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Definition Let V be a Euclidean
vector space, a € V a non-zero
vector and k € Z. Define the
affine hyperplane

Hok = {x € V: (x,a) = k}.
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Definition Let V be a Euclidean
vector space, a € V a non-zero
vector and k € Z. Define the
affine hyperplane

Definition An irreducible
crystallographic root system is a
finite subset ® C V with some

Ho o = {X eV:(x,a)= k}. properties.

Define the reflection in H, s as The Weyl group of ® is the
group generated by the
k—{x, O‘>a. reflections s, o for a € dT.

Sak(x) =x+2 @)
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The root system of type A,

Qp = € — €3

a1+ a2 =€ — €3

a1 =€ — €
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The root system of type A,

Qp = € — €3 Hal.O
a1 Qp = €1 — €3

Haz,O

1=€61— €

H()q-i—()cg,o
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-
The root system of type A,

Hal.,O

Haz,O

H()q-i—()cg,o

The reflections s, 0, Sa,,0 generate the symmetric group S3.
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The affine Weyl group

Definition The affine

arrangement of @ is defined as WW
Aff = {Ha’k acedt ke Z}.

The regions of the affine
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VAVAVAVAVAVAVAN

Robin Sulzgruber On (rational) Shi tableaux March 2017 4 /33




-
The affine Weyl group

Definition The affine

arrangement of @ is defined as WW
Aff = {Ha’k ra€edt ke Z}.

The regions of the affine

arrangement are called alcoves.

The affine Weyl group W is the

group generated by all reflections

in the hyperplanes of Aff. It acts

simply transitively on the set of
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The m-Shi arrangement

Definition The m-Shi arrangement is
defined as

Shi” = {Hak:a € ®T,—m < k < m}.
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The m-Shi arrangement

Definition The m-Shi arrangement is
defined as
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Shi” = {Hak:a € ®T,—m < k < m}.

Theorem (Athanasiadis 2004, Yoshinaga
2004) The Shi arrangement has
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The m-Shi arrangement

Definition The m-Shi arrangement is
defined as
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A wall is called floor if it
separates the alcove from the
fundamental alcove.
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Walls and floors

Definition A hyperplane H,, x is
called wall of an alcove if it [4,2,0]

supports a facet of the alcove. \/\/\/\/

A wall is called floor if it W\N\/
separates the alcove from the

fundamental alcove. \/\/VVV\/

N
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|
The height of a hyperplane

Definition Define the height of a hyperplane H, x as |ht(c«) — hk|.
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Shi alcoves

Theorem (Shi 1987, Athanasiadis 2005, Thiel 2015) The regions of the

m-Shi arrangement are in bijection with alcoves whose floors have height
less than mh + 1.
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Inverse Shi alcoves

Theorem (Fishel, Vazirani 2010) The regions of the m-Shi arrangement are
in bijection with the alcoves inside the simplex bounded by the
hyperplanes of height mh + 1.
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Inverse Shi alcoves

Theorem (Fishel, Vazirani 2010) The regions of the m-Shi arrangement are
in bijection with the alcoves inside the simplex bounded by the
hyperplanes of height mh + 1.
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A rational analogue

Definition Let p be a positive integer relatively prime to the Coxeter
number h. An alcove is called p-stable if its inverse lies inside the simplex
bounded by the hyperplanes of height p.
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A rational analogue

Definition Let p be a positive integer relatively prime to the Coxeter
number h. An alcove is called p-stable if its inverse lies inside the simplex

bounded by the hyperplanes of height p.

Theorem (Thiel 2015) The number of p-stable alcoves equals p". The
number of dominant p-stable alcoves equals

‘W‘H p+ei).
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Shi tableaux
Definition (Fishel, Tzanaki, Vazirani 2011) Let w(A,) be a dominant Shi

alcove and o € ®+. Define t™"*1(a, w) as the number of Shi hyperplanes
of the form H,  that separate w(A,) and A..
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Definition (Fishel, Tzanaki, Vazirani 2011) Let w(A,) be a dominant Shi
alcove and o € ®+. Define t™"*1(a, w) as the number of Shi hyperplanes
of the form H,  that separate w(A,) and A..

The Shi tableau of w is the collection of the numbers t™"*+1(a, w) for
a€ ot
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Rational Shi tableaux

Definition Let w(A,) be dominant and p-stable and a € ®*. Define

tP(a, w) as the number of hyperplanes of the form H, , with height less
than p that separate w(A;) and A..
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Definition Let w(A,) be dominant and p-stable and a € ®*. Define

tP(a, w) as the number of hyperplanes of the form H, , with height less
than p that separate w(A;) and A..
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Definition Let w(A,) be dominant and p-stable and a € ®*. Define
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Rational Shi tableaux

Definition Let w(A,) be dominant and p-stable and a € ®*. Define

tP(a, w) as the number of hyperplanes of the form H, , with height less
than p that separate w(A;) and A..

The rational Shi tableau of w is defined as the collection of nhumbers
tP(a, w) for a € dT.
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Rational Shi tableaux

Definition Let w(A,) be dominant and p-stable and a € ®*. Define
tP(a, w) as the number of hyperplanes of the form H, , with height less
than p that separate w(A;) and A..

The rational Shi tableau of w is defined as the collection of nhumbers
tP(a, w) for a € dT.
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Rational Shi tableaux

Definition Let w(A,) be dominant and p-stable and a € ®*. Define

tP(a, w) as the number of hyperplanes of the form H, , with height less
than p that separate w(A;) and A..

The rational Shi tableau of w is defined as the collection of nhumbers
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Conjecture Every dominant p-stable element w € W is uniquely
determined by its rational Shi tableau.

Theorem The conjecture is true in type A,_1.
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-
The Main Conjecture

Conjecture Every dominant p-stable element w € W is uniquely
determined by its rational Shi tableau.

Theorem The conjecture is true in type A,_1.

Open Problem Characterise the set of rational Shi tableaux.
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Example Consider the affine
permutation of type As

w=[7,-1,11,3,-5].
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Example Consider the affine
permutation of type As

w=[7,-1,11,3,-5].

Then the alcove of w1 is
contained in the simplex bounded
by the hyperplanes of height
p=28.
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Inverting the rational Shi tableau in type A,

Example Consider the affine
permutation of type As

w=[7,-1,11,3,-5].

Then the alcove of w1 is

The Shi tableau of w is given by

contained in the simplex bounded
by the hyperplanes of height

p=28.
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To Dyck paths via row-sums and column-sums
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To long cycles (Ceballos, Denton, Hanusa 2016)
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To long cycles (Ceballos, Denton, Hanusa 2016)

12 13
11
8 1o l10 13
7 ¥
e
6 10
3 |4 |5
2 71 8
/ 6
1 5
4
T 2 3

(4,2,6,9,7,11,13,12,10,8,5,3,1)
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Back to Dyck paths (Ceballos, Denton, Hanusa 2016)
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To n and p flush abaci (Anderson 2002)

40
32
24
16
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To n and p flush abaci (Anderson 2002)

<8

40 35 30 25 20 15 10 5 O ®®@
_ %@

-16

24
= PO
0| 51710|-15|-20|-25|-30|-35|-40 @ v

21 22 23 24 25
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Shift back to affine permutations (Lascoux 2001)

@
() 9
@

SLISEISPISHISY) @
OIOIOIOIO NN ISE 19
@DE@W o ®
W@ s ®s +©@-200O
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Shift back to affine permutations (Lascoux 2001)
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1 =[-7,-4,4,7,15]
w = [7,-1,11,3, —5]
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N
This is the end.

Thank you!
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Sign types
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