Difference operators for functions of partitions and its application to hook-content identities
 (joint with Paul-Olivier Dehaye and Guo-Niu Han)

Huan Xiong

CNRS - Université de Strasbourg

78th SLC, 28 March 2017

Definitions

- partition: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$.
- size: $|\lambda|=\sum_{1 \leq i \leq \ell} \lambda_{i}$.
- Young diagram: boxes arranged in left-justified rows with λ_{i} boxes in the i-th row.
- hook length: $h_{\square}:=\#$ boxes exactly to the right, exactly above, and \square itself.
- $H(\lambda)$: the product of all hook lengths in the Young diagram.

2	1			
4	3	1		
5	4	2		
9	8	6	3	2

Figure: The Young diagram of the partition $(6,3,3,2)$ and the hook lengths of corresponding boxes.

Definitions

- partition: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$.
- size: $|\lambda|=\sum_{1 \leq i \leq \ell} \lambda_{i}$.
- Young diagram: boxes arranged in left-justified rows with λ_{i} boxes in the i-th row.
- hook length: $h_{\square}:=\#$ boxes exactly to the right, exactly above, and \square itself.
- $H(\lambda)$: the product of all hook lengths in the Young diagram.
- content: $c_{\square}:=j-i$ for the box \square in the i-th row and j-th column.

-3	-2					
-2	-1	0				
-1	0	1				
0	1	2	3	4	5	

Figure: The contents of the partition (6, 3, 3, 2).

Definitions

- partition: $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$.
- size: $|\lambda|=\sum_{1 \leq i \leq \ell} \lambda_{i}$.
- Young diagram: boxes arranged in left-justified rows with λ_{i} boxes in the i-th row.
- hook length: h_{\square} := \# boxes exactly to the right, exactly above, and \square itself.
- $H(\lambda)$: the product of all hook lengths in the Young diagram.
- content: $c \square:=j-i$ for the box \square in the i-th row and j-th column.
- standard Young tableau (SYT) of the shape λ : fill in the Young diagram with distinct numbers 1 to $|\lambda|$ such that the numbers in each row and each column are increasing.
- f_{λ} : \# SYTs of the shape λ.

6	9				
3	8	14			
2	5	13			
1	4	7	10	11	12

Figure: A standard Young tableau of the shape ($6,3,3,2$).

- RSK algorithm (Robinson-Schensted-Knuth) $\Rightarrow \frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2}=1$.
- RSK algorithm (Robinson-Schensted-Knuth) $\Rightarrow \frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2}=1$.

Theorem (Nekrasov and Okounkov 2003, Westbury 2006, Han 2008)

$$
\sum_{n \geq 0} \frac{x^{n}}{n!^{2}}\left(\sum_{|\lambda|=n} f_{\lambda}^{2} \prod_{\square \in \lambda}\left(y+h_{\square}^{2}\right)\right)=\prod_{i \geq 1}\left(1-x^{i}\right)^{-1-y} .
$$

- First proved by Nekrasov and Okounkov in their study of Seiberg-Witten Theory on supersymmetric gauges in particle physics.
- RSK algorithm (Robinson-Schensted-Knuth) $\Rightarrow \frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2}=1$.

Theorem (Nekrasov and Okounkov 2003, Westbury 2006, Han 2008)

$$
\sum_{n \geq 0} \frac{x^{n}}{n!^{2}}\left(\sum_{|\lambda|=n} f_{\lambda}^{2} \prod_{\square \in \lambda}\left(y+h_{\square}^{2}\right)\right)=\prod_{i \geq 1}\left(1-x^{i}\right)^{-1-y} .
$$

- First proved by Nekrasov and Okounkov in their study of Seiberg-Witten Theory on supersymmetric gauges in particle physics.
- Rediscovered independently by Westbury using D'Arcais polynomials and by Han using Macdonald's identity.

Theorem (Han 2008)

Let $\mathcal{H}_{t}(\lambda)$ be the multiset of the hook lengths of λ which are divisible by t. Then

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}\left(1-x^{k}\right)} .
$$

- RSK algorithm (Robinson-Schensted-Knuth) $\Rightarrow \frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2}=1$.

Theorem (Nekrasov and Okounkov 2003, Westbury 2006, Han 2008)

$$
\sum_{n \geq 0} \frac{x^{n}}{n!^{2}}\left(\sum_{|\lambda|=n} f_{\lambda}^{2} \prod_{\square \in \lambda}\left(y+h_{\square}^{2}\right)\right)=\prod_{i \geq 1}\left(1-x^{i}\right)^{-1-y} .
$$

- First proved by Nekrasov and Okounkov in their study of Seiberg-Witten Theory on supersymmetric gauges in particle physics.
- Rediscovered independently by Westbury using D'Arcais polynomials and by Han using Macdonald's identity.

Theorem (Han 2008)

Let $\mathcal{H}_{t}(\lambda)$ be the multiset of the hook lengths of λ which are divisible by t. Then

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}\left(1-x^{k}\right)} .
$$

- The case $z=0, y=1$ gives the generating function for the number of partitions.
- RSK algorithm (Robinson-Schensted-Knuth) $\Rightarrow \frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2}=1$.

Theorem (Nekrasov and Okounkov 2003, Westbury 2006, Han 2008)

$$
\sum_{n \geq 0} \frac{x^{n}}{n!^{2}}\left(\sum_{|\lambda|=n} f_{\lambda}^{2} \prod_{\square \in \lambda}\left(y+h_{\square}^{2}\right)\right)=\prod_{i \geq 1}\left(1-x^{i}\right)^{-1-y} .
$$

- First proved by Nekrasov and Okounkov in their study of Seiberg-Witten Theory on supersymmetric gauges in particle physics.
- Rediscovered independently by Westbury using D'Arcais polynomials and by Han using Macdonald's identity.

Theorem (Han 2008)

Let $\mathcal{H}_{t}(\lambda)$ be the multiset of the hook lengths of λ which are divisible by t. Then

$$
\sum_{\lambda \in \mathcal{P}} x^{|\lambda|} \prod_{h \in \mathcal{H}_{t}(\lambda)}\left(y-\frac{t y z}{h^{2}}\right)=\prod_{k \geq 1} \frac{\left(1-x^{t k}\right)^{t}}{\left(1-\left(y x^{t}\right)^{k}\right)^{t-z}\left(1-x^{k}\right)} .
$$

- The case $z=0, y=1$ gives the generating function for the number of partitions.
- Another corollary is the Marked hook formula:

$$
\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{h \in \mathcal{H}(\lambda)} h^{2}=\frac{n(3 n-1)}{2}
$$

- $\frac{f_{\lambda}^{2}}{|\lambda|!}$ is called the Plancherel measure of the partition λ.
- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} g(\lambda)$ is called the n-th Plancherel average of the function $g(\lambda)$.
- Formulas related to Plancherel measure and Plancherel average appear naturally in the study of Probability Theory, Random Matrix Theory, Mathematical Physics and Combinatorics.
- $\frac{f_{\lambda}^{2}}{|\lambda|!}$ is called the Plancherel measure of the partition λ.
- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} g(\lambda)$ is called the n-th Plancherel average of the function $g(\lambda)$.
- Formulas related to Plancherel measure and Plancherel average appear naturally in the study of Probability Theory, Random Matrix Theory, Mathematical Physics and Combinatorics.

Problem

For which function $g(\lambda)$, its Plancherel average $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} g(\lambda)$ has a nice expression?

- $\frac{f_{\lambda}^{2}}{|\lambda|!}$ is called the Plancherel measure of the partition λ.
- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} g(\lambda)$ is called the n-th Plancherel average of the function $g(\lambda)$.
- Formulas related to Plancherel measure and Plancherel average appear naturally in the study of Probability Theory, Random Matrix Theory, Mathematical Physics and Combinatorics.

Problem

For which function $g(\lambda)$, its Plancherel average $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} g(\lambda)$ has a nice expression?

Han 2008

- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{\square \in \lambda} h_{\square}^{2}=\frac{3 n^{2}-n}{2}$.
- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{\square \in \lambda} h_{\square}^{4}=\frac{40 n^{3}-75 n^{2}+41 n}{6}$.
- $\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{\square \in \lambda} h_{\square}^{6}=\frac{1050 n^{4}-4060 n^{3}+5586 n^{2}-2552 n}{24}$.

Conjecture (Han 2008)

The Plancherel average of the function $g(\lambda)=\sum_{\square \in \lambda} h_{\square}^{2 k}$:

$$
P(n)=\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{\square \in \lambda} h_{\square}^{2 k}
$$

is always a polynomial of n for every $k \in \mathbb{N}$.

Conjecture (Han 2008)

The Plancherel average of the function $g(\lambda)=\sum_{\square \in \lambda} h_{\square}^{2 k}$:

$$
P(n)=\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} \sum_{\square \in \lambda} h_{\square}^{2 k}
$$

is always a polynomial of n for every $k \in \mathbb{N}$.

- This conjecture was proved and generalized by Stanley.

Theorem (Stanley 2010)

Let Q_{1} and Q_{2} be two given symmetric functions. Then the Plancherel average of the function $Q_{1}\left(h_{\square}^{2}: \square \in \lambda\right) Q_{2}\left(c_{\square}: \square \in \lambda\right):$

$$
P(n)=\frac{1}{n!} \sum_{|\lambda|=n} f_{\lambda}^{2} Q_{1}\left(h_{\square}^{2}: \square \in \lambda\right) Q_{2}\left(c_{\square}: \square \in \lambda\right)
$$

is a polynomial of n.

- Olshanski (2010) also proved the content case.
- An application of Han-Stanley Theorem:

Corollary (Okada-Panova 2008)

$$
n!\sum_{|\lambda|=n} \frac{\sum_{\square \in \lambda} \prod_{i=1}^{r}\left(h_{\square}^{2}-i^{2}\right)}{H(\lambda)^{2}}=\frac{1}{2(r+1)^{2}}\binom{2 r}{r}\binom{2 r+2}{r+1} \prod_{j=0}^{r}(n-j) .
$$

- An application of Han-Stanley Theorem:

Corollary (Okada-Panova 2008)

$$
n!\sum_{|\lambda|=n} \frac{\sum_{\square \in \lambda} \prod_{i=1}^{r}\left(h_{\square}^{2}-i^{2}\right)}{H(\lambda)^{2}}=\frac{1}{2(r+1)^{2}}\binom{2 r}{r}\binom{2 r+2}{r+1} \prod_{j=0}^{r}(n-j) .
$$

Definition

Let $g(\lambda)$ be a function defined on partitions. The difference operator D on functions of partitions is defined by

$$
D g(\lambda):=\sum_{\left|\lambda^{+} / \lambda\right|=1} g\left(\lambda^{+}\right)-g(\lambda) .
$$

- An application of Han-Stanley Theorem:

Corollary (Okada-Panova 2008)

$$
n!\sum_{|\lambda|=n} \frac{\sum_{\square \in \lambda} \prod_{i=1}^{r}\left(h_{\square}^{2}-i^{2}\right)}{H(\lambda)^{2}}=\frac{1}{2(r+1)^{2}}\binom{2 r}{r}\binom{2 r+2}{r+1} \prod_{j=0}^{r}(n-j) .
$$

Definition

Let $g(\lambda)$ be a function defined on partitions. The difference operator D on functions of partitions is defined by

$$
D g(\lambda):=\sum_{\left|\lambda^{+} / \lambda\right|=1} g\left(\lambda^{+}\right)-g(\lambda) .
$$

- The coefficient on the right hand side of Okada-Panova formula can be obtained by letting the difference operator act on one single partition:

$$
H_{\lambda} D^{r+1}\left(\frac{\sum_{\square \in \lambda} \prod_{1 \leq j \leq r}\left(h_{\square}^{2}-j^{2}\right)}{H_{\lambda}}\right)=\frac{1}{2(r+1)^{2}}\binom{2 r}{r}\binom{2 r+2}{r+1} .
$$

Figure: Young's lattice (the poset of partitions).

Figure: The poset of nonnegative integers.

- $\Delta g(x):=g(x+1)-g(x)$.
- $\Delta^{r} g(x)=\sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i} g(x+i)$.
- $g(x)$ is a polynomial iff $\Delta^{r+1} g(x)=0$ for some r.
- Basis of polynomials: $\left\{g(x)=x^{k}: k \in \mathbb{N}\right\}$.
- Other posets: posets of (1) partitions, (2) partitions with the given t-core, (3) self-conjugate partitions, (4) doubled distinct partitions, (5) strict partitions?
- $D g(\lambda):=\sum_{|\lambda+/ \lambda|=1} g\left(\lambda^{+}\right)-g(\lambda)$.
- $D^{n} g(\mu)=\sum_{k=0}^{n}(-1)^{n+k}\binom{n}{k} \sum_{|\lambda / \mu|=k} f_{\lambda / \mu} g(\lambda)$.
- $\sum_{|\lambda / \mu|=n} f_{\lambda / \mu} g(\lambda)=\sum_{k=0}^{n}\binom{n}{k} D^{k} g(\mu)$.
- $g(\lambda)$ is a D-polynomial iff $D^{n+1} g(\lambda)=0$ for some n.
- Basis of D-polynomials? hard to characterize!
- We show that $\frac{Q_{1}\left(h_{\square}^{2}: \square \in \lambda\right) Q_{2}\left(c_{\square}: \square \in \lambda\right)}{H_{\lambda}}$ is always a D-polynomial (A long and technique proof). Therefore

$$
\frac{1}{(n+|\mu|)!} \sum_{|\lambda / \mu|=n} f_{\lambda} f_{\lambda / \mu} Q_{1}\left(h_{\square}^{2}: \square \in \lambda\right) Q_{2}\left(c_{\square}: \square \in \lambda\right)
$$

is a polynomial of n.

The t-difference operator for function of partitions

- A partition λ is called a t-core partition if it has no hook length t.

The t-difference operator for function of partitions

- A partition λ is called a t-core partition if it has no hook length t.
- We write $\lambda \geq_{t} \mu$ if μ is obtained by removing some t-hooks from λ.

The t-difference operator for function of partitions

- A partition λ is called a t-core partition if it has no hook length t.
- We write $\lambda \geq_{t} \mu$ if μ is obtained by removing some t-hooks from λ.

$(18,7,6)$

- Let λ be a partition and g be a function defined on partitions. The t-difference operator D_{t} is defined by

$$
D_{t} g(\lambda):=\sum_{\substack{\lambda^{+} \geq t \lambda \\\left|\lambda^{+} / \lambda\right|=t}} g\left(\lambda^{+}\right)-g(\lambda) .
$$

- Example: $D_{3} g((3,1))=g((6,1))+g((3,1,1,1,1))+g((3,2,2))-g((3,1))$.

The t-difference operator for function of partitions

- A partition λ is called a t-core partition if it has no hook length t.
- We write $\lambda \geq_{t} \mu$ if μ is obtained by removing some t-hooks from λ.

$(18,7,6)$

- Let λ be a partition and g be a function defined on partitions. The t-difference operator D_{t} is defined by

$$
D_{t} g(\lambda):=\sum_{\substack{\lambda^{+} \geq_{t} \lambda \\\left|\lambda^{+} / \lambda\right|=t}} g\left(\lambda^{+}\right)-g(\lambda) .
$$

- Example: $D_{3} g((3,1))=g((6,1))+g((3,1,1,1,1))+g((3,2,2))-g((3,1))$.
- $g(\lambda)$ is a D_{t}-polynomial iff $D_{t}^{r+1} g(\lambda)=0$ for some r.
- A partition λ is called a t-core partition if it has no hook length t.
- We write $\lambda \geq_{t} \mu$ if μ is obtained by removing some t-hooks from λ.

$(18,7,6)$

- Let λ be a partition and g be a function defined on partitions. The t-difference operator D_{t} is defined by

$$
D_{t} g(\lambda):=\sum_{\substack{\lambda^{+} \geq t \lambda \\\left|\lambda^{+} / \lambda\right|=t}} g\left(\lambda^{+}\right)-g(\lambda) .
$$

- Example: $D_{3} g((3,1))=g((6,1))+g((3,1,1,1,1))+g((3,2,2))-g((3,1))$.
- $g(\lambda)$ is a D_{t}-polynomial iff $D_{t}^{r+1} g(\lambda)=0$ for some r.
- Question: which functions are D_{t}-polynomials?

Main Theorem (X. 2015, joint with Dehaye and Han)

Suppose that t is a positive integer, $u^{\prime}, v^{\prime}, j_{u}, j_{v}^{\prime}, k_{u}, k_{v}^{\prime}$ are nonnegative integers and μ is a given partition. Then for every $r>\sum_{u=1}^{u^{\prime}}\left(k_{u}+1\right)+\sum_{v=1}^{v^{\prime}} \frac{k_{v}^{\prime}+2}{2}$ we have

$$
D_{t}^{r}\left(\frac{1}{H_{t}(\lambda)}\left(\prod_{u=1}^{u^{\prime}} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv \pm j_{u}(\bmod t)}} h_{\square}^{2 k_{u}}\right)\left(\prod_{v=1}^{v^{\prime}} \sum_{\substack{\square \in \lambda \\ c_{\square} \equiv j_{v}^{\prime}(\bmod t)}} c_{\square}^{k_{v}^{\prime}}\right)\right)=0
$$

for every partition λ. Moreover,

$$
P(n):=\sum_{\substack{\lambda \geq t \mu \\|\lambda / \mu|=n t}} \frac{F_{\lambda / \mu}}{H_{t}(\lambda)}\left(\prod_{u=1}^{u^{\prime}} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv \pm j_{u}(\bmod t)}} h_{\square}^{2 k_{u}}\right)\left(\prod_{v=1}^{v^{\prime}} \sum_{\substack{\square \in \lambda \\ c_{\square} \equiv j_{v}^{\prime}(\bmod t)}} c_{\square}^{k_{\nu}^{\prime}}\right)
$$

is a polynomial of n with degree at most $\sum_{u=1}^{u^{\prime}}\left(k_{u}+1\right)+\sum_{v=1}^{v^{\prime}} \frac{k_{v}^{\prime}+2}{2}$.

The outline of the proof of the main results

Step 1: We construct some complicated sets $A_{k}(k \geq 0)$ of functions of partitions such that $g \in A_{k+1}$ implies $D_{t} g \in A_{k}$. Finally $D_{t}^{k+1} g=0$ if $g \in A_{k}$.

The outline of the proof of the main results

Step 1: We construct some complicated sets $A_{k}(k \geq 0)$ of functions of partitions such that $g \in A_{k+1}$ implies $D_{t} g \in A_{k}$. Finally $D_{t}^{k+1} g=0$ if $g \in A_{k}$.
Step 2 : Let k be a nonnegative integer and $0 \leq j \leq t-1$. Then

$$
\frac{1}{H_{t}(\lambda)}\left(\prod_{u=1}^{u^{\prime}} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv \pm j_{u}(\bmod t)}} h_{\square}^{2 k_{u}}\right)\left(\prod_{v=1}^{v^{\prime}} \sum_{\substack{\square \in \lambda \\ \square \equiv j_{v}^{\prime}(\bmod t)}} c_{\square}^{k_{v}^{\prime}}\right)
$$

is in the set A_{r-1} for some r.

The outline of the proof of the main results

Step 1: We construct some complicated sets $A_{k}(k \geq 0)$ of functions of partitions such that $g \in A_{k+1}$ implies $D_{t} g \in A_{k}$. Finally $D_{t}^{k+1} g=0$ if $g \in A_{k}$.

Step 2 : Let k be a nonnegative integer and $0 \leq j \leq t-1$. Then

$$
\frac{1}{H_{t}(\lambda)}\left(\prod_{u=1}^{u^{\prime}} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv \pm j_{u}(\bmod t)}} h_{\square}^{2 k_{u}}\right)\left(\prod_{v=1}^{v^{\prime}} \sum_{\substack{\square \in \lambda \\ \square \equiv j_{v}^{\prime}(\bmod t)}} c_{\square}^{k_{v}^{\prime}}\right)
$$

is in the set A_{r-1} for some r.
Step 3 : By the above two steps we know there exists some $r \in \mathbb{N}$ such that

$$
D_{t}^{r}\left(\frac{1}{H_{t}(\lambda)}\left(\prod_{u=1}^{u^{\prime}} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv \pm j_{u}(\bmod t)}} h_{\square}^{2 k_{u}}\right)\left(\prod_{v=1}^{v^{\prime}} \sum_{\substack{\square \in \lambda \\ c_{\square} \equiv j_{v}^{\prime}(\bmod t)}} c_{\square}^{k_{v}^{\prime}}\right)\right)=0
$$

for every partition λ.

- Let $\mu=\emptyset$ and $t=1$ in the main result. We derive the Han-Stanley Theorem.
- Let $\mu=\emptyset$ and $t=1$ in the main result. We derive the Han-Stanley Theorem.
- Other applications for the case $t=1$:

Corollary

$$
\frac{1}{(n+|\mu|)!} \sum_{|\lambda / \mu|=n} f_{\lambda} f_{\lambda / \mu}=\frac{1}{H(\mu)} .
$$

- The above identity can be given a combinatorial proof by using RSK algorithm.
- Let $\mu=\emptyset$ and $t=1$ in the main result. We derive the Han-Stanley Theorem.
- Other applications for the case $t=1$:

Corollary

$$
\frac{1}{(n+|\mu|)!} \sum_{|\lambda / \mu|=n} f_{\lambda} f_{\lambda / \mu}=\frac{1}{H(\mu)}
$$

- The above identity can be given a combinatorial proof by using RSK algorithm.

Corollary (Okada-Panova 2008)

$$
n!\sum_{|\lambda|=n} \frac{\sum_{\square \in \lambda} \prod_{i=1}^{r}\left(h_{\square}^{2}-i^{2}\right)}{H(\lambda)^{2}}=\frac{1}{2(r+1)^{2}}\binom{2 r}{r}\binom{2 r+2}{r+1} \prod_{j=0}^{r}(n-j) .
$$

Corollary (Fujii-Kanno-Moriyama-Okada 2008)

$$
n!\sum_{|\lambda|=n} \frac{\sum_{\square \in \lambda} \prod_{i=0}^{r-1}\left(c_{\square}^{2}-i^{2}\right)}{H(\lambda)^{2}}=\frac{(2 r)!}{(r+1)!^{2}} \prod_{j=0}^{r}(n-j) .
$$

- Corollaries of the main theorem for general t.

Corollary

Suppose that μ is a given t-core partition. Then we have

$$
\sum_{\substack{\lambda_{t-\text { core }=\mu}^{|\lambda / \mu|=n t}}} \frac{F_{\lambda / \mu}}{H_{t}(\lambda)} \sum_{\substack{\square \in \lambda \\ h_{\square} \equiv 0(\bmod t)}} h_{\square}^{2}=n t^{2}+3 t\binom{n}{2} .
$$

Furthermore,

$$
\sum_{\substack{\lambda_{t-c o r e}=\mu \\|\lambda / \mu|=n t}} \frac{F_{\lambda / \mu}}{H_{t}(\lambda)} \sum_{\square \in \lambda} h_{\square}^{2}=\frac{3 t^{2} n^{2}}{2}+\frac{n t\left(t^{2}-3 t-1+24|\mu|\right)}{6}+\sum_{\square \in \mu} h_{\square}^{2} .
$$

In particular, let $\mu=\emptyset$. We have

$$
\sum_{\substack{\lambda_{t}-\text { ore }=\emptyset \\|\lambda|=n t}} \frac{n!t^{n}}{H_{t}(\lambda)^{2}} \sum_{\square \in \lambda} h_{\square}^{2}=\frac{3 t^{2} n^{2}}{2}+\frac{n t\left(t^{2}-3 t-1\right)}{6} .
$$

- Motivated by Han's proof of Nekrasov-Okounkov Formula, Pétréolle obtained the following results.

Theorem (Pétréolle 2015)

For any complex number z, the following formulas hold:

$$
\begin{aligned}
& \left(\prod_{i \geq 1} \frac{\left(1-x^{2 i}\right)^{z+1}}{1-x^{i}}\right)^{2 z-1}=\sum_{\lambda \in S C} \delta_{\lambda} x^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{2 z}{h \varepsilon_{h}}\right) \\
& \prod_{k \geq 1}\left(1-x^{k}\right)^{2 z^{2}+z}=\sum_{\lambda \in D D} \delta_{\lambda} x^{|\lambda| / 2} \prod_{h \in \mathcal{H}(\lambda)}\left(1-\frac{2 z+2}{h \varepsilon_{h}}\right)
\end{aligned}
$$

where the sum is over all self-conjugate and doubled distinct partitions respectively.

Self-conjugate partitions

- self-conjugate partition: a partition whose Young diagram is symmetric along the main diagonal.
- $\mathcal{S C}$: the set of self-conjugate partitions.

Self-conjugate partitions

- self-conjugate partition: a partition whose Young diagram is symmetric along the main diagonal.
- $\mathcal{S C}$: the set of self-conjugate partitions.
- The t-difference operator $D_{t}^{\mathcal{S C}}$ for self-conjugate partitions is defined by

$$
D_{t}^{\mathcal{S C}} g(\lambda):=\sum_{\substack{\lambda^{+} \in \mathcal{S C}, \lambda^{+} \geq_{t} \lambda \\\left|\lambda^{+} / \lambda\right|=2 t}} g\left(\lambda^{+}\right)-g(\lambda) .
$$

Theorem (X. 2015, joint with Han)

Let $t=2 t^{\prime}$ be an even positive integer, μ be a given self-conjugate partition, and $u^{\prime}, v^{\prime}, j_{u}, j_{v}^{\prime}, k_{u}, k_{v}^{\prime}$ be nonnegative integers. Then we have

$$
P(n)=(2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{S C},|\lambda|=2 n t \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \frac{Q_{1}\left(h^{2}: h \in \mathcal{H}(\lambda)\right) Q_{2}(c: c \in \mathcal{C}(\lambda))}{H_{t}(\lambda)}
$$

is a polynomial in n for any symmetric functions Q_{1} and Q_{2}.

Self-conjugate partitions

Corollary (Pétréolle 2015)

Let $t=2 t^{\prime}$ be an even positive integer. Then

$$
\sum_{\substack{\lambda \in \mathcal{S C},|\lambda|=2 n t \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \frac{1}{H_{t}(\lambda)}=\frac{1}{(2 t)^{n} n!} .
$$

Corollary

Let $t=2 t^{\prime}$ be an even positive integer. We have

$$
\begin{aligned}
& (2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{S C},|\lambda|=2 n t \\
\# \mathcal{H}_{t}(\lambda)=2 n}} \frac{1}{H_{t}(\lambda)} \sum_{n \in \mathcal{H}(\lambda)} h^{2}=6 t^{2} n^{2}+\frac{1}{3}\left(t^{2}-6 t-1\right) t n, \\
& (2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{S C},|\lambda|=2 n t \\
\# \mathcal{H}_{t}(\lambda)=2 n}} \frac{1}{H_{t}(\lambda)} \sum_{c \in \mathcal{C}(\lambda)} c^{2}=2 t^{2} n^{2}+\frac{1}{3}\left(t^{2}-6 t-1\right) t n .
\end{aligned}
$$

Doubled distinct partitions and strict partitions

- A strict partition (bar partition) is a finite strict decreasing sequence of positive integers $\bar{\lambda}=\left(\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{\ell}\right)$.
- The doubled distinct partition $\psi(\bar{\lambda})$ of a strict partition $\bar{\lambda}$, is the usual partition whose Young diagram is obtained by adding $\bar{\lambda}_{i}$ boxes to the i-th column of the shifted Young diagram of $\bar{\lambda}$ for $1 \leq i \leq \ell(\bar{\lambda})$.
- For example, $(6,4,4,1,1)$ is the doubled distinct partition of $(5,2,1)$.

Figure: From strict partitions to doubled distinct partitions.

Doubled distinct partitions and strict partitions

- $\mathcal{D D}$: the set of doubled distinct partitions.
- The t-difference operator $D_{t}^{\mathcal{D} \mathcal{D}}$ for doubled distinct partitions is defined by

$$
D_{t}^{\mathcal{D} \mathcal{D}} g(\lambda)=\sum_{\substack{\lambda^{+} \in \mathcal{D} \mathcal{D}, \lambda^{+} \geq_{t} \lambda \\\left|\lambda^{+} / \lambda\right|=2 t}} g\left(\lambda^{+}\right)-g(\lambda)
$$

Doubled distinct partitions and strict partitions

- $\mathcal{D D}$: the set of doubled distinct partitions.
- The t-difference operator $D_{t}^{\mathcal{D} \mathcal{D}}$ for doubled distinct partitions is defined by

$$
D_{t}^{\mathcal{D} \mathcal{D}} g(\lambda)=\sum_{\substack{\lambda^{+} \in \mathcal{D} \mathcal{D}, \lambda^{+} \geq_{t} \lambda \\\left|\lambda^{+} / \lambda\right|=2 t}} g\left(\lambda^{+}\right)-g(\lambda)
$$

Theorem (X. 2015, joint with Han)

Let $t=2 t^{\prime}+1$ be an odd positive integer. The following summation for the positive integer n

$$
(2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{D} \mathcal{D},|\lambda|=2 n t \\ \# \mathcal{H}_{t}(\lambda)=2 n}} \frac{Q_{1}\left(h^{2}: h \in \mathcal{H}(\lambda)\right) Q_{2}(c: c \in \mathcal{C}(\lambda))}{H_{t}(\lambda)}
$$

is a polynomial in n for any symmetric functions Q_{1} and Q_{2}.

Doubled distinct partitions and strict partitions

Corollary (Pétréolle 2015)

Let $t=2 t^{\prime}+1$ be an odd positive integer. Then

$$
\sum_{\substack{\lambda \in \mathcal{D} \mathcal{D},|\lambda|=2 n t}} \frac{1}{H_{t}(\lambda)}=\frac{1}{(2 t)^{n} n!}
$$

Corollary

Let $t=2 t^{\prime}+1$ be an odd positive integer. We have

$$
\begin{aligned}
& (2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{D} \mathcal{D},|\lambda|=2 n t \\
\# \mathcal{H}_{t}(\lambda)=2 n}} \frac{1}{H_{t}(\lambda)} \sum_{n \in \mathcal{H}(\lambda)} h^{2}=6 t^{2} n^{2}+\frac{1}{3}\left(t^{2}-6 t+2\right) t n, \\
& (2 t)^{n} n!\sum_{\substack{\lambda \in \mathcal{D} \mathcal{D},|\lambda|=2 n t \\
\# \mathcal{H}_{t}(\lambda)=2 n}} \frac{1}{H_{t}(\lambda)} \sum_{c \in \mathcal{C}(\lambda)} c^{2}=2 t^{2} n^{2}+\frac{1}{3}\left(t^{2}-6 t+2\right) t n .
\end{aligned}
$$

Doubled distinct partitions and strict partitions

Corollary

Let Q be a given symmetric function, and $\bar{\mu}$ be a given strict partition. Then

$$
P(n)=\sum_{|\bar{\lambda} / \bar{\mu}|=n} \frac{2^{|\bar{\lambda}|-|\bar{\mu}|-\ell(\bar{\lambda})+\ell(\bar{\mu}) \bar{f}_{\bar{\lambda} / \bar{\mu}}}}{\bar{H}(\bar{\lambda})} Q\left(\binom{\bar{c}_{\square}}{2}: \square \in \bar{\lambda}\right)
$$

is a polynomial of n. In particular,

$$
\sum_{|\bar{\lambda} / \bar{\mu}|=n} \frac{2^{|\bar{\lambda}|-|\bar{\mu}|-\ell(\bar{\lambda})+\ell(\bar{\mu})} \bar{f}_{\bar{\lambda} / \bar{\mu}} \bar{H}(\bar{\mu})}{\bar{H}(\bar{\lambda})}\left(\sum_{\square \in \bar{\lambda}}\binom{\bar{c}_{\square}}{2}-\sum_{\square \in \bar{\mu}}\binom{\bar{c}_{\square}}{2}\right)=\binom{n}{2}+n|\bar{\mu}| .
$$

Corollary

Suppose that k is a given nonnegative integer. Then

$$
\sum_{|\bar{\lambda}|=n} \frac{2^{|\bar{\lambda}|-\ell(\bar{\lambda})} \bar{f}_{\bar{\lambda}}}{\bar{H}(\bar{\lambda})} \sum_{\square \in \bar{\lambda}}\binom{\bar{c} \square+k-1}{2 k}=\frac{2^{k}}{(k+1)!}\binom{n}{k+1} .
$$

Thank You for Listening!

