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CONWAY GROUPOIDS, REGULAR TWO-GRAPHS AND SUPERSIMPLE
DESIGNS

NICK GILL, NEIL I. GILLESPIE, CHERYL E. PRAEGER, AND JASON SEMERARO

ABSTRACT. A 2-(n,4,\) design (9, B) is said to be supersimple if distinct lines intersect in
at most two points. From such a design, one can construct a certain subset of Sym(2) called
a “Conway groupoid”. The construction generalizes Conway’s construction of the groupoid
Mjis. One would like to classify all of the Conway groupoids constructed using supersimple
designs. In this paper we classify a particular subclass, consisting of those groupoids which
satisfy two additional properties: Firstly the set of collinear point-triples forms a regular
two-graph, and secondly the symmetric difference of two intersecting lines is again a line.
The proof uses Hall’s work on 3-transposition groups of symplectic type, and Seidel’s work
on graphs that satisfy the triangle property.

1. INTRODUCTION

In his famous paper [Con97], John Conway used a “game” played on the projective plane
P53 of order 3 to construct the sporadic Mathieu group My, as well as a special subset of
Sym(13) which he called M;3, and which could be endowed with the structure of a groupoid.

In recent work ([GGNST6l (GGS17]), Conway’s construction has been generalized to geome-
tries other than P3, namely to supersimple 2-(n,4, A) designs. In this more general context,
the analogue of M3 is a subset of Sym(n) that is known as a Conway groupoid. The aim
of this paper is to classify an infinite family of Conway groupoids with the remarkable prop-
erty that they are subgroups of Sym(n). They also have links to regular two-graphs and to
3-transposition groups.

In order to state our main results, we briefly review the definition of a Conway groupoid
(full definitions and background can be found in §2): we start with a design D = (Q,B)
consisting of a set €2 of points and a set B of blocks, which are subsets of €2 of size 4. We
call two points collinear if there is a block containing both of them. Assume moreover that
distinct blocks intersect in at most 2 points. Then for each pair of collinear points {a, b}, we
define a unique permutation [a,b] of 2 as the product of the 2-cycle (a,b) with all 2-cycles
(¢,d) for which {a,b,c,d} € B. For any path ay,...,a, in the collinearity graph of D, we
define the permutation

[a07 ai, @z, ... 7ak] = [a07 al][a'b a2] e [ak—b ak]-

It is called a move sequence starting at ag and ending at a,,. Let oo € 2. Then the Conway
groupoid at oo is the sub-groupoid of Sym(f2) generated by all move sequences starting at
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oofl
(1.1) Loo(D) :={[c0,a1,a9,...,a;) | k € Z*, ay,...,ar € Q} C Sym(Q).

The hole-stabilizer at oo is the sub-groupoid generated by all move sequences starting and
ending at oo:

(1.2) Too(D) :={[00, a1, a9,...,ap_1,00| | k € Z*, ay,...,ap_1 € N}.

Notice that a hole-stabilizer is a subgroup of Sym(2). Moreover, if the collinearity graph of
D is connected, then all hole-stabilizers are conjugate subgroups of Sym(£2).

In this paper we consider the special case where the design D is a 2-(n,4,\) design (as
defined in ; such designs with the property that two blocks meeting in at least 3 points
are equal are called supersimple.

By way of example, if we consider, as Conway did, the (supersimple) design of points and
lines of the projective plane P3, then we obtain L (P3) = M3 and 7 (P3) = Mjs. In the
search for other interesting Conway groupoids, two particularly interesting phenomena have
arisen: firstly, it turns out that the Conway groupoid L., (D) is sometimes not just a subset
of Sym(£2), but a subgroup; secondly, by considering the set of collinear point-triples of D,
one can sometimes associate with D the structure of a regular two-graph (see Definition E|
It turns out that these two properties, both separately and together, correspond to certain
additional properties of the Conway groupoid, as our first main result makes clear.

Theorem A. Let D = (2, B) be a supersimple 2-(n,4, \) design with n > 2\ + 2, and let C
denote the set of all collinear triples of elements in ). Let oo € Q and define G := L.(D).
Then the following hold:

(a) If G is a group then G is primitive on €.

(b) If (£2,C) is a regular two-graph then mo (D) is transitive on 2\ {oo}.

(c) If (2,C) is a regular two-graph and G is a group then m(D) is primitive on Q\ {oo}.

We remark that the condition n > 2\ + 2 is stated only for convenience. Any 2-(n,4,\)
design automatically satisfies n > 2\ + 2 by an elementary counting argument; furthermore
full information concerning the Conway groupoids corresponding to supersimple 2-(n, 4, \)
designs with n = 2\ + 2 is given by Lemma [2.8]

Our other main results concern Conway groupoids satisfying the conditions in part (b),
together with the following additional property on the supersimple design D = (Q, B):

(D) if By, By € B such that |B; N By| = 2, then By A By € B,

where By /A By denotes the symmetric difference of the lines By and Bs. (Observe that the
condition |By N By| = 2 implies that |B; A By| = 4.) Our next result gives a classification of
such groupoids. Its statement refers to elementary moves defined in (2.1)), and also mentions
3-transposition groups, which are defined in Definition [2.10}

n this paper we do not need to consider the groupoid structure of Loo(D) and will just think of that
object as a subset of Sym(€2). For discussion of L., (D) as a groupoid see, for instance, [GGS17, §2.2].

2 According to the first sentence of [Tay77], “regular two-graphs were introduced by G. Higman in his Oxford
lectures as a means of studying Conway’s sporadic simple group -3 in its doubly transitive representation of
degree 276.”
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Theorem B. Let D = (Q,B) be a supersimple 2-(n,4, ) design that satisfies (4), and let
E be the set of elementary moves on D. Let C be the set of collinear triples in B and suppose
that (2,C) is a reqular two-graph. Then, for co € Q, (Lo(D), &) is a 3-transposition group
and, for some positive integer m, one of the following holds:

(a) n=2" and L(D) = (F2)™;

(b) n = 22" and L.(D) = 2™.Sp,,,(2);
() n=2""12" £ 1) and Lo(D) = Sp,,,(2).

Our proof of Theorem B is independent of the Classification of Finite Simple Groups
(CFSG); let us briefly explain our approach: we remarked above that, when n = 2\ + 2,
Lemma gives full information and, in particular, it implies that Theorem B, part (a)
holds. In addition, one can prove fairly easily that the assumptions of Theorem B imply
that L£.(D) is a group (Lemma [2.6). For the situation where n > 2X + 2 we now apply
Theorem A, part (c) to conclude that L.,(D) is 2-primitive on €.

At this point, were we happy to use CFSG, we could invoke Taylor’s classification [Tay92]
of 2-transitive regular two-graphs. However we prefer to avoid reliance on CFSG, and instead
we apply Hall’s classification of finite 3-transposition groups of symplectic type [Hal89]; this
is done in §4

It is natural to ask at this point whether all of the possibilities for L. (D) that are listed
in Theorem B can occur. The answer to this question is “yes” and we now present three
families of designs that demonstrate this. These families will also be of central importance
in our final major result, Theorem C, below.

Example 1.1. The Boolean quadruple system of order 2™, where m > 2, is the design
Db = (2%, B%) such that Q° is identified with the set of vectors in FJ', and

4
B® = {{vy, vy, v3,04} | v; € Q° and Zvi = 0}.
i=1

Equivalently, we can define

B ={v+W|ve QW <Fy, dim(W) = 2};
that is, B® is the set of all affine subplanes of Q°. It is easy to see that D’ is both a supersim-
ple 2-(2™,4,2™~1 — 1) design and a 3-(2™,4, 1) Steiner quadruple system; in particular the
collinear triples of D’ form the lines of a regular two-graph. Moreover, D° satisfies property

(4] (see Lemma [2.8). In what follows, we will often make statements like “D is a Boolean
system” to mean that D is a Boolean quadruple system of order 2™ for some integer m > 2.

To describe the other two families, we need the following set-up: Let m > 2 and V :=
(F2)*™ be a vector space equipped with the standard basis. Define

(1.3) e = <Om Om)’ f= (Im 0m> =e+te,

where I,,, and 0, represent the m x m identity and zero matrices respectively. Write elements
of V as row vectors and define ¢(u, v) as the alternating bilinear form ¢(u, v) := ufv’. Also,
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write 0(u) := ueu®l € Fy, so that 6 is a quadratic form that polarizes to give ¢, i.e.,
O(u+v) 4+ 0(u) + 0(v) = p(u,v).

(Note that the left-hand side equals uev” + veu” while the right-hand side is u(e + e”)vT.)
Finally, for each v € V define ,(u) := 0(u) + ¢(u,v). Note that, for each v € V, the polar
form of 6, is ¢; note too that 6y = 6.

Example 1.2. Let D* = (Q% B*), where Q% := V and

4 4
B := {{v1,va,v3,v4} | v1, 02, 03,04 € Q°, Zvi =0, ZH(UZ») =0}.
i=1 i=1

It is straightforward to check that D is a supersimple 2-(22™, 4,222 —1) design; in addition,
we prove in Lemma that D® satisfies property (A) and its collinear triples form the
lines of a regular two-graph. Finally, by [GGSI7, Theorem B], L, (D) = 2™ Sp,, . (2),
while 7. (D*) = Sp,,,(2). Indeed, taking oo to be the zero vector in V, it turns out that
Too(D*) = Isom(V, ¢), the isometry group of the formed space (V, ¢).

Example 1.3. Let V be a 2m-dimensional vector space over Fy and let Q¥ : V — F, be a
non-degenerate quadratic form of type €' (for ¢ = 4) which polarizes to the non-degenerate
alternating form ¢ on V. Write e = (1 — £’.1)/2 and define

C={veV|Q (W) =¢ck
4
B&‘ - {{Ula V9, U3, U4} | V1, V2, U3, Vg S QE? Z U; = O}
i=1
Now we define D* = (9, B%). One can check that D¢ is a supersimple 2-(f(m), 4, f(m—1)—1)
design, where f(m) = 2""1(2™ 4+ ¢£.1); in addition, we prove in Lemma [2.9| that D* satisfies
property @ and its collinear triples form the lines of a regular two-graph. Finally, by
[GGST7, Theorem BJ, Loo(DF) = Spy,,(2), the isometry group of ¢, while 7. (D°) = 03, (2).
In fact, the result in [GGSI17, Theorem B] uses a slightly different definition of °. This
definition requires that we view the integer ¢, defined above as either 0 or 1, to be an element
of F5. Now our alternative definition is that

Q={0,|veV, 0v) =c}

To see that these two definitions are equivalent, one must prove that the quadratic form 6,
is of type ¢’ if and only if §(v) = . This is an easy exercise.

The existence of these three families of designs confirms that the possibilities listed in
Theorem B really occur. Our final main result asserts that, in fact, the examples just given
are the only designs that satisfy the assumptions of Theorem B.

Theorem C. Let D = (Q,B) be a supersimple 2-(n,4,\) design that satisfies (A). Let C be
the set of collinear triples in B and suppose that (Q,C) is a regular two-graph. Then D is

isomorphic to one of the designs D°, D* or D* given in Examples and (1.3,
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Our proof of Theorem C is entirely independent of Theorem B; indeed the whole approach
to the proof is different from that for Theorem B because we use the theory of polar spaces.
More precisely, we prove in Proposition that, for any point co € 2, the assumptions of
Theorem B (along with the condition n > 2\ + 2) imply that (2\{oco},Cx) is a polar space
in the sense of Buekenhout—Shult. (Here C, is the set of all triples of points in Q\{oco} which
occur in a line with oo.) In fact, the polar space (2\{oco},C) has the extra property that
all lines in the space contain exactly three points. Such polar spaces were characterized in a
special case by Shult [Shu72] and then later, in full generality, by Seidel [Sei73][] We use the
result of Seidel in §5| to give a fairly short proof of Theorem C; our presentation of Seidel’s
result in that section (Theorem [5.4]) is couched in graph-theoretic terminology.

It is natural to ask about the connection between Theorems B and C. Although the two
proofs given in this paper are independent of one another, the two theorems are in fact equiv-
alent. That Theorem C implies Theorem B is an easy consequence of [GGS17, Theorem B];
the reverse implication is slightly more difficult and is not presented here.

We have chosen to give two proofs because we believe that the different approaches (one
algebraic, one geometric) shed complementary light on the set-up being studied here. What
is more, while a proof of Theorem B that goes via Theorem C appears somewhat shorter,
an approach which goes via Theorem A (and hence a group-theoretic analysis of L..(D)) is
likely to be applicable in more general contexts (see Question below).

1.1. Context and open problems. As we mentioned above, the study of Conway
groupoids was inspired by Conway’s construction of M3 in [Con97]. This was generalized in
[GGNSI16] to the context of supersimple 2-(n,4, \) designs, and a classification programme
for such groupoids was initiated in that paper and continued in [GGS17]. Theorems B and
C may be regarded as contributions to this programme. With this classification problem in
mind, several questions arise.

Question 1.4. Can Theorems B and C be extended to cover the situation where (A) does
not hold?

Our proofs of Theorems B and C rely on work of Hall (on 3-transposition groups of sym-
plectic type) and Seidel (on graphs that satisfy the triangle property). Hall’s result holds
for infinite 3-transposition groups, and versions of Seidel’s result hold in the infinite setting.
In addition, the examples of groups and designs that appear in Theorems B and C all have
infinite analogues and geometric descriptions [CJP93] [CP93].

Question 1.5. Can Theorems B and C be extended to include infinite balanced incomplete
block designs?

Our current state of knowledge about Conway groupoids suggests that M3 is particularly
special. To see this, we define a Conway groupoid L., (D) associated to a supersimple design
D to be exotic if L(D) is not a group and 7 (D) is primitive. Thus M3 is exotic, and

3Note that [Sei73] is an internal university report; it can be accessed in the volume of Seidel’s selected
works [Sei91].
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[GGS17, Theorem D] gives strong bounds on the possible parameters of a design D for which
L (D) is exotic.

Question 1.6. [s M3 the only exotic Conway groupoid?

More broadly, we ask whether structures other than supersimple designs could be used to
construct Conway groupoids.

Question 1.7. Are there alternative combinatorial structures which can be used to define
interesting groupoids?

In [GGPSI17], the authors address Question via a concept we call a pliable function;
full details can be found in §5.1 of that paper. It is possible of course that Question may
admit many different, interesting answers.

1.2. Structure of the paper. In §2)we present background definitions and results concern-
ing block designs, two-graphs, Conway groupoids and 3-transposition groups. We also prove
that the designs presented in Examples satisfy the assumptions of Theorems B and
C. In §3| we prove Theorem A; in §4| we prove Theorem B, and in we prove Theorem C. E]

1.3. Acknowledgments. The authors would like to thank Dr. Ben Fairbairn and Dr. Justin
Meclnroy for their helpful comments. The last author would especially like to thank the
University of Western Australia for its hospitality and for helping to finance a three week
visit in April 2015.

Finally, all four authors would like to thank the three anonymous referees. Their tremen-
dously insightful comments and suggestions have improved the paper enormously, and we
are very grateful to them all.

2. BACKGROUND

2.1. Block designs and two-graphs. For positive integers ¢, k,n, A such that t < k < n,
a t-(n, k, \) design (£2, B) consists of a finite set € of size n, whose elements are called the
points of the design, together with a finite set B of subsets of €2 each of size k (called lines),
such that any subset of ) of size t is contained in exactly A lines.

Definition 2.1. A 2-(n,4, \) design (€2, B) is supersimple if any two lines intersect in at most
two points.

Definition 2.2. A 2-(n, 3, ) design (£2,C) is a regular two-graph if for any 4-subset X of Q,
either 0,2 or 4 of the 3-subsets of X lie in C. A subset X of Q is coherent if every 3-subset
of X lies in C.

We note that each point of a 2-(n, 3, 1) regular two-graph (2, C) is contained in p(n—1)/2
triples in C. The following result is [Tay77, Proposition 3.1].

4We note that this structure is different from an earlier version [GGPS] of this paper. This earlier version is
available on the math arXiv, and references to the current paper in the survey paper [GGPS17] use numbering
from the earlier arXiv version.
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Lemma 2.3. Let (2,C) be a 2-(n, 3, ) reqular two-graph. Then there is a constant s such that
each element of C is contained in exactly s coherent 4-subsets of (). Moreover, n = 3u — 2s.

Corollary 2.4. Let D = (2,B) be a supersimple 2-(n,4,\) design such that (Q,C) is a
reqular two-graph, where C is the set of collinear triples of D. Then n = 6\ — 2s where s is
the number of coherent 4-subsets of ) containing a given element of C. In particular, n is
even.

Proof. Observe that (£2,C) is a 2-(n,3,2A) design, and hence the result follows from
Lemma 2.3 O

2.2. Moves and groupoids. Let D be a supersimple 2-(n, 4, A) design. For distinct a,b € €2,
the pair {a,b} lies in A lines {a, b, a;, b;} and we associate with {a, b} the elementary move
A
(2.1) [a,b] = (a,b) | | (@i, b;),
i=1
which is a permutation in Sym(2); we also set [a,a] = 1, the identity permutation, for each
a € (). Note that the right-hand side of is independent of the ordering of the lines,
since the ‘supersimple’ condition means that {a;, b;} is disjoint from {a;, b;} for i # j. Recall
the definition of a move sequence [z, x1, ..., x| := [zo, x1] - [v1, 2] - - - [Tx_1, x|. For a point
oo € B, we are interested in the following three subsets of Sym(2):
(a) L(D), the set of all move sequences;
(b) Loo(D), the set of all move sequences starting at oo, called the Conway groupoid of
D; and
(¢) Too(D), the set of all move sequences which start and end at oo, called the hole-
stabilizer of D.

Similarly we define £,(D) and 7,(D) for arbitrary z € 2. We remark that 7 (D) is a
subgroup of Sym(n — 1), and is permutationally isomorphic to 7, (D) for each x (so we
may refer to it as the hole-stabilizer of D). Similarly, the isomorphism type of L. (D) as a
groupoid does not depend on the choice of co. See [GGS1T, §2.2] for more discussion. Finally,
for distinct x,y € (), we write

(2.2) 7,y = {z € Q| there exists £ € B such that x,y, z € (}

and note in particular that 7,7 contains x and y. The next result is a simple observation
and we omit the proof. Note that the union given in part (a) is in fact a disjoint union.

Lemma 2.5. Let D be a supersimple 2-(n,4, \) design. The following hold:

(a) L(D) = U eq Too(D) - [00, 2] (a disjoint union);

(b) Mee(D) = ([00, 2,y,00] | z,y € Q).
Lemma 2.6. Let D be a supersimple 2-(n, 4, \) design. Fiz oo €  and define G := L(D).
The following are equivalent:

(a) G is a group;
(b) G = L(D) = ([a,b] | a,b € Q);
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(¢) L(D) = L,(D) for all x € S.
Furthermore, if one (and therefore all) of these conditions hold, then G is transitive on )
and stabg(00) = Too (D).

Proof. Write H := ([a,b] | a,b € Q) and note that G C L(D) C H.

(a) implies (c): Note that [a,b] = [00,a] - [00,a,b], and so [a,b] € G since G is a group.
Hence H C G and so H = L(D) = G as required.

(b) implies (c):  Observe that, for each x € 2, we have £,(D) C H = G, and each
move sequence [z, Ty, ..., T = [z, 00][00, x, Ta, ..., xk], S0 |L.(D)| = |[x, 0] - G| = |G|. Thus
L,(D) =G = L(D), and (c) follows.

(c) implies (a):  Let g,h € G and recall that G = L(D); let x be the last element
of 2 in a move sequence corresponding to g. Now by (c) there exist y; € Q such that
h =lz,y1,y2...,u). Hence g-h € G and G is closed under composition. Since G is finite
this implies that G is a group.

To prove the final statement, suppose that G is a group. Now 7 (D) clearly fixes oo
and so is a subgroup of stabg(oco). Thus the length of the G-orbit containing co, namely
|G : stabg(oo)], divides the index |G : mw(D)|. However, by Lemma (a), the index
of (D) in G is equal to |Q2]. It follows that G is transitive and stabg(oo) = moo(D), as
required. 0]

Lemma 2.7. For a supersimple 2-(n,4, \) design D, the following are equivalent:
(a) for all a,b,c,d € Q, [a,b]l*¥ = [alod pled)];

(b) for all a,b,c € Q, [a,b]>] = [al ¢];

(c) for all a,b,c € Q, [b,c] = [a,b,c,a];

(d) for all 0 € Q, Loo(D) is a group of automorphisms of D.

Proof. First we show that conditions (b) and (c) are equivalent. Writing [a,b]® =
[b, c][a, b][b, c], we see that condition (b) for a,b,c is equivalent to [b,c] = [a,b][b, c][a®, c].
On the other hand, by the definition of a move sequence,

[a,b, ¢, ™) = [a, b][b, d][c, ] = [a, ] [b, ][a®, ]

and hence condition (c) for a, b, c is also equivalent to [b, c] = [a, b][b, ¢][al®?, ¢]. Thus condi-
tions (b) and (c) are equivalent.

Next, if condition (a) holds, then taking (a, b, ¢, d) in this condition as (a, b, b, ¢) and noting
that bl = ¢, we obtain condition (b) for a,b,c. Thus condition (a) implies condition (b).
Now assume that the equivalent conditions (b) and (c) hold, and let a,b,c,d € . Note that
[c,d] = [b,c,d,bl>U]. Then using this and several applications of condition (b) yields

[CL7 b] [e,d] [a7 b} [b,d][c,d][d,ble) _ [a[c,d], b[c,d]].

Next, we show that conditions (a), (b) and (c¢) imply condition (d). First, we show that
L+ (D) is group. To achieve this, we prove by induction on k that each move sequence of
length k£ can be written as a move sequence starting from any given point = of €2 and apply
Lemma 2.6 The identity element is equal to [z,z] by convention, and it follows from (c)
that each elementary move [a1, as] may be represented by a move sequence starting with x.
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Thus the assertion is true for k£ < 2. Suppose that k£ > 2 and the assertion holds for all move
sequences of length less than k, and consider g = [z1,9,...,2;] and a given point z. By
induction, there exist yi,yo...,y; € Q and 21, 25 ..., 2, € () such that

[z1, 0] =[x, y1,y2 ..., y] and [xo, ..., 2k] = [U1, 21, - -, 2]
Composing these two move sequences yields the required expression for g.

Lastly, suppose that {a, b, c,d} is a line of D, and let g € G. Then g is a move sequence,
and condition (a) applied several times implies that [a, b9 = [a%, b9]. Then, since (¢, d) is a
2-cycle in the elementary move [a,b], it follows that (¢9,d?) is a 2-cycle in the elementary
move [a?, b9]. Therefore, {a% b%,c9,d%} is a line of D. Thus g € Aut(D), as needed.

Finally we show that condition (d) implies condition (a). Note, first, that if L(D) is a
group, then Lemma implies that [c,d] € L(D) for all ¢,d € Q. Thus, by supposition,
[c, d] is an automorphism of D. Let a,b € 2 and write

[a,b] = (a,b) (@1, y1) (22, 92) - - - (Tr, Y2,
where {a,b, z;,y;} are lines in D for i = 1,...,\. Now write o’ = al*¥, b = pled 2/ =
and y; = yl[c’d] fori = 1,...,\. Now one obtains that [al*? bl*d] = [¢/,¥]. Since [c,d] is an
automorphism of D one obtains that {da’, ¥, 2}, y.} is a line of D for i = 1,...,\ and so
@', U] = (a',0) (2, y1) (23, 43) - -~ (2, 9,
which is clearly equal to [a, b]l“¥ as required. O

JZEQd]

2.3. Examples. In this section we prove that the three families of designs discussed in

Examples [I.1], [[.2] and [1.3] satisfy the hypotheses of Theorems B and C.

Lemma 2.8. Let D = (2,B) be a supersimple 2-(n,4,\) design with n = 2\ + 2. The
following conditions are equivalent:

(a) D satisfies (A);

(b) D = D*, a Boolean quadruple system of order 2™ for some integer m > 2;

(¢) Too(D) = {1} and L (D) is elementary-abelian of order 2™ for some integer m = 2.
In addition, if any of the above conditions hold, then (€0,C) is the complete reqular two-graph,
where C is the set of collinear triples of D.

Proof. Let us prove that (b) implies (a): consider intersecting lines {vy,vq,vs,v4} and
{v1,v9,v5,06} in B®. By definition
’U1+1)2+U3+U4 :U1+U2+U5+Uﬁ :0
This implies that
V1 + Vg = V3 + Vg = Vs + Vg
and we conclude immediately that vz + vy + v5 + v5 = 0. In other words {vs, v4, vs,v6} € B,
so Db satisfies @

To see that (b) implies (c), simply observe that, for v € V = Q° the elementary move
[0,v] is equal to the translation ¢, : V' — V, w — w + v. This implies that for co = 0,

Loo(D)=(t, |veV)=(V,4),
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an elementary-abelian group of order 2. Then, 7, (D) is a subgroup of L, (D) that fixes
oo = 0, and so is trivial.

That (c) implies (b) is a consequence of [GGNS16, Theorem B], thus we must prove that
(a) implies (b). Since n = 2X 4+ 2 and D is supersimple, D is a 3-(n,4,1) design. Define a
commutative binary operation % on €2 by setting a % a := oo and a *x co = 00 * a = a, for all
a € €2, and, for distinct a,b € Q \ {0},

a*b:=c, where cis the unique point such that {co,a,b,c} € B.

Now, if for distinct non-collinear a,b,c € Q\{oo} we have {oo,a,b,d},{c0,b,c, e},
{00, a,e,z} € B, then

({o0,a,b,d} A {o0,b,c,e}) A {o0,a,e,x} ={oc0,c,d,x} € B
and hence
ax(bxc)=axe=x=dxc=(axb)x*c.
On the other hand, if a,b,c € Q\ {co} are collinear, then
a*x(bxc)=axa=o00=cxc=(ax*xb)xc.

It is easy to verify that a * (b* c) = (a % b) % ¢ also holds if a, b, c are not pairwise distinct
or if oo € {a,b,c}. Thus * is associative, and it follows that (£2,%) is an abelian group of
exponent 2, and hence is isomorphic to (Fy*, +) for some integer m > 2.

Now, observe that a * b * ¢ * d = oo if and only if a x b = ¢ * d if and only if there exists
z € Q such that {a,b,z,00} and {c,d,z, 00} are lines. But now (4] implies that {a,b,c,d}
is a line; conversely {a,b,c,d} a line implies that a *x b * ¢ x d = 0o, and we conclude that
D = D' is a Boolean quadruple system, as required.

For the final statement note that an immediate consequence of the definition of a Boolean
quadruple system is that it is a 3-(2%,4, 1) design. Thus C contains all triples in  and (€, C)
is the complete regular two-graph. O

The fact that (2*,C*) and (¢, C?) are also regular two-graphs goes back to Taylor [Tay92].
We give a self-contained proof here for the convenience of the reader.

Lemma 2.9. Each design D in Example or satisfies (A) and the set C of
collinear triples in D forms a regular two-graph.  Furthermore, (Lo(D?), Too(D®)) =

(257 Doy (2), SPon (2)) and (Loo(D*), Teo(D7)) = (SP2n(2), 05, (2)).

Proof. Recall that ¢ : V x V — [Fy is a particular nondegenerate alternating form, and
define p: V x V xV — Fy by (a,b,c) — ¢(a,b) + ¢(a,c) + ¢(b, ¢). Observe that the lines
{v1,v9,v3,v4} in D are precisely those 4-subsets of  for which Z?zl v; = 0and p(a,b,c) =0
for one (and hence any) 3-subset {a,b,c} of {vy,ve,v3,v4}. Observe further that the lines in
D¢ are precisely the lines {vy, vg, v3,v4} in D* with the property that y(v;) = ¢ for 1 < i < 4.
Since
pla,b,¢) + pla, b, d) + pla, ¢, d) + p(b, ¢, d) = 0

for any four points a,b,c,d € €1, we conclude immediately that an even number of the
3-subsets of {a, b, c,d} lies in C, and hence (2,C) is a regular two-graph.
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To prove @, consider intersecting lines {vy, vo, v3,v4} and {wvy,ve, v5,v6} in B. By defini-
tion
(23) U1+1)2+U3+U4:'U1+U2+’U5+U6:O,

so that
U3+U4+’U5+U6:0

We check that p(vs, vg,v5) = 0 from which it follows that {vs, vy, vs,v6} € B.

p(v3,v4,05) = @(v3,v4) + ©(v3,V5) + ©(v4, V5) (definition of p)
= (v3,v4) + @(v3,v5) + @©(v1 + Vg + v3, v5) (by [2-3))
= ¢(vs, v4) + p(v1,v5) + @(v2, 5) (bilinearity of ¢)
= ¢(vs3,v4) + ©(v1,02) (since p(vy, va,v5) = 0)
= p(vs,v1 + V2 + v3) + (v, V2) (by (2 )
= p(v1,v2) + @(v1,v3) + p(v2,v3) = 0, (since p(v3,v3) = p(v1,v2,v3) = 0)

as needed. The last assertion is a consequence of [GGS17, Theorem BJ. U

2.4. 3-transposition groups. We will need a number of results concerning 3-transposition
groups; we gather these together below.

Definition 2.10. A 3-transposition group is a pair (G, ), where G is a group, £ is a set of
involutions in G and the following conditions hold:

(a) G =(&); and

(b) £ is a union of G-conjugacy classes of involutions;

(c) for all g, h € €, gh has order 1,2 or 3.

Elements of the set £ are called 3-transpositions. The pair (G,€) is called a finite 3-
transposition group if the group G is finite.

The following special kind of 3-transpositions were introduced and studied by J. I. Hall in
[Hal89).

Definition 2.11. A class of 3-transpositions is said to be of symplectic type if the following
condition holds for all g1, g2, g5 € &:

If 0(g192) = 0(g193) = 0(g293) = 3, then (g1, g2, g3) = Sym(3) or Sym(4).

We need a result of Hall [Hal89, Theorem 1], which we state for finite groups (see Hall’s
comments about the finite case on [Hal89, Section 3, especially page 118]; note that in the
case of Sym(m), the transvections are transpositions and the natural module is the deleted
permutation module).

Theorem 2.12 (HALL). Let (G,€) be a finite group generated by a conjugacy class € of
3-transpositions of symplectic type. Then there is a split exact sequence

1-Q—G/Z(G) = G — 1.
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Here G* is isomorphic to a symmetric group Sym(m), an orthogonal group O3, (2) (with
e = =+), or a symplectic group Sp,,,(2). The elementary abelian 2-group Q is a direct sum
of natural modules for G*. The image of € in G/Z(G) is uniquely determined as the class
containing the transvections of any complement G* except when G is isomorphic to Sym(6).

3. PROOF OF THEOREM A

Throughout the section we assume the hypotheses of Theorem A, namely:
(a) (2, B) is a supersimple 2-(n,4, ) design with n > 2\ + 2;
(b) oo is an element of Q, and G := L (D).

We also write C for the set of all collinear triples in (2, B).

Proposition 3.1. Part (a) of Theorem A holds: if G is a group then G is a primitive
subgroup of Sym(£2).

Proof. Suppose that GG is a group. Then, by Lemma , G is a transitive subgroup of Sym(€2).
Suppose for a contradiction that G preserves a system of imprimitivity with m blocks of size
k, where m > 2.k > 2, and let A = {00, as,...,ar} be the block of imprimitivity that
contains 0o.

Since n > 2\ + 2 there exists y ¢ 50, az. Then ¢ := [00, y] fixes as, so g must fix A setwise,
and hence y = 00’ € A. It follows that every element in (2 \ 30, az) U {00, as} lies in A,
which implies that k£ > n—2A\. In particular the number of fixed points of g is n —2\—2 < k.

Now let b € Q\ A, so that the block of imprimitivity Ay containing b is distinct from A,
and consider h := [00,b]. Note that h interchanges A and A,. On the other hand, since
n > 2\ + 2 = | supp(h)|, h has a fixed point in 2, say ¢, and the block of imprimitivity As
containing c is fixed setwise by h and hence is distinct from A and A,. Since k = |A3] is
larger than the number of fixed points of h, it follows that supp(h) N Az contains a point,
say ¢, and since supp(h) = 00, b, the set £ := {c0,b,c,b'} is a line, where V' := >, Note
that b lies in the block Agoo’b] which is equal to Az. Now consider the elementary move
B = [00,b']. Since (oo, b’) is a 2-cycle of A’ the element A’ interchanges A and Ajz. However
since also (b, ') is a 2-cycle of ' (since £ is a line containing oo, b’) h’ should interchange Aj
and Ajz. This contradiction completes the proof. O

Proposition 3.2. Part (b) of Theorem A holds: if (2,C) is a regular two-graph then m. (D)
is transitive on Q \ {oo}.

Proof. Suppose that (£2,C) is a regular two-graph, and let a € Q\{oo}. We claim that
(3.1) 2\ +2 < |a™=P)|.

Since n > 2\ + 2, there exists b ¢ 30, a. Then aloeabodl — e (D) Tt is sufficient to prove
that a,b C a™ ™) for then follows from |a, b| = 2\ + 2. To see this, let ¢ € a,b\{a, b}.
Then, since (€2, C) is a regular two-graph, either co ¢ @, ¢ or co ¢ b, ¢ (but not both). Hence,
either [00, a, ¢, 00] or [00,b, ¢, 0] fixes oo and maps a to ¢, or b to ¢, respectively, whence
c € a™=P) Thus is proved.
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By (3.1]), each orbit of 7o (D) in Q\ {oo} has length at least 2\ + 2. Thus if n < 4\ + 4,

there is no space for two orbits and so 7. (D) is transitive on 2\ {oo}. We may therefore
assume that n > 4\ 4+ 4. Let a,b € €2 and observe that

|a;50 U b, 00| <220+ 2) — 1 =4X + 3,

so there exists w ¢ @, 50 U b, 00. Then [00, a, w, 00, w, b, 0] € T (D) and sends a to b. Thus
Too(D) is transitive on 2\ {oco} in this case also. O

Proposition 3.3. Part (c¢) of Theorem A holds: if C is a reqular two-graph and G is a group
then T.o (D) is primitive on Q \ {oco}.

Proof. Suppose that (£2,C) is a regular two-graph and that G is a group. By Proposition (3.2}
Too(D) is transitive on 2\ {oc}. Assume, for a contradiction, that m, (D) acts imprimitively
on '\ {oo} with m blocks of size k, where m > 2,k > 2, and n—1 = mk. Let a,b € Q\ {oc0}
lie in the same block of imprimitivity, say A.

Suppose first that oo ¢ a,b. Choose ¢ € a,b so that there exists a line {a, b, c,d} € B for
some d € Q\ {oco}. We claim that ¢ € A. Consider the set of points {oc0, a,b,d}. Since (2,C)
is a regular two-graph, exactly one of a,b lies in 0o, d. By interchanging the roles of a and b
if necessary, we may assume that a € oo, d and b ¢ oo, d. Then, considering the set of points
{00, b,c,d} we see that exactly one of b,d lies in 30,¢. If d ¢ 30, ¢ then the permutation

g = [00,a,d, 0] fixes a and sends b to ¢. Thus ¢ = b9 € A9 = A proving the claim in this
case. Assume now that b ¢ 50, ¢. Then considering {00, a, b, c} we see that oo € @, ¢. Hence
the permutation h := [00,b, ¢, a, 0] sends a to b (and hence fixes A), and sends b to ¢, so

c=10W ¢ _Ah = A in this case also. Thus the claim is proved, and hence A contains each
point of a,b, and so k = |A| > 2)\ + 2. Now, by Corollary , n is even so that m = ”T_l is
odd. Hence m > 3 so that by Corollary [2.4] again,

6A < (2A+2)m < km < n < 6,

a contradiction.

Thus, co € a, b, and we note that this holds whenever a, b lie in the same block of imprimi-
tivity of 7o (D). Since n > 2\ +2, there exists ¢ ¢ a, b. In particular ¢ # oo. If co ¢ @, ¢ then
by Lemma [2.6] [a, c] lies in 7o (D), fixes b and sends a to c¢. Thus c lies in the same block
of imprimitivity A containing a,b. In particular a,c lie in the same block of imprimitivity
S0 00 € @, ¢, which is a contradiction. Hence co € @, ¢ and an identical argument (with the
roles of a and b interchanged) shows that oo € b, c. This proves that exactly three 3-subsets
of {00, a,b, c} lie in C, contradicting the fact that (£2,C) is a regular two-graph. O

Theorem A now follows from Propositions [3.1] 3.2 and [3.3]

4. PROOF OF THEOREM B

Recall condition (A]) defined in Section §1 for a design D = (€2, B):
(A) if By, By € B such that |B; N By| = 2, then By A By € B.

Throughout this section we assume the following hypotheses and notation.
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Hypotheses 4.1.
(a) D = (2, B) is a supersimple 2-(n,4,\) design that satisfies (A);
(b) (Q,C) is a regular two-graph, where C is the set of collinear triples of D;
(c) oo €, and G := L(D);
(d) € :={[a,b] | a,b € Q} is the set of elementary moves on D.

The first main result of this section is the following.

Theorem 4.2. If Hypotheses hold, then G is a subgroup of Aut(D), (G,E) is a 3-

transposition group, and & is a union of conjugacy classes of 3-transpositions of symplectic
type.

Lemma 4.3. If {w,z,y, 2} € B is a line then [w,x] = [y, 2].

Proof. This follows from the fact (using (A])) that {w,z,a,b} is a line containing {w,x} if
and only if {y, z,a, b} is a line containing {y, z}. O

Lemma 4.4. For pairwise distinct x,y, z € €0,

ifx ey, z;
[x,z], otherwise.

v, 2] - [z, 9] - [y, 2] = {[l“,y],

Proof. Let w = [y, 2] - [z,y] - [y, z]. Note first that w is conjugate to [z,y], and hence is an
involution. Thus it suffices to show directly that the image under w of each point a € 2
is the same as its image under [x,y] or [z, z]|, according to whether x € 7,z or z ¢ 7,Z,
respectively. It is straightforward to check that this is true if a € {z,y,z}, so let a €
Q\{xz,y, z}. We consider three cases, according to whether zero, two or four of the 3-subsets
of X :={x,y, z,a} are collinear.

If no 3-subsets of X are collinear then x ¢ 7,z and since a is fixed by all of [z,y], [y, 2],
[z, 2], it is also fixed by w. If all 3-subsets of X are collinear then z € 7,z and there
are two possibilities: first X itself may be a line. In this case both w and [z,y]| send a
to z. Alternatively, we have distinct lines {z,y,a,b}, {z, z,a,c}, {y,2,a,d} € B, for some
b,c,d € ). Moreover, by @, the following 4-subsets are also lines:

{CE7 y’ a7 b}A{x7 Z? a” C} = {y? Z? b? C};
{I’ y) a? b}A{y’ Z? a? d} = {x7 Z? b’ d};

{z,2z,a,c} Ny, z,a,d} = {z,y,c,d}.

It can now be checked that w and [z, y] both send a to b.

Lastly suppose that exactly two of the 3-subsets of X are collinear. There are six possi-
bilities for the collinear pairs, corresponding to the six rows of Table [I Suppose first that
{z,y, 2z} is collinear. If {a,z,y} is also collinear then {x,y,a,b} is a line, for some b € .
In this case, if {b,y,z} is collinear then for some ¢ € Q, {y,z,b,c} is a line and hence
{z,y,a,b} A{y,z,bc} = {x,2,a,c} is a line, whence {a,x, z} is collinear, which is a con-
tradiction. Thus {b,y, z} is not collinear, and hence a* = al*¥ = b proving the assertions of
row 1. Next, if {a,y, z} is collinear, then {y, z, a, b} is a line, for some b € ), and a similar
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argument to the previous case shows that {b, z,y} is not collinear. Thus a* = al*¥ = ¢ and
the assertions of row 2 hold. If {a,x, z} is collinear, then a is fixed by both [y, z] and [z, y],
and hence a¥ = al*¥ = @ and the assertions of row 3 hold. This completes the proof that
w=[z,y| if z €7,z

Now suppose that {x,y, z} is not collinear. Then one of rows 4,5 or 6 holds. For row 4,
there exist b, ¢ € Q such that {x,y,a,b} and {z, z,a,c} are lines. Property (4A) implies that
{z,y,a,b} A{z,z,a,c} = {y,z,b,c} is a line, from which it follows that w and [z, z] both
send a to c. Similarly, for row 5, there exist b, ¢ € 2 such that {x,y,a,b} and {y, z,a, c} are
lines. Property (4] implies that {z,y,a,b} A{y, z,a,c} = {x, 2,b, ¢} is a line. If we also had
a line {x,y, ¢, d} for some d € Q, then {y, z,a,c} AN{x,y,c,d} = {z, z,a,d} is a line, which is
a contradiction since {z, z, a} is not collinear. Hence {z,y, c} is not collinear, and so w and
[z, z] both fix a. Finally for row 6, there exist b, c € € such that {y, z,a,b} and {z, z,a, c}
are lines. Property @ implies that {y, z,a,b} A{z, z,a,c} = {z,y,b,c} is a line. If we also
had a line {y, z,¢,d} for some d € €, then {x,z,a,c} A {y,z,¢,d} = {z,y,a,d} is a line,
which is a contradiction since {z,y,a} is not collinear. Hence {y, z, ¢} is not collinear, and

so w and [z, z] both send a to ¢. This completes the proof. 0
Collinear triples in X | a% alzyl  glwal
{x,y,z}, {a,x,y} a[xvy] a[ﬂ?,y] B
{$aya Z}, {a,y,z} a a _
{:E,y,z}, {CL,$,Z} a a _
{C%»T,y}, {a,x,z} al®?] _ alz:2]
{Cl,.%,y}’ {(L, Y, Z} a — a
{CL, y,Z}, {CL,.T,Z} a[;tvz] _ a[a:,z]

TABLE 1. Comparing images for the Proof of Lemma [4.4} here w = [y, 2] - [z, y] - [y, z].

Now we derive three more facts about the moves on D.

Lemma 4.5. Let x,y,z € Q) be pairwise distinct.
(a) Then,
2, ifx ey z;

) 2 ¢ 557 thon 071 = Lo

(¢) L(D) = L(D) is a group of automorphisms of D.

(d) y]g [29,y9] for all g € (£) and all z,y € Q.

(e) If two elements [z,y], [z, w] € € do not commute then at least one of x,y lies in Z,w.
(f) If [z, ] (x,y)(@1,y1) - (xx,un0), then [x,y] = [xs,y] for alli=1,... A\

Proof. For (a), let X := [z,y] and Y := [y, z]. Note that, since z,y, z are distinct, X # Y
and so the product XY is not the identity. By Lemma [4.4] either XY = Y X (if z € 7,2)

(b

QQ? D&
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and XY has order 2, or X and Y satisfy the braid relation XY X = Y XY, and XY has
order 3.
For (b), two applications of Lemma {4.4] yield

[2,2,y,2] = [zalleylly, 2] = [z adle,yllz 2]lz,2lly, 2] = [z0llz2dly, 2] =l y),

as required.

To prove (c), we check that D satisfies the condition given in Lemmal2.7(c). Let z,y, z € Q.
If x ¢ 77,Z then [z,y] = [2,2,y, 2] = [z, 2, y, 22¥] by part (b). If 2 € 7,2, so that {z,y, z,w}
is a line say, then

[ij7yjz[z,y]] - [z,x] ’ [Ivy] : [y7w] = [ZE,y] ’ [Z,ZE] ' [y7w] = [ZL’,y] ’ [va] : [va] - [ZE,y],

where we use both the facts that [z, 2] = [y, w] (Lemma4.3)) and that [z, y] and [z, z] commute
(Lemma [£.4). Thus the condition given in Lemma [2.7|c) is satisfied and we conclude that
L (D) is a group of automorphisms of D. In particular, L. (D) is a group, and so L(D) =
L+ (D) by Lemma

Item (d) and (e) follow from (c) and Lemma [2.7] (especially statement (a) of Lemma [2.7)).
Finally, for item (f) observe that, by assumption, {z,y, z;,y;} are lines for i = 1,..., . But
now, condition (A)) implies that {z;, y;,z;,y;} for all 4,5 = 1,..., X with i # j. Part (f)
follows. OJ

Proof of Theorem[{.2 Tt follows from Lemma [4.5(c) that G = L. (D) is a subgroup of
Aut(D). We first prove that (G,€) is a 3-transposition group. To do this, we need only
verify the three conditions (a),(b) and (c¢) of Definition 2.10} condition (a), that G = (£),
follows from Lemma [4.5]c); condition (b) follows from Lemma [4.5(d); condition (c) is proved
in Lemma [4.5(a).

It remains to prove that £ is a union of conjugacy classes of 3-transpositions of symplectic
type. Suppose then that a;,as,a3 € € such that o(ajas) = o(ajas) = o(agas) = 3 and let
H = (ay,a9,a3). Let X be a non-trivial H-orbit in © and let HX denote the permutation
group induced by H on X. We claim that HX = Sym(4) or Sym(3).

Without loss of generality we may assume that supp(a;) N X # 0, so by Lemma [4.5(f),
there exist z,y € X such that a; = [z,y]. Suppose as = [z,w] and a3 = [s,t]. Then by
Lemma (e), at least one of z,y € z,w, and at least one of z,y € s,t, so supp(a;) N X # ()
fori=1,2,3.

Suppose first that € supp(a;) N X, for each ¢ = 1,2,3. Then by Lemma (f) there
exist y, z,w € X\{z} such that a; = [z,y],as = [z, 2], a3 = [z, w], and since o(a;a;) = 3 for
all i # j, the elements z,y, z, w are pairwise distinct so |X| > 4. Moreover, Lemma [1.5](a)
implies that

z7w¢m7 yawgm, y,2§éx,w.

These non-inclusions imply that each of the a; fixes {z,y, z,w} setwise, and since X is an
H-orbit it follows that X = {z,y, 2, w} and H* = Sym(4).
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Now suppose that
3
(4.1) ﬂ(supp(ai) NnX)=0.
i=1
Then by Lemma [A.5(a and f), and since supp(a;) N X # @ for all 4, we can assume that
a; = [x,y], a0 = [z, 2], a3 = [y, w] where z,y,z,w € X and z,w & {x,y}. We claim that the
following all hold.

2Ty, weT, Yy, wETZ, 2 €TY,W.
The two non-inclusions follow from Lemma [4.5(a), as do the non-inclusions y ¢ 7,z and
z ¢ g, w. The final two inclusions follow from this observation together with Lemma [4.5](e).
If w = z, then these conditions imply that each of the a; fixes {x,y, 2} setwise, and as in the
previous case we deduce that X = {z,y, 2} and HX = Sym(3).

Assume now that w # z, so that z,y,z,w are pairwise distinct elements of X. The
displayed conditions imply that w®, 2% ¢ {z,y,w,z}. Let w' = w* and 2’ = 2%. Then
by the definition of &, the 4-subsets {x, z,w,w'} and {y,w, z, 2’} are both lines of D, and
so by condition (A)), {z,y,w’,2'} is also a line of D. Thus X' := {z,y,z,w,2",w'} is a
6-element subset of X. Moreover, a; = [x,y] = [w/, 2] by Lemma [4.5(f) since {x,y,w’, 2’}
is a line of D, and a; fixes z and w since these points do not lie in Z,y. We claim that
2" = 2’ this holds if and only if 2%3%2% = > Since o(asaz) = 3 we have agasas = asazas,
SO 2030203 — 020302 — p0302 — 02 — 5 A gimilar argument shows that w'® = w’. Thus
each of the a; fixes X’ setwise, and hence X = X’. By making the assignments (1,2) — a;,
(1,3) + ay and (1,4) — a3 we see that HX is isomorphic to the action of Sym(4) on
unordered pairs from {1,2,3,4}:

a | a® | a® | a® | Label of a
wl w | w |y {3,4}
w | 2w | W {1,4}
x|y | z | {2,3}
y|l x|y | w {1,3}
z |z | x| 2 {1,2}
Zlw | 2| oz {2,4}

Thus we have HX 2 Sym(4) or Sym(3) proving the claim.

Let K (X) be the kernel of the action of H on X. Suppose (for a contradiction) that K (X)
contains a non-identity element g, so K(X) # 1. Since supp(a;) N X # 0, a; = [x;,y;] for
some x;,y; € X for ¢ = 1,2,3. Thus, by Lemma (d), we deduce that af = [z;, 1] =
(27, y7] = |24, y;] = a;. This implies that K(X) < Z(H). Let Y be an H-orbit that contains
a non-trivial K (X)-orbit. Then 1 # K(X)¥Y < Z(HY). However Z(HY) = 1 since, as we
have just proved, HY = Sym(4) or Sym(3), and this is a contradiction. Thus K (X) = 1, and
hence H = Sym(4) or Sym(3) as required. O

4.1. Completing the proof of Theorem B. Note that Lemma yields that part (a) of
Theorem B holds if n = 2\ 4+ 2. If n > 2\ + 2 then we deduce three additional properties.
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Lemma 4.6. If Hypotheses hold and, in addition, n > 2\ + 2, then the following hold:
(a) G is 2-primitive on €;
(b) & is a conjugacy class in G;
(c) Z(G) =1.

Proof. By Theorem , G is a group, and so by Theorem A (c), G is a 2-primitive subgroup
of Sym(2), so part (a) is true. Hence for any a,b,c,d € ) there exists g € G such that
a? = ¢ and b = d. Thus, by Lemma [2.7(a), [a,b]? = [a% V9] = [c,d] and (b) is proved.
To prove (c), note that, since n > 2\ 4 2, for each a € Q there exists b € Q \ 50,a. By
Lemma [4.4] the permutations [0o,a] and [a,b] do not commute, so G is nonabelian. Now

Z(G) < Csym()(G) = 1 by [DM96l, Theorem 4.2A]. O
Now, we combine Lemma 4.6/ and Theorem to obtain the following.
Proposition 4.7. If Hypotheses[L.1] hold and n > 2\ +2, then there is a split exact sequence
1-20Q—-G—G —1,

where G* = Sym(m) and Q is either trivial, or elementary-abelian and reqular on 2 of order
2m=m2) - or G* =2 O3, (2) or Sp,,,(2) for some integer m, and the group Q is either trivial,
or elementary-abelian and reqular on € of order 2™. Furthermore, if Q) is non-trivial, then
Q@ is equal to the natural module for G* over Fy.

Proof. The statement is almost immediate, although we should justify why @ (if nontrivial)
is regular on  and equal to the natural module for G* over Fy (rather than a direct sum of
more than one copy of the natural module) — both facts follow from the fact that G acts
primitively on (2. O

Proposition |4.7|is a weaker version of Theorem B — it allows for more possibilities; thus
to complete the proof of Theorem B we must show that G* must be a symplectic group
— the next four lemmas do this; the first is a simple counting result. We first show that
G* = Sym(m) cannot occur unless m = 6, and G = Sp,(2).

Lemma 4.8. If Hypotheses hold and n > 2\+2, then |E] = gg\:i)) In particular, |E] > n.

Proof. Let a and b be distinct elements of €. We are interested in those elements [z,y] € €
that contain the transposition (a, b) in their disjoint cycle decomposition. The definition of an
elementary move implies immediately that this will be the case if and only if {z,y} = {a, b}
or {a,b,z,y} € B. Thus there are A+ 1 choices of {z,y} for which [z, y] contains (a,b) in its
disjoint cycle decomposition.

Now Lemma 4.3 implies that, for all of these choices, the resulting elementary moves are
equal. The result follows by observing that there are n(n — 1)/2 choices for the set {z,y} in
Q. O

Lemma 4.9. If Hypotheses hold and n > 2\ + 2, and if G = Sym(m) with m > 5, then
m =6, G = Sp,(2), and n = 10.
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Proof. By Lemma 4.6, we know, first, that G = Sym(m) acts 2-primitively on the elements
of ©; we know, second, that £ is a conjugacy class of G, and, by Theorem [2.12] £ is the class
of transpositions (or, possibly, the class of triple-transpositions if m = 6). Hence |€| = (ZL)

If the action of G on 2 is isomorphic to the action of G on k-subsets of {1, ..., m}, then (for
instance, by considering the possible intersections of k-subsets) we conclude that 2-primitivity
implies that £ = 1 or m — 1. Thus m = n and Lemma |4.8/implies that A\ = 0, a contradiction.

Similarly if the action of G on €2 is isomorphic to the action of G on some set of partitions
of {1,...,m}, then (for instance, by considering the possible common refinements of two
partitions) we conclude that 2-primitivity implies that m = 6, and n = 10, as required.

Let M be the stabilizer of a point in the action of G on €2; the actions that remain
correspond to M being a primitive subgroup of Sym(m). Now a classical theorem of Bochert
(see, for instance [Wie64, Theorem 14.2]) implies that

1
n=|G: M| > \‘%J'

On the other hand, n > 2A + 2 and so Lemma [4.§ implies that
m(m—1) n(n—1)

= >n—1
2 o+ 1) T
and we conclude that
1 —1
(4.2) M%J@K%H,

which implies, immediately, that m = 5,6 or 8. Checking these remaining cases, we use (4.2)),
the fact that n(n — 1) must divide m!, and the fact that Lemma [4.8 holds for some positive
integer A, to conclude that m = 6 and n = 10, as required. 0

Lemma 4.10. Suppose that Hypotheses[L.1 hold, n > 2A+2, G = Q x G*, G* = Sym(m) for
some m = b, and Q) is elementary-abelian and reqular on  and equal to the natural module

for G* over Fy. Then m =6, G = Q % Sp,(2), and |Q| = 2*.

Proof. By Lemma [£.6], G acts 2-primitively on Q, and so G* acts primitively on the set of
non-trivial elements of Q). Now, since @ is the deleted permutation module for G* = Sym(m),
the elements of () can be identified with pairs {A, {1,...,m} \ A} where A ranges over the
set of even order subsets of {1,...,m}. Then G* acts in the obvious way on the set of all
such pairs and we note that the action preserves the pair of cardinalities: {|A|,m — [A]}.
We conclude immediately that, provided m # 6, G* has more than one orbit on the set
of non-trivial elements of (), which is a contradiction. If m = 6, then we observe that the
deleted permutation module for Sym(6) over 5 has dimension m — (m,2) = 4. O

To complete the proof of Theorem B we must show that G* cannot be an orthogonal group.

Lemma 4.11. If Hypotheses hold and n > 2\ + 2, then the group G is not isomorphic
to O3 (2) for any m > 2.

Proof. Suppose that G = O3,,(2). If m < 4 then one of the following holds:
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(a) G =2 OF(2) = (S5 x S5) : 2;
(b) G = O, (2) = Sym(5) with n =5 or 6;
(c) G = 0Of(2) = Sym(8) with n =8 or 15;
(d) G = Oq4 (2) = PSU4(2).
In cases (a) and (d) the groups in question have no 2-transitive representations while in cases

(b) and (c) G is a symmetric group and Lemma immediately excludes them. Thus we
may assume that m > 4. By Lemma [1.8] (2™ — 1)(2™"! +¢1) = |€] > n. On the other
hand, [Coo78|, Table 1] implies that

(43) o Jeren@Et o), ife =
' = | 2mtem— 1), if e = +.

Thus if ¢ = — we deduce that n = |£]| is odd, which contradicts Corollary If ¢ = + then
[Kan79, Theorem 3] implies that either m < 15 or else G is acting on non-degenerate or totally
isotropic 1-spaces and n is either 2771(2™ — 1) or (2™ —1)(2™~! 4+ 1). In the latter case, n is
odd, contradicting Corollary 2.4 again. In the former case, n(n—1) = 2m=1(22m —1)(2m~1 - 1)
and the 2-transitivity of GG implies that

m—1
(4.4) n(n—1) |G| =2 D@em —1) T @* - 1.

i=1
Now by Zsigmondy’s theorem there exists a prime divisor of 22™ — 1 which does not divide
2k — 1 for each k < 2m (since m > 4) which contradicts (4.4]).

In the remaining cases we have that n is even, (4.4]) holds and

(4.5) 2™ 1) <n< (2™ —-1)(2™ 4+ 1)
by (4.3). One quickly deduces that these conditions cannot simultaneously be satisfied for
4 < m < 15, completing the proof. O

Lemma 4.12. If Hypotheses hold and n > 2\ + 2, then the group G is not isomorphic
to Q % O;tm(Z) for any m > 2, with Q elementary-abelian and reqular on Q of order 2™,

Proof. Suppose that G = Q x O3, (2) for some m > 2. By Lemma [4.6] G acts 2-primitively
on . However, as @ acts regularly on Q, the action of O3, (2) is isomorphic to its action
on the natural module. Since the sets of singular vectors and non-singular vectors are each
invariant under the action of O3, (2) on its natural module, and since each of these sets is
non-empty, we conclude that O3, (2) is not transitive on the set of non-zero vectors, which
is a contradiction. O

It follows from Lemmas that, if Hypotheses hold and n > 2\ + 2, then n and
the group G satisfy part (b) or (c) of Theorem B. This completes the proof of Theorem B.

5. PROOF OF THEOREM C

Suppose that the the assumptions of Theorem C hold, and let £ denote the set of elemen-
tary moves on D, let co € ), and G = L(D). Then Hypotheses hold, and we assume
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that this is so throughout this section. As explained earlier, the number n of points is at
least 2\ 4+ 2. If n = 2\ + 2, then, by Lemma , D is the design D’ of Example , SO
Theorem C holds. From now on we assume that n > 2\ + 2.

The proof we present in this case began with the simple observation that, for the design
D® described in Example [1.2] each maximal totally isotropic subspace of 2* = V' coincides
with (the set of points of) a maximal Boolean sub-design of D*. A similar property was seen
to hold in Df with € = 0, and this suggested that the theory of polar spaces may shed light
on the geometry of designs satisfying Hypotheses [£.1 This turned out to be the case and
led, eventually, to the proof that we now present.

In what follows we only need to consider polar spaces in which all lines are incident with
exactly 3 points. Such spaces were classified by Seidel [Sei73| (available on-line as a preprint,
and also published in his ‘Selected works’ [Sei91]). We describe his result below using graph-
theoretic language. In that direction, we begin with some definitions: for oo € €2, we define
Gp.co = (V, E) as the graph with vertex set V = Q\ {oo}, and edge set E such that {a,b} € £
if and only if {oc0,a,b} € C. This graph is called the derived graph of the design D.H

Definition 5.1. A graph G := (V, E) satisfies the triangle property if its edge set E # () and,
for each pair of adjacent vertices u,v € V, there exists a vertex w € V', adjacent to both
u and v, such that every vertex = € V\{u,v,w} is adjacent to exactly one or exactly three
vertices in the set {u, v, w}. We denote by F(u, v) the set of all vertices w with this property.
If | F(u,v)| =1, for all u,v € V, then we say that G has the strong triangle property. In this
case we denote the unique vertex in F(u,v) by f(u,v).

Lemma 5.2 ([Sei73, Lemma 4.2]). If a graph G has the triangle property and, further, if no
vertex of G is adjacent to every other vertex, then G has the strong triangle property.

Our next result shows the relevance of the strong triangle property for us.ﬂ

Proposition 5.3. Suppose that Hypotheses[£.1] hold and n > 2\ + 2. Let co € Q. Then

(a) each verter of Gp ~ is incident with exactly 2\ edges;
(b) Gp oo has the strong triangle property; and
(c) every line of D containing oo is of the form {oco,a,b, f(a,b)}.

Proof. Since, for each a € V, the pair {oo,a} lies in A lines of D, and hence in 2\ triples in
C, the edge set E of Gp ~ is non-empty, and each vertex is incident with exactly 2\ edges,
proving part (a).

Now we prove the triangle property for Gp .. Consider an edge {a,b} € E, or equivalently
{00, a,b} € C. Then there exists ¢ € ) such that {00, a,b, c} € B, and therefore also

{00, a,c},{o0,b,c}, {a,b,c} €C.

SWe refer to Gp, as the derived graph of the design D, but note that the definition of this graph refers
to C, rather than B. Thus the definition could be extended to a more general setting including, in particular,
all regular two-graphs.

5We asserted above that the totally isotropic subspaces of Q% = V U {oo} coincide with (the set of points
of) a maximal Boolean sub-design of D®. This observation easily implies that Proposition holds for the
designs D%; thus Proposition can be thought of as a generalization of this observation.
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Thus ¢ is adjacent to both a and b in Gp . Let z € Q\ {o0,a,b,c} =V \ {a,b,c}, and
consider {a,b,c,z}. Since (2,C) is a regular two-graph and {a,b,c} € C, there are exactly
one or three pairs {r, s} C {a,b,c} such that {r,s,z} € C.

Claim. {r,s,z} € C if and only if {t,x} € E, where {r,s,t} = {a,b,c}. We prove this
for the pair {a, b}, the proofs for the other pairs being identical. The triple {a,b,x} € C if
and only if there exists d such that {a,b,z,d} € B. Using property @ and the fact that
{00, a,b,c} € B, we see that this holds if and only if there exists d such that {oo, ¢, z,d} € B.
The latter property is equivalent to the condition {00, ¢, 2} € C, which in turn holds if and
only if {¢,z} € E. This proves the claim.

Since there are exactly one or three pairs {r, s} C {a,b,c} such that {r,s,z} € C, it follows
from the claim that x is adjacent in Gp « to exactly one or three vertices in {a,b,c}. Thus
Up o has the triangle property. Now since n > 2A + 2, for each vertex v of Gp , there exists
a vertex u ¢ 50,0, that is, a vertex u of Gp o, which is not adjacent to v. Therefore, by
Lemma , Gp. has the strong triangle property, and part (b) is proved.

For part (c), consider a line B = {c0,a,b,c} € B containing co. The arguments above
show that the vertex ¢ has the property of Definition [5.1| relative to {a, b} and so ¢ € F(a,b).
Since Gp ~ has the strong triangle property, this means that ¢ = f(a, b). O

We are now ready to state Seidel’s classification result [Sei73, Theorem 4.15]. We discussed
it above in terms of polar spaces, although the statement we use concerns regular two-graphs
whose derived graphs have the strong triangle property.

Theorem 5.4 (SEIDEL’S CLASSIFICATION THEOREM). Suppose that a graph G = (V, E)
satisfies the triangle property. Then one of the following holds:

(a) G contains a vertex that is incident with all other vertices of G;

(b) G is isomorphic to Gpa g, the derived graph of a design D* at the vertex O;

(c) G is isomorphic to Gpe g, the derived graph of a design D° at the vertex 0, for some
€ € IFQ.

Conversely, all of the listed graphs satisfy the triangle property.

Note that, in Definition [5.1] the definition of the triangle property, we explicitly excluded
the edgeless graphs from consideration — they vacuously satisfy the remaining conditions
of the definition, but we prefer not to consider them in what follows. This explains their
omission in the list above.

We are almost ready to derive Theorem C from Seidel’s classification. Note that Gp o
has n — 1 vertices and valency 2\ (by Proposition , so the derived graph determines the
parameters of the design. The following lemma shows that in fact Gp  determines the design
D up to isomorphism.

Lemma 5.5. Suppose that Dy and Dy are two designs satisfying Hypotheses with n >
2A+2. Let ooy (resp. 002) be a point in Dy (resp. Ds). If Gp, 0, and Gp, ~, are isomorphic
as graphs, then Dy and Dsy are isomorphic as designs.
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Proof. Let D; = (,B;), and G; := Gp, «,, for i = 1,2. Let ¢ : G — Gy be a graph
isomorphism, and extend ¢ to a bijection 2; — )y by defining ¢ : 0oy > 00s. It is sufficient
to show that the image under ¢ of each line in Bj is a line in B;. We begin by considering
the lines containing oo;. By Proposition [5.3], the graphs G; have the strong triangle property,
and every line of D; containing oo, is of the form {oo;,a,b, fi(a,b)} for a,b vertices of G;
(where we write f; for the function f on G;). Let ¢ = {ooy,a,b, fi(a,b)} € By and let
a = ¢(a),b = ¢(b). By the definition of fi(a,b), it follows that ¢(fi(a,b)) = fo(da’,b’), and
hence ¢(¢) = {oog,d’, V', fo(a’, ')} is a line of D;.

Now consider a line ¢ := {a,b,c,d} € B; which does not contain co;. Then {a,b,c} is a
collinear triple from Dy, and applying the two-graph property to the 4-subset {001, a, b, ¢}, we
see that ooy is collinear with at least one of {a, b}, {b, ¢}, {a, c}. Without loss of generality we
may assume that {co1, a, b} is collinear so we have a second line ¢; := {c01,a, b, fi(a,b)} € B.
Moreover, by the symmetric difference property (A), ¢} := {oo1, fi(a,b),c, d} is also a line in
B;, and so by the argument of the previous paragraph, we have d = fi(fi(a,b),c). Let o’ =
o(a),t = ¢(b),d = ¢(c) and d' = ¢(d). Applying the argument of the previous paragraph
again, we see that the images under ¢ of ¢; and ¢} are lines of By and are {o0y, d’, V', fo(a’,b')}
and {oog, fo(d', V'), ', d'} respectively, with d' = fo(fa(a’,b'),c’). Then, by the symmetric
difference property (A) for D,, the 4-subset {a’,V',¢,d'} = ¢({) is also a line of Dy. This
completes the proof. O

Proof of Theorem C. We assume that Hypotheses hold. If n = 2\ + 2, then, since D is
supersimple, we conclude that D is a 3-(n,4, 1) design. Thus Gp  is a complete graph and
so satisfies the triangle property. On the other hand, if n > 2X\ + 2, then, by Proposition [5.3]
Up o satisfies the triangle property. Thus in all cases Gp , satisfies the triangle property.
We now apply Seidel’s Classification Theorem [5.4] which lists three possible situations. In
situation (a), Gp - contains a vertex that is incident to all other vertices of the graph. By
Proposition each vertex is incident with exactly 2\ edges. Thus n = 2\ + 2, and hence,
by Lemma [2.8, D = D, a Boolean quadruple system. On the other hand, in situations (b)
and (c), Lemma together with Theorem imply that D is either D* or D°, and the
proof is complete. O
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