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Definitions
partition: λ = (λ1, λ2, . . . , λ`) with λ1 ≥ λ2 ≥ · · · ≥ λ` > 0.

size: | λ |=
∑

1≤i≤` λi.

Young diagram: boxes arranged in left-justified rows with λi boxes in the i-th row.

hook length: h�:= # boxes exactly to the right, exactly above, and � itself.

H(λ): the product of all hook lengths in the Young diagram.

4

9 8 6 3 2 1

5 4 2

4 3 1

2 1

Figure: The Young diagram of the partition (6, 3, 3, 2) and the hook lengths of corresponding boxes.
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−3 −2

−2 −1 0

−1 0 1

0 1 2 3 4 5

Figure: The contents of the partition (6, 3, 3, 2).
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size: | λ |=
∑

1≤i≤` λi.

Young diagram: boxes arranged in left-justified rows with λi boxes in the i-th row.

hook length: h�:= # boxes exactly to the right, exactly above, and � itself.

H(λ): the product of all hook lengths in the Young diagram.

content: c� := j− i for the box � in the i-th row and j-th column.

standard Young tableau (SYT) of the shape λ: fill in the Young diagram with distinct numbers
1 to |λ| such that the numbers in each row and each column are increasing.

fλ: # SYTs of the shape λ.

6 9

3 8 14

2 5 13

1 4 7 10 11 12

Figure: A standard Young tableau of the shape (6, 3, 3, 2).
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RSK algorithm (Robinson-Schensted-Knuth)⇒ 1
n!

∑
|λ|=n f 2

λ = 1.

Theorem (Nekrasov and Okounkov 2003, Westbury 2006, Han 2008)

∑
n≥0

xn

n!2

∑
|λ|=n

f 2
λ

∏
�∈λ

(y + h2
�)

 =
∏
i≥1

(1− xi)−1−y.

First proved by Nekrasov and Okounkov in their study of Seiberg-Witten Theory on
supersymmetric gauges in particle physics.
Rediscovered independently by Westbury using D’Arcais polynomials and by Han using
Macdonald’s identity.

Theorem (Han 2008)
Let Ht(λ) be the multiset of the hook lengths of λ which are divisible by t. Then

∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
y−

tyz
h2

)
=
∏
k≥1

(1− xtk)t(
1− (yxt)k

)t−z
(1− xk)

.

The case z = 0, y = 1 gives the generating function for the number of partitions.
Another corollary is the Marked hook formula:

1
n!

∑
|λ|=n

f 2
λ

∑
h∈H(λ)

h2 =
n(3n− 1)

2
.
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f 2
λ
|λ|! is called the Plancherel measure of the partition λ.

1
n!

∑
|λ|=n

f 2
λg(λ) is called the n-th Plancherel average of the function g(λ).

Formulas related to Plancherel measure and Plancherel average appear naturally in the study
of Probability Theory, Random Matrix Theory, Mathematical Physics and Combinatorics.

Problem
For which function g(λ), its Plancherel average 1

n!

∑
|λ|=n

f 2
λg(λ) has a nice expression?

Han 2008
1
n!

∑
|λ|=n

f 2
λ

∑
�∈λ

h2
� = 3n2−n

2 .

1
n!

∑
|λ|=n

f 2
λ

∑
�∈λ

h4
� = 40n3−75n2+41n

6 .

1
n!

∑
|λ|=n

f 2
λ

∑
�∈λ

h6
� = 1050n4−4060n3+5586n2−2552n

24 .
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Conjecture (Han 2008)

The Plancherel average of the function g(λ) =
∑

�∈λ h2k
� :

P(n) =
1
n!

∑
|λ|=n

f 2
λ

∑
�∈λ

h2k
�

is always a polynomial of n for every k ∈ N.

This conjecture was proved and generalized by Stanley.

Theorem (Stanley 2010)
Let Q1 and Q2 be two given symmetric functions. Then the Plancherel average of the function
Q1(h2

� : � ∈ λ)Q2(c� : � ∈ λ):

P(n) =
1
n!

∑
|λ|=n

f 2
λQ1(h2

� : � ∈ λ)Q2(c� : � ∈ λ)

is a polynomial of n.

Olshanski (2010) also proved the content case.
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An application of Han-Stanley Theorem:

Corollary (Okada-Panova 2008)

n!
∑
|λ|=n

∑
�∈λ

∏r
i=1(h2

� − i2)

H(λ)2
=

1
2(r + 1)2

(2r
r

)(2r + 2
r + 1

) r∏
j=0

(n− j).

Definition
Let g(λ) be a function defined on partitions. The difference operator D on functions of partitions is
defined by

Dg(λ) :=
∑

|λ+/λ|=1

g(λ+)− g(λ).

The coefficient on the right hand side of Okada-Panova formula can be obtained by letting the
difference operator act on one single partition:

HλDr+1
(∑

�∈λ
∏

1≤j≤r(h2
� − j2)

Hλ

)
=

1
2(r + 1)2

(2r
r

)(2r + 2
r + 1

)
.
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2

3

4

1

0

Figure: The poset of nonnegative integers.

∆g(x) := g(x + 1)− g(x).

∆rg(x) =
∑r

i=0(−1)r−i
(r

i

)
g(x + i).

g(x) is a polynomial iff
∆r+1g(x) = 0 for some r.

Basis of polynomials:
{g(x) = xk : k ∈ N}.
Other posets: posets of
(1) partitions, (2) partitions with
the given t-core, (3) self-conjugate
partitions, (4) doubled distinct
partitions, (5) strict partitions?

2 11

3 21 111

4 31 22 211 1111

1

∅

Figure: Young’s lattice (the poset of partitions).

Dg(λ) :=
∑
|λ+/λ|=1 g(λ+)− g(λ).

Dng(µ) =
∑n

k=0(−1)n+k
(n

k

)∑
|λ/µ|=k fλ/µg(λ).∑

|λ/µ|=n fλ/µg(λ) =
∑n

k=0
(n

k

)
Dkg(µ).

g(λ) is a D-polynomial iff Dn+1g(λ) = 0 for some n.

Basis of D-polynomials? hard to characterize!

We show that
Q1(h2

�
:�∈λ)Q2(c�:�∈λ)

Hλ
is always a

D-polynomial (A long and technique proof). Therefore

1
(n + |µ|)!

∑
|λ/µ|=n

fλfλ/µQ1(h2
� : � ∈ λ)Q2(c� : � ∈ λ)

is a polynomial of n.
Huan Xiong Difference operators for functions of partitions 28 March 2017 9 / 22



The t-difference operator for function of partitions

A partition λ is called a t-core partition if it has no hook length t.

We write λ ≥t µ if µ is obtained by removing some t-hooks from λ.

(18, 7, 6)

t=3
=⇒

(3, 1)

Let λ be a partition and g be a function defined on partitions. The t-difference operator Dt is
defined by

Dtg(λ) :=
∑

λ+≥tλ

|λ+/λ|=t

g(λ+)− g(λ).

Example: D3g((3, 1)) = g((6, 1)) + g((3, 1, 1, 1, 1)) + g((3, 2, 2))− g((3, 1)).

g(λ) is a Dt-polynomial iff Dr+1
t g(λ) = 0 for some r.

Question: which functions are Dt-polynomials?
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Main Theorem (X. 2015, joint with Dehaye and Han)

Suppose that t is a positive integer, u′, v′, ju, j′v, ku, k′v are nonnegative integers and µ is a given

partition. Then for every r >
∑u′

u=1(ku + 1) +
∑v′

v=1
k′v+2

2 we have

Dr
t

(
1

Ht(λ)

(
u′∏

u=1

∑
�∈λ

h�≡±ju(mod t)

h2ku
�

)(
v′∏

v=1

∑
�∈λ

c�≡j′v(mod t)

c
k′v
�

))
= 0

for every partition λ. Moreover,

P(n) :=
∑
λ≥tµ
|λ/µ|=nt

Fλ/µ
Ht(λ)

(
u′∏

u=1

∑
�∈λ

h�≡±ju(mod t)

h2ku
�

)(
v′∏

v=1

∑
�∈λ

c�≡j′v(mod t)

c
k′v
�

)

is a polynomial of n with degree at most
∑u′

u=1(ku + 1) +
∑v′

v=1
k′v+2

2 .
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The outline of the proof of the main results

Step 1 : We construct some complicated sets Ak(k ≥ 0) of functions of partitions such that
g ∈ Ak+1 implies Dtg ∈ Ak. Finally Dk+1

t g = 0 if g ∈ Ak.

Step 2 : Let k be a nonnegative integer and 0 ≤ j ≤ t − 1. Then

1
Ht(λ)

(
u′∏

u=1

∑
�∈λ

h�≡±ju (mod t)

h2ku
�

)(
v′∏

v=1

∑
�∈λ

c�≡j′v (mod t)

c
k′v
�

)

is in the set Ar−1 for some r.

Step 3 : By the above two steps we know there exists some r ∈ N such that

Dr
t

(
1

Ht(λ)

(
u′∏

u=1

∑
�∈λ

h�≡±ju (mod t)

h2ku
�

)(
v′∏

v=1

∑
�∈λ

c�≡j′v (mod t)

c
k′v
�

))
= 0

for every partition λ.
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c�≡j′v (mod t)

c
k′v
�

)

is in the set Ar−1 for some r.

Step 3 : By the above two steps we know there exists some r ∈ N such that

Dr
t

(
1

Ht(λ)

(
u′∏

u=1

∑
�∈λ

h�≡±ju (mod t)

h2ku
�

)(
v′∏

v=1

∑
�∈λ

c�≡j′v (mod t)

c
k′v
�

))
= 0

for every partition λ.
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Let µ = ∅ and t = 1 in the main result. We derive the Han-Stanley Theorem.

Other applications for the case t = 1:

Corollary
1

(n+ | µ |)!
∑
|λ/µ|=n

fλfλ/µ =
1

H(µ)
.

The above identity can be given a combinatorial proof by using RSK algorithm.

Corollary (Okada-Panova 2008)

n!
∑
|λ|=n

∑
�∈λ

∏r
i=1(h2

� − i2)

H(λ)2
=

1
2(r + 1)2

(2r
r

)(2r + 2
r + 1

) r∏
j=0

(n− j).

Corollary (Fujii-Kanno-Moriyama-Okada 2008)

n!
∑
|λ|=n

∑
�∈λ

∏r−1
i=0 (c2

� − i2)

H(λ)2
=

(2r)!
(r + 1)!2

r∏
j=0

(n− j).
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Corollaries of the main theorem for general t.

Corollary

Suppose that µ is a given t-core partition. Then we have∑
λt-core=µ
|λ/µ|=nt

Fλ/µ
Ht(λ)

∑
�∈λ

h�≡0(mod t)

h2
� = nt2 + 3t

(n
2

)
.

Furthermore,

∑
λt-core=µ
|λ/µ|=nt

Fλ/µ
Ht(λ)

∑
�∈λ

h2
� =

3t2n2

2
+

nt(t2 − 3t − 1 + 24|µ|)
6

+
∑
�∈µ

h2
�.

In particular, let µ = ∅. We have

∑
λt-core=∅
|λ|=nt

n! tn

Ht(λ)2

∑
�∈λ

h2
� =

3t2n2

2
+

nt(t2 − 3t − 1)

6
.
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Motivated by Han’s proof of Nekrasov-Okounkov Formula, Pétréolle obtained the following
results.

Theorem (Pétréolle 2015)
For any complex number z, the following formulas hold:∏

i≥1

(1− x2i)z+1

1− xi

2z−1

=
∑
λ∈SC

δλ x|λ|
∏

h∈H(λ)

(
1−

2z
h εh

)
,

∏
k≥1

(1− xk)2z2+z =
∑
λ∈DD

δλ x|λ|/2
∏

h∈H(λ)

(
1−

2z + 2
h εh

)
,

where the sum is over all self-conjugate and doubled distinct partitions respectively.

Huan Xiong Difference operators for functions of partitions 28 March 2017 15 / 22



Self-conjugate partitions

self-conjugate partition: a partition whose Young diagram is symmetric along the main
diagonal.

SC: the set of self-conjugate partitions.

The t-difference operator DSCt for self-conjugate partitions is defined by

DSCt g(λ) :=
∑

λ+∈SC,λ+≥tλ

|λ+/λ|=2t

g(λ+)− g(λ).

Theorem (X. 2015, joint with Han)

Let t = 2t′ be an even positive integer, µ be a given self-conjugate partition, and u′, v′, ju, j′v, ku, k′v
be nonnegative integers. Then we have

P(n) = (2t)nn!
∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

Q1(h2 : h ∈ H(λ)) Q2(c : c ∈ C(λ))

Ht(λ)

is a polynomial in n for any symmetric functions Q1 and Q2.
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Self-conjugate partitions

Corollary (Pétréolle 2015)
Let t = 2t′ be an even positive integer. Then∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1
Ht(λ)

=
1

(2t)nn!
.

Corollary
Let t = 2t′ be an even positive integer. We have

(2t)nn!
∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1
Ht(λ)

∑
h∈H(λ)

h2 = 6t2n2 +
1
3

(t2 − 6t − 1)tn,

(2t)nn!
∑

λ∈SC,|λ|=2nt
#Ht(λ)=2n

1
Ht(λ)

∑
c∈C(λ)

c2 = 2t2n2 +
1
3

(t2 − 6t − 1)tn.
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Doubled distinct partitions and strict partitions

A strict partition (bar partition) is a finite strict decreasing sequence of positive integers
λ̄ = (λ̄1, λ̄2, . . . , λ̄`).

The doubled distinct partition ψ(λ̄) of a strict partition λ̄, is the usual partition whose Young
diagram is obtained by adding λ̄i boxes to the i-th column of the shifted Young diagram of λ̄
for 1 ≤ i ≤ `(λ̄).

For example, (6, 4, 4, 1, 1) is the doubled distinct partition of (5, 2, 1).

Figure: From strict partitions to doubled distinct partitions.
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Doubled distinct partitions and strict partitions

DD: the set of doubled distinct partitions.

The t-difference operator DDDt for doubled distinct partitions is defined by

DDDt g(λ) =
∑

λ+∈DD, λ+≥tλ

|λ+/λ|=2t

g(λ+)− g(λ).

Theorem (X. 2015, joint with Han)
Let t = 2t′ + 1 be an odd positive integer. The following summation for the positive integer n

(2t)nn!
∑

λ∈DD,|λ|=2nt
#Ht(λ)=2n

Q1(h2 : h ∈ H(λ)) Q2(c : c ∈ C(λ))

Ht(λ)

is a polynomial in n for any symmetric functions Q1 and Q2.
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Doubled distinct partitions and strict partitions

Corollary (Pétréolle 2015)
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Doubled distinct partitions and strict partitions

Corollary
Let Q be a given symmetric function, and µ̄ be a given strict partition. Then

P(n) =
∑
|λ̄/µ̄|=n

2|λ̄|−|µ̄|−`(λ̄)+`(µ̄) f̄λ̄/µ̄
H̄(λ̄)

Q
((c̄�

2

)
: � ∈ λ̄

)
is a polynomial of n. In particular,

∑
|λ̄/µ̄|=n

2|λ̄|−|µ̄|−`(λ̄)+`(µ̄) f̄λ̄/µ̄H̄(µ̄)

H̄(λ̄)

(∑
�∈λ̄

(c̄�
2

)
−
∑
�∈µ̄

(c̄�
2

))
=
(n

2

)
+ n|µ̄|.

Corollary

Suppose that k is a given nonnegative integer. Then

∑
|λ̄|=n

2|λ̄|−`(λ̄) f̄λ̄
H̄(λ̄)

∑
�∈λ̄

(c̄� + k − 1
2k

)
=

2k

(k + 1)!

( n
k + 1

)
.
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Thank You for Listening!
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