 1

t4(α1 + α2,w) = 1
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Rational Shi tableaux

Definition Let w(A◦) be dominant and p-stable and α ∈ Φ+. Define
tp(α,w) as the number of hyperplanes of the form Hα,k with height less
than p that separate w(A◦) and A◦.

The rational Shi tableau of w is defined as the collection of numbers
tp(α,w) for α ∈ Φ+.

[−3, 2, 7]

[2, 0, 4]
[0, 2, 4] [4, 0, 2]

[1, 2, 3] [0, 4, 2]

[2, 4, 0]

7 4 1 2 5

8

11

5 2 1 4 7

10

13

4

1

2

5

8

w = [−3, 2, 7]

t5(α1,w) = 1

t5(α2,w) = 1

t5(α1 + α2,w) = 2
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The Main Conjecture

Conjecture Every dominant p-stable element w ∈ W̃ is uniquely
determined by its rational Shi tableau.

Theorem The conjecture is true in type An−1.

Open Problem Characterise the set of rational Shi tableaux.
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Inverting the rational Shi tableau in type An−1

Example Consider the affine
permutation of type A4

w = [7,−1, 11, 3,−5].

Then the alcove of w−1 is
contained in the simplex bounded
by the hyperplanes of height
p = 8.

The Shi tableau of w is given by

0

2

1

2

1

2

1

0

2 1

α12

α13

α14

α15

α23

α24

α25

α34

α35 α45
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To Dyck paths via row-sums and column-sums
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To long cycles (Ceballos, Denton, Hanusa 2016)
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Back to Dyck paths (Ceballos, Denton, Hanusa 2016)
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To n and p flush abaci (Anderson 2002)

6

...

1

...

-4

...

-9

...

-14

...

21

16

11

...

17

...

12

...

7

...

2

...

-3

...

-8

...

-13

...

22
...

-2

...

-7

...

-12

...

23

18

13

8

3

...

9

...

4

...

-1

...

-6

...

-11

...

24

19

14

...

-5

...

-10

...

25

20

15

10

5

0

...

Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33



To n and p flush abaci (Anderson 2002)

6

...

1

...

-4

...

-9

...

-14

...

21

16

11

...

17

...

12

...

7

...

2

...

-3

...

-8

...

-13

...

22
...

-2

...

-7

...

-12

...

23

18

13

8

3

...

9

...

4

...

-1

...

-6

...

-11

...

24

19

14

...

-5

...

-10

...

25

20

15

10

5

0

...

Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33



To n and p flush abaci (Anderson 2002)

0

8

16

24

32

40

-5

3

11

19

27

35

-10

-2

6

14

22

30

-15

-7

1

9

17

25

-20

-12

-4

4

12

20

-25

-17

-9

-1

7

15

-30

-22

-14

-6

2

10

-35

-27

-19

-11

-3

5

-40

-32

-24

-16

-8

0

6

...

1

...

-4

...

-9

...

-14

...

21

16

11

...

17

...

12

...

7

...

2

...

-3

...

-8

...

-13

...

22
...

-2

...

-7

...

-12

...

23

18

13

8

3

...

9

...

4

...

-1

...

-6

...

-11

...

24

19

14

...

-5

...

-10

...

25

20

15

10

5

0

...

Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33



To n and p flush abaci (Anderson 2002)

0

8

16

24

32

40

-5

3

11

19

27

35

-10

-2

6

14

22

30

-15

-7

1

9

17

25

-20

-12

-4

4

12

20

-25

-17

-9

-1

7

15

-30

-22

-14

-6

2

10

-35

-27

-19

-11

-3

5

-40

-32

-24

-16

-8

0

6

...

1

...

-4

...

-9

...

-14

...

21

16

11

...

17

...

12

...

7

...

2

...

-3

...

-8

...

-13

...

22
...

-2

...

-7

...

-12

...

23

18

13

8

3

...

9

...

4

...

-1

...

-6

...

-11

...

24

19

14

...

-5

...

-10

...

25

20

15

10

5

0

...

Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33



To n and p flush abaci (Anderson 2002)

0

8

16

24

32

40

-5

3

11

19

27

35

-10

-2

6

14

22

30

-15

-7

1

9

17

25

-20

-12

-4

4

12

20

-25

-17

-9

-1

7

15

-30

-22

-14

-6

2

10

-35

-27

-19

-11

-3

5

-40

-32

-24

-16

-8

0

6

...

1

...

-4

...

-9

...

-14

...

21

16

11

...

17

...

12

...

7

...

2

...

-3

...

-8

...

-13

...

22
...

-2

...

-7

...

-12

...

23

18

13

8

3

...

9

...

4

...

-1

...

-6

...

-11

...

24

19

14

...

-5

...

-10

...

25

20

15

10

5

0

...

Robin Sulzgruber On (rational) Shi tableaux March 2017 23 / 33



Shift back to affine permutations (Lascoux 2001)
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This is the end.

Thank you!
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