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HALL–LITTLEWOOD EXPANSIONS OF SCHUR DELTA OPERATORS
AT t = 0

JAMES HAGLUND, BRENDON RHOADES, AND MARK SHIMOZONO

Abstract. For any Schur function sν , the associated delta operator ∆′sν is a linear operator
on the ring of symmetric functions which has the modified Macdonald polynomials as an
eigenbasis. When ν = (1n−1) is a column of length n− 1, the symmetric function ∆′en−1

en
appears in the Shuffle Theorem of Carlsson and Mellit. More generally, when ν = (1k−1) is
any column the polynomial ∆′ek−1

en is the symmetric function side of the Delta Conjecture

of Haglund, Remmel, and Wilson. We give an expansion of ω∆′sνen at t = 0 in the dual
Hall–Littlewood basis for any partition ν. The Delta Conjecture at t = 0 was recently
proven by Garsia, Haglund, Remmel, and Yoo; our methods give a new proof of this result.
We give an algebraic interpretation of ω∆′sνen at t = 0 in terms of a Hom-space.

1. Introduction and Main Results

Let Λ =
⊕

n≥0 Λn be the ring of symmetric functions over the ground field Q(q, t) in

an infinite variable set x = (x1, x2, . . . ). Given a partition µ, let H̃µ = H̃µ(x; q, t) be the

associated modified Macdonald symmetric function. The collection {H̃µ : µ a partition}
forms a basis for the ring Λ.

If f ∈ Λ is any symmetric function, the (unprimed) delta operator ∆f : Λ → Λ is the
Macdonald eigenoperator given by

(1.1) ∆f : H̃µ 7→ f(. . . , qi−1tj−1, . . . ) · H̃µ,

where (i, j) ranges over all coordinates in the (English) Ferrers diagram of the partition µ
(and all remaining variables in f are set to zero). As an example, if µ = (3, 2), we fill the
Ferrers diagram of µ with monomials as

1 q q2

t qt

so that ∆f : H̃(3,2) 7→ f(1, q, q2, t, qt) · H̃(3,2).
In this paper, we will focus on a primed version ∆′f : Λ→ Λ of the delta operator defined

by

(1.2) ∆′f : H̃µ 7→ f(. . . , qi−1tj−1, . . . ) · H̃µ,

where (i, j) range over all coordinates 6= (0, 0) in the Ferrers diagram of µ. If µ = (3, 2) as
above, we fill the Ferrers diagram of µ with monomials as

· q q2

t qt
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so that ∆′f : H̃(3,2) 7→ f(q, q2, t, qt) · H̃(3,2).
Let k ≤ n be positive integers. The Delta Conjecture of Haglund, Remmel, and Wilson

[6] predicts the monomial expansion of ∆′ek−1
en in terms of lattice paths. It reads

(1.3) ∆′ek−1
en = Risen,k−1(x; q, t) = Valn,k−1(x; q, t),

where Risen,k−1(x; q, t) and Valn,k−1(x; q, t) are certain combinatorially defined quasisymmet-
ric functions; see [6] for their definitions.

Various special cases of the Delta Conjecture have been proven already. When k = n,
the Delta Conjecture reduces to the Shuffle Theorem of Carlsson and Mellit [2]. In the
specialization q = 1, Romero [13] has proven

(1.4) ∆′ek−1
en
∣∣
q=1

= ∆′ek−1
en
∣∣
t=1,q=t

= Risen,k(x; 1, t).

Zabrocki [15] has given evidence for the Delta Conjecture at t = 1/q by showing that both
sides coincide upon pairing with en under the Hall inner product. At q = 0, the following
theorem summarizes work of Wilson and Rhoades.

Theorem 1.1 (Wilson [14], R. [11]). Let k ≤ n be positive integers. We have

(1.5) Risen,k−1(x; q, 0) = Risen,k−1(x; 0, q) = Valn,k−1(x; q, 0) = Valn,k−1(x; 0, q).

Theorem 1.1 is proven by interpreting the four formal power series therein in terms of
four statistics (called inv, maj, dinv, and minimaj) on ordered multiset partitions, and then
proving the relevant equidistribution results. Let Cn,k = Cn,k(x; q) be the common symmetric
function of Theorem 1.1:

(1.6) Cn,k := Risen,k−1(x; q, 0) = Risen,k−1(x; 0, q) = Valn,k−1(x; q, 0) = Valn,k−1(x; 0, q).

The authors of this paper showed [7] that the image ωCn,k of Cn,k under the ω involution
has the following expansion in the dual Hall–Littlewood basis:

(1.7) ωCn,k =
∑
µ`n
`(µ)=k

qb(µ)

[
k

m(µ)

]
q

·Q′µ.

Here
[

k
m(µ)

]
q

is the q-multinomial coefficient corresponding to the part multiplicities of µ,

the numbers b(µ) and b(µ) are given by

(1.8)

{
b(µ) =

∑
i µi(i− 1),

b(µ) =
∑

i(µi − 1)(i− 1),

and Q′µ = Q′µ(x; q) is the dual Hall–Littlewood symmetric function related to the Schur basis
by

(1.9) Q′µ =
∑
λ

Kλ,µ(q)sλ,

where Kλ,µ(q) ∈ Z≥0[q] is the Kostka–Foulkes polynomial.
Garsia, Haglund, Remmel, and Yoo [3] recently proved the Delta Conjecture at t = 0 by

using plethystic methods and Equation (1.7) to show

(1.10) ∆′ek−1
en
∣∣
t=0

= ∆′ek−1
en
∣∣
q=0,t=q

= Cn,k.
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We give a new proof of Equation (1.10) using skewing operators e⊥j on the ring Λ of symmetric
functions together with 3φ2-hypergeometric transformations.

Finding positive Q′-basis expansions of symmetric functions is interesting for several rea-
sons. Equation (1.9) shows that any symmetric function with a positive Q′ expansion is
automatically Schur positive, and thus is the Frobenius image of some module over the sym-
metric group Sn. Even better, the function Q′µ is itself (up to a twist) the Frobenius image
of the action of Sn on the cohomology of the Springer fiber Bµ or on the quotient of the
polynomial ring Q[x1, . . . , xn] by the Tanisaki ideal Iµ. We generalize Equation (1.10) to
find the Q′-basis expansion of ω∆′sνen|t=0 for any partition ν.

Theorem 1.2. Let ν be a partition and let n ≥ 0. We have

(1.11) ω∆′sνen
∣∣
t=0

=

|ν|+1∑
k=`(ν)+1

Pν,k−1(q)
∑
µ`n
`(µ)=k

qb(µ) ·
[

k
m(µ)

]
q

·Q′µ,

where

(1.12) Pν,k−1(q) = q|ν|−(k2)
∑
|ρ|=|ν|

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

Kν,ρ(q)

and Kν,ρ(q) is the Kostka–Foulkes polynomial.

As operators on Λ we have the identity

∆sν =
∑
ρ⊆ν

∆′sρ ,

where ρ ranges over all partitions obtainable from ν by removing a horizontal strip. The-
orem 1.2 therefore also gives a positive expansion for ω∆sνen|t=0 in the Q′-basis, where we
are using an unprimed delta operator.

Haiman proved that the symmetric function ∆′en−1
en = ∆enen (otherwise known as ∇en) is

the bigraded Frobenius image of the diagonal coinvariant ring [8]. We mention that Zabrocki
[16] has recently introduced a generalization of the diagonal coinvariant ring whose bigraded
Frobenius image is conjecturally equal to the symmetric function ∆′ek−1

en appearing in the
Delta Conjecture.

If ν is a partition with `(ν) = n, Haiman [8] gave an algebraic interpretation of ∆sνen as a
Schur functor applied to a vector bundle over the Hilbert scheme of n points in the plane C2.
In particular, Haiman’s result implies that ∆sνen is Schur positive when `(ν) = n. Haiman
conjectured that ∆sνen is Schur positive for any partition ν. Haglund and Wilson have
computational evidence that ∆′sνen is also Schur positive for any partition ν. Theorem 1.2
gives evidence for the Schur positivity of ∆′sνen (and thus also ∆sνen) for arbitrary partitions
ν.

In [7] the authors found an algebraic interpretation of the Delta Conjecture at t = 0. Let
the symmetric group Sn act on the polynomial ring Q[x1, . . . , xn] in n variables. Following
[7, Defn. 1.1], given positive integers k ≤ n we define the ideal In,k ⊆ Q[x1, . . . , xn] by

(1.13) In,k := 〈en, en−1, . . . , en−k+1, x
k
1, x

k
2, . . . , x

k
n〉

and let

(1.14) Rn,k := Q[x1, . . . , xn]/In,k
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be the corresponding quotient. When k = n the ring Rn,k reduces to the classical coinvariant
algebra Rn = Q[x1, . . . , xn]/〈e1, . . . , en〉 obtained by modding out by symmetric polynomials
in Q[x1, . . . , xn] with vanishing constant term. Just as algebraic properties of Rn are governed
by combinatorial properties of permutations in Sn, it is shown in [7] that algebraic properties
of Rn,k are governed by ordered set partitions of [n] := {1, 2, . . . , n} with k blocks.

The ring Rn,k has the structure of a graded Sn-module; in [7] it is proven that its graded
Frobenius image is

(1.15) grFrob(Rn,k; q) = (revq ◦ ω)Cn,k,

where revq is the operator which reverses the coefficient sequences of polynomials in q, e.g.

revq(3s(2,1)q
2 + 2s(1,1,1)q + s(3)) = s(3)q

2 + 2s(1,1,1)q + 3s(2,1).

Thanks to the Garsia–Haglund–Remmel–Yoo Equation (1.10) we can also express Equa-
tion (1.15) as

(1.16) grFrob(Rn,k; q) = (revq ◦ ω)∆′ek−1
en
∣∣
t=0
.

Informally, we think of Rn,k as the ‘coinvariant algebra’ attached to the operator ∆′ek−1
en.

Given Equation (1.16), one could ask for a graded Sn-module Rν,n which satisfies

(1.17) grFrob(Rν,n; q) = (revq ◦ ω)∆′sνen
∣∣
t=0

for any partition ν. This would give a coinvariant algebra attached to the operator ∆′sν . In
[12] Rhoades and Wilson exhibited a quotient of Q[x1, . . . , xn] with graded Frobenius image
(revq ◦ ω)∆sνen|t=0 when ν is a hook of the form (r, 1n−1).

For general partitions ν ` m, it is impossible to exhibit a module Rn,ν satisfying Equa-
tion (1.17) as a submodule of Q[x1, . . . , xn]; the graded components of the polynomial ring
are not large enough for this purpose. Given Theorem 1.2, two artificial solutions to this
problem are as follows.

• Very artificially, we could use the positive expansion of Q′µ in the Schur basis {sλ}
and define Rn,ν as a direct sum of Sn-irreducibles Sλ with appropriate grading shifts.
• Less artificially, we could use the fact that revq(Q

′
µ) is the graded Frobenius image

of the Tanisaki quotient Rµ = Q[x1, . . . , xn]/Iµ, where Iµ is the Tanisaki ideal. The-
orem 1.2 then leads to a definition of Rn,ν as a direct sum of Rµ’s with appropriate
grading shifts.

The second bullet point is less artificial because the pieces Rµ which constitute the module
Rn,ν are larger than the pieces Sλ appearing in the first bullet point.

In this paper we give a still less artificial construction for Rn,ν as a Hom-space. For any
n,m ≥ 0 we define a graded Sm ×Sn-module Vn,m by

(1.18) Vn,m :=
⊕
k≥0

(Rm,k−1 ⊗Rn,k){−mn+ km+ kn− n− k(k − 1)}.

Here M{−d} denotes a graded module M with degree shifted up by d and we impose grading
on tensor products by declaring

(M ⊗N)d =
⊕
i+j=d

Mi ⊗Nj.

If M is any Sm-module, the Hom-space HomSm(M,Vn,m) has the structure of a graded
Sn-module.
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Theorem 1.3. Let n ≥ 0 and let ν ` m be a partition. Define the graded Sn-module Rn,ν

by

(1.19) Rn,ν := HomSm(Sν , Vn,m){b(ν)},

where Vn,m is defined as in Equation (1.18). We have

(1.20) grFrob(Rn,ν ; q) = (revq ◦ ω)∆′sνen
∣∣
t=0
.

The module Vn,m only depends on the integers n and m = |ν|, so that we may regard Vn,m
as a universal ‘generator’ for coinvariant algebras corresponding to partitions ν ` m. Since
the Rn,k modules are ‘larger’ than the Tanisaki quotients Rµ, this gives a still less artificial
solution to finding a ‘coinvariant algebra’ attached to the operator ∆′sν . This also suggests
that understanding the algebraic and geometric properties of objects related to ∆′sν at t = 0
may be deduced from the case where ν is a single column.

2. Background

2.1. Symmetric functions. We adopt standard symmetric function terminology which
may be found in e.g. [5, 9]. Given a partition λ, let

eλ = eλ(x), hλ = hλ(x), sλ = sλ(x), Q′λ = Q′λ(x; q), H̃λ = H̃λ(x; q, t)

be the associated elementary, homogeneous, Schur, dual Hall–Littlewood, and modified Mac-
donald symmetric function. The functions Q′µ expand positively in the Schur basis. If µ ` n,
the transition coefficients Kλ,µ(q) ∈ Z≥0[q] given by

(2.1) Q′µ =
∑
λ`n

Kλ,µ(q)sλ

are the Kostka–Foulkes polynomials. The following relationship between the modified Mac-
donald symmetric functions and the dual Hall–Littlewood functions is well known:

(2.2) H̃λ

∣∣
t=0

= revq(Q
′
λ).

If S ⊆ [n−1], we let Fn,S be the associated fundamental quasisymmetric function of degree
n given by

(2.3) Fn,S :=
∑

i1≤···≤in
(j∈S)⇒(ij<ij+1)

xi1 · · ·xin .

We adopt the usual q-analogs of numbers, factorials, binomial coefficients, and multinomial
coefficients:

(2.4)


[n]q := 1 + q + q2 + · · ·+ qn−1, n ≥ 0,

[n]!q := [n]q[n− 1]q · · · [1]q, n ≥ 0,

[ nk ]q := [n]!q
[k]!q [n−k]!q

, n ≥ k ≥ 0,

[ n
a1,...,ak ]q := [n]!q

[a1]!q ···[ak]!q
, a1 + · · ·+ ak = n.
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If λ = (λ1, . . . , λk) is a partition, we let `(λ) = k be the number of parts of λ, let
|λ| = λ1 + · · ·+ λk be the sum of the parts of λ, and set

b(λ) :=
k∑
i=1

λi · (i− 1)(2.5)

b(λ) := b(λ)−
(
`(λ)

2

)
=

k∑
i=1

(λi − 1)(i− 1).(2.6)

We let mi(λ) denote the multiplicity of i as a part of λ and adopt the q-multinomial coefficient
shorthand

(2.7)

[
`(λ)
m(λ

]
q

:=

[
`(λ)

m1(λ),m2(λ), . . .

]
q

.

Let ω be the involution on Λ which interchanges en and hn. We will use the following
‘twisted’ version of the polynomials Cn,k for k ≤ n:

(2.8) Dn,k := (revq ◦ ω)Cn,k.

Let 〈·, ·〉 be the Hall inner product on Λ defined by the declaring the Schur functions to
be orthonormal: 〈sλ, sµ〉 = δλ,µ. For any symmetric function f , the operator f⊥ : Λ→ Λ is
the dual operator to multiplication by f under the Hall inner product. Said differently, the
operator f⊥ is characterized by

(2.9) 〈f⊥g, h〉 = 〈g, fh〉,
for all g, h ∈ Λ. For a proof of the following standard fact, see for example [7, Lem. 3.6].

Lemma 2.1. Let f, g ∈ Λ be symmetric functions with equal constant terms. We have f = g
if and only if e⊥j f = e⊥j g for all j ≥ 1.

Lemma 2.1 will be used to form the recursions which underly our new proof of the Delta
Conjecture at t = 0. The image of the Dn,k functions under e⊥j can be recursively described
as follows.

Lemma 2.2 (H., R., S. [7, Lem. 3.7]). Let k ≤ n be positive integers and let j ≥ 1. We
have

e⊥j Dn,k = q(
j
2)
[
k
j

]
q

·
min(k,n−j)∑

m=max(1,k−j)

q(k−m)·(n−j−m)

[
j

k −m

]
q

Dn−j,m.

The irreducible representations of the symmetric group Sn over Q are indexed by partitions
λ ` n. If λ is a partition, we let Sλ denote the corresponding irreducible representation.
If V is any finite-dimensional Sn-module, there exist unique integers cλ ≥ 0 such that
V ∼=Sn

⊕
λ`n cλS

λ. The Frobenius image Frob(V ) ∈ Λn is the symmetric function

(2.10) Frob(V ) :=
∑
λ`n

cλsλ.

More generally, if V =
⊕

d≥0 Vd is a graded Sn-module with each Vd finite-dimensional, the
graded Frobenius image grFrob(V ) is

(2.11) grFrob(V ) =
∑
d≥0

Frob(Vd) · qd.
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2.2. Ordered set partitions. If π = π1π2 · · · πn ∈ Sn is a permutation (written in one-line
notation), the descent set of π is

(2.12) Des(π) := {1 ≤ i ≤ n− 1 : πi > πi+1}

and the inverse descent set is iDes(π) := Des(π−1).
Let k ≤ n be positive integers. An ordered set partition of size n with k blocks is a

sequence σ = (B1 | · · · | Bk) of k nonempty subsets of [n] such that we have a disjoint union
decomposition [n] = B1 ] · · · ]Bk. Let OPn,k be the family of ordered set partitions of size
n with k blocks. As an example, we have σ = (27 | 135 | 46) ∈ OP7,3. There is a natural
identification OPn,n = Sn of ordered set partitions of size n with n blocks and permutations
in the symmetric group on n letters.

Let σ = (B1 | · · · | Bk) ∈ OPn,k be an ordered set partition. An inversion in σ is a pair
1 ≤ i < j ≤ n such that

• i’s block is strictly to the right of j’s block in σ and
• i is minimal in its block.

We let inv(σ) be the number of inversions of σ. For example, if σ = (27 | 135 | 46), the
inversions of σ are 12, 17, 47, and 45 so that inv(σ) = 4.

If σ = (B1 | · · · | Bk) ∈ OPn,k, the reading word rword(σ) is the permutation π1π2 · · · πn ∈
Sn obtained by reading σ along ‘diagonals’ from left to right (where the mth ‘diagonal’ is
the set of elements which are mth largest in their block). As an example, we have

rword(27 | 135 | 45) = 5736214.

We have (see [6] or [7, Eq. 2.20]) the following quasisymmetric expansion of Cn,k in terms
of ordered set partitions:

(2.13) Cn,k =
∑

σ∈OPn,k

qinv(σ)Fn,iDes(rword(σ)).

2.3. Hypergeometric functions. Given a continuous parameter x and an integer k ≥ 0,
the q-shifted factorial is

(2.14) (x)k = (x; q)k = (1− x)(1− xq) · · · (1− xqk−1).

We adopt the abbreviation

(2.15)

j∏
i=1

(ai)k := (a1, a2, . . . , ak)j.

If r, s ≥ 0 are nonnegative integers and α1, . . . , αr and β1, . . . , βs are parameters, the
corresponding q-hypergeometric series is

(2.16) rφs

(
α1, . . . , αr
β1, . . . , βs

; q, z

)
:=

∞∑
n=0

(α1; q)n · · · (αr; q)n
(β1; q)n · · · (βs; q)n

zn

(q; q)n

[
(−1)nq(

n
2)
]1+s−r

.

In this paper we will only be concerned with the 3φ2-functions. See [4] for more information
on hypergeometric series.
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3. Polynomial identities

In this section we will prove symmetric function and hypergeometric identities which will
be used in our proof of the Delta Conjecture at t = 0, and ultimately in our proof of
Theorem 1.2. The first of these is a recursive description of the image of Cn,k under the
operator e⊥j .

Lemma 3.1. Let j ≥ 1 and k ≤ n. We have

e⊥j Cn,k =

j∑
r=0

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

Cn−j,k−r.

The proof of Lemma 3.1 should be compared with that of Lemma 2.2 (= [7, Lem. 3.7]).

Proof. We start with the quasisymmetric expansion of Cn,k in terms of ordered set partitions:

(3.1) Cn,k =
∑

σ∈OPn,k

qinv(σ)Fn,iDes(rword(σ)).

Let α = (α1, α2, . . . , αp) be any (strict) composition of n. General facts about superization
(see [5]) imply

(3.2) 〈Cn,k, eα1eα2 · · · eαp〉 =
∑

σ∈OPn,k
rword(σ) is an α-shuffle

qinv(σ).

The α-shuffle condition means that the sequence rword(σ) is a shuffle of the p decreasing
sequences

(α1, . . . , 2, 1), (α1 + α2, . . . , α1 + 2, α1 + 1), . . . , (n, n− 1, . . . , α1 + · · ·+ αp−1 + 1).

We are interested in the case where α1 = j, so that

(3.3) 〈Cn,k, eα1eα2 · · · eαp〉 = 〈Cn,k, ejeα2 · · · eαp〉 = 〈e⊥j Cn,k, eα2 · · · eαp〉.
As in the proof of [7, Lem. 3.7], we give a combinatorial interpretation of this expression.

Fix an index 0 ≤ r ≤ k − 1 and consider σ ∈ OPn−j,k−r. Let T be a way of adding
the j letters {n − j + 1, . . . , n} to σ (the big letters) in such a way that the resulting
ordered set partition σ′ has k blocks and the big letters appear in rword(σ′) in the order
n, n− 1, . . . , n− j + 1. An example of such a way T for n = 9, k = 5, j = 4, r = 2 is shown
below, with the big letters in bold:

(4 | 15 | 23) ; (4 | 159 | 78 | 23 | 6).

Notice that exactly r of the big letters are minimal in their blocks of σ′, and these minimal
letters must be (from left to right)

n− j + r, . . . , n− j + 2, n− j + 1.

Let us consider the effect on the inv statistic of all possible ways T of producing σ′ from
σ. Call the letters 1, 2, . . . , n− j of σ′ which are not big small. Following the notation of [7],
let us call a letter i of σ′

• mins if i is small and minimal in its block,
• minb if i is big and minimal in its block,
• nmins if i is small and not minimal in its block, and
• nminb if i is big and not minimal in its block.
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We observe the following, applying the standard interpretation of q-binomial coefficients as
generating functions of inversions in binary strings (see for example [5, Ch. 1])

• The r letters n − j + r, . . . , n − j + 1 are precisely the minb letters for any way T ,
and they contribute amongst themselves

(
r
2

)
inversions in σ′.

• The
(
k
r

)
ways of distributing the minb letters among the blocks of σ′ generate inver-

sions with the mins letters, contributing to a factor of [ kr ]q in the generating function

for inv(σ′) when we sum over all ways T .
• The values of the nminb letters are completely determined by which block they are

added to. There are j − r letters which are nminb and they may be added to any of
the k blocks of σ (upon addition of the minb letters), with multiplicity. This gives(
k+j−r−1
j−r

)
choices for distributing the nminb letters in T . The inversions contributed

between the nminb letters and the mins letters generate a factor of
[
k+j−r−1
j−r

]
q

to

the generating function for inv(σ′) when we sum over all ways T .

By the last paragraph, we have

(3.4)
∑

T :σ;σ′

qinv(σ′) = qinv(σ)+(r2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

,

where the sum is over all ways T of producing σ′ from σ. If we sum this expression over all
σ with rword(σ) an (α2, . . . , αp)-shuffle, and then over all r, we get the inner product

(3.5)

〈
j∑
r=0

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

Cn−j,k−r, eα2 · · · eαp

〉
,

which is also equal to

(3.6)
〈
e⊥j Cn,k, eα2 · · · eαp

〉
,

completing the proof. �

We will need the theory of hypergeometric series for our proof of Equation (1.10). In
particular, we have the following transformation of the 3φ2 basic hypergeometric series (see
[1] for background on basic hypergeometric series).

Lemma 3.2. Let j ∈ N and α, x, y, z ∈ R. We have

(3.7) 3φ2

(
q−j, qα, qα+z

qα−y−j+1, qα−x−j+1; q, q

)
=

(q−y−j+1)j(q
−x−j+1)j

(qα−y−j+1)j(qα−x−j+1)j

(q−y−z−j+1)j
(qy)j

q(α+x+y+z+j−1)j

× 3φ2

(
q−j, qx+y+z+j−1, qx−α

qx, qx+z ; q, q
1+α−y

)
.

Proof. We utilize the following identities from [1, p. 525]:

3φ2

(
q−n, w, b

d, e
; q, q

)
=

(e/w)nw
n

(e)n
3φ2

(
q−n, w, d/b

d, q1−nw/e
; q, bq/e

)
,(3.8)

3φ2

(
q−n, w, b

e, f
; q, q

)
=

(e/w)n(f/w)nw
n

(e)n(f)n
3φ2

(
q−n, w, wbq1−n/ef

q1−nw/e, q1−nw/f
; q, q

)
,(3.9)
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where n ∈ N, and w, b, c, d, e, f are continuous parameters.
Begin by setting j = n,w = qα, b = qα+z, e = qα−y−j+1, and f = qα−x−j+1 in (3.9) to get

(3.10) 3φ2

(
q−j, qα, qα+z

qα−y−j+1, qα−x−j+1; q, q

)
=

(q−y−j+1)j(q
−x−j+1)jq

jα

(qα−y−j+1)j(qα−x−j+1)j
3φ2

(
q−j, qα, qx+y+z+j−1

qy, qx
; q, q

)
.

Now apply (3.8) with n = j, w = qx+y+z+j−1, b = qα, d = qx, e = qy to the 3φ2 appearing in
the right-hand side of (3.10) to get

(3.11) 3φ2

(
q−j, qα, qα+z

qα−y−j+1, qα−x−j+1; q, q

)
=

(q−y−j+1)j(q
−x−j+1)j

(qα−y−j+1)j(qα−x−j+1)j

(q−x−z−j+1)j
(qy)j

q(α+x+y+z+j−1)j

× 3φ2

(
q−j, qx+y+z+j−1, qx−α

qx, qx+z ; q, q
1+α−y

)
. �

We express the hypergeometric transformation of Lemma 3.2 in a more convenient form
involving q-binomials.

Lemma 3.3. Let j ≤ k ≤ n be positive integers. Let p be an integer in the range k − j ≤
p ≤ n− j. There holds the identity

(3.12) q(
k
2)+(j2)

p+j∑
r=p

(−1)n−r
[
r − 1
k − 1

]
q

q(
r+1
2 )−nr

[
r
j

]
q

q(r−p)(n−j−p)
[

j
r − p

]
q

=

j∑
r=k−p

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

q(
k−a
2 )(−1)n−j−p

[
p− 1

k − r − 1

]
q

q(
p+1
2 )−(n−j)p.

Proof. The first step is to express everything in terms of hypergeometric series. We make
use of the following facts, which we refer to as the ‘simple identities’. Here u, j, a ∈ Z≥0 and
p, x are continuous parameters. [

u+ p
j

]
q

=

[
p
j

]
q

(qp+1)u
(qp−j+1)u

(3.13) [
p

u+ a

]
q

=

[
p
a

]
q

(qp−a−u+1)u
(qa+1)u

=

[
p
a

]
q

(qa−p)u
(qa+1)u

(−qp−a)uq−(u2)(3.14) [
p

j − u

]
q

=

[
p
j

]
q

(q−j)u
(qp−j+1)u

(−qj)uq−(u2)(3.15) (
u+ a

2

)
=

(
u

2

)
+

(
a

2

)
+ ua.(3.16)

Using the simple identities and setting u = r − p, the left-hand side of Equation (3.12)
can be expressed as

(3.17)

[
p
j

]
q

[
p− 1
k − 1

]
q

(−1)n−pq−np+(p+1
2 )+(k2)+(j2)

j∑
u=0

(q−j, qp+1, qp)u
(q, qp−j+1, qp−k+1)u

qu.
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Similarly, using the simple identities and setting u = j − a, we see that the right-hand side
of Equation (3.12) can be expressed as

(3.18) q−p(n−j)+(p+1
2 )+(k−j2 )+(j2)(−1)n+j−p

[
k
j

]
q

[
p− 1

k − j − 1

]
q

p−k+j∑
u=0

(q−j, qk, q−p+k−j)u
(q, qk−j, qk−j+1)u

qu(p+1).

The next step is to express (3.17) and (3.18) in terms of the hypergeometric series 3φ2.
The expression (3.17) is given by

(3.19)

[
p
j

]
q

[
p− 1
k − 1

]
q

(−1)n−pq−np+(p+1
2 )+(k2)+(j2)3φ2

(
q−j, qp+1, qp

qp−j+1, qp−k+1; q, q

)
whereas (3.18) is equal to
(3.20)

q−p(n−j)+(p+1
2 )+(k−j2 )+(j2)(−1)n+j−p

[
k
j

]
q

[
p− 1

k − j − 1

]
q

3φ2

(
q−j, qk, q−p+k−j

qk−j, qk−j+1 ; q, qp+1

)
.

The fact that (3.19) = (3.20) is a consequence of Lemma 3.2. �

4. Proofs of the Main Results

Our starting point is the following expansion (see [5, Eqn. 2.72]) of en in the modified
Macdonald basis:

(4.1) en =
∑
λ`n

MBλΠλH̃λ

wλ
,

where

• M = (1− q)(1− t),
• Bλ =

∑
(i,j)∈λ q

i−1tj−1, where the sum is over all cells (i, j) in the Ferrers diagram of
λ,
• Πλ =

∏
(1,1) 6=(i,j)∈λ(1−qi−1tj−1), where the product is over all cells (i, j) in the Ferrers

diagram of λ other than the northwest corner (1, 1), and
• wλ =

∏
c∈λ(q

a(c) − tl(c)+1)(tl(c) − qa(c)+1), where the product is over all cells c in the
diagram of λ and a(c), l(c) are the arm and leg lengths (see [5, p. 29]) of the cell c in
λ.

If we apply the operator ∆′ek−1
to both sides of Equation (4.1), we get

(4.2) ∆′ek−1
en =

∑
λ`n

ek−1[Bλ − 1]
MBλΠλH̃λ

wλ
.

Here we used the plethystic shorthand ek−1[Bλ − 1] = ek−1(. . . , qi−1tj−1, . . . ) where (i, j)
range over all cells 6= (1, 1) in the Ferrers diagram of λ.

Recall that H̃λ|t=0 = revqQ
′
λ for any partition λ. If we evaluate both sides of Equation (4.2)

at t = 0, we get

(4.3) ∆′ek−1
en
∣∣
t=0

=
∑
λ`n

(−1)n−`(λ)q(
k
2)−2b(λ)−n+

∑
i (
mi(λ)+1

2 )
[
`(λ)− 1
k − 1

]
q

[
`(λ)
m(λ)

]
q

· revqQ
′
λ.
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Here we used the evaluation

(4.4) ek−1[Bλ − 1] = ek−1(1, q, . . . , q`(λ)−1) = q(
k
2)
[
`(λ)− 1
k − 1

]
q

.

Equation (4.3) can be expressed in terms of the D-functions Dn,r.

Lemma 4.1. We have the identity

(4.5) ∆′ek−1
en
∣∣
t=0

= q(
k
2)

n∑
r=k

(−1)n−rq(
r+1
2 )−nr

[
r − 1
k − 1

]
q

Dn,r.

Proof. Starting with Equation (4.3) and grouping partitions λ ` n according to their number
of parts we have

∆′ek−1
en
∣∣
t=0

=
∑
λ`n

(−1)n−`(µ)q(
k
2)−2b(µ)−n+

∑
i (
mi(λ)+1

2 )
[
`(λ)− 1
k − 1

]
q

[
`(λ)
m(µ)

]
q

· revqQ
′
λ

= q(
k
2)−n

n∑
r=k

(−1)n−r
[
r − 1
k − 1

]
q

∑
λ`n
`(µ)=r

q−2b(µ)+
∑
i (
mi(λ)+1

2 )
[

r
m(λ)

]
q

· revqQ
′
λ.

We focus on the internal summand. We have∑
µ`n
`(λ)=r

q−2b(λ)+
∑
i (
mi(λ)+1

2 )
[

r
m(λ)

]
q

· revqQ
′
λ

=
∑
λ`n
`(λ)=r

q−2b(µ)+
∑
i (
mi(λ)+1

2 )+
∑
i<j mi(λ)mj(λ)−

∑
i<j mi(λ)mj(λ)

[
r

m(λ)

]
q

· revqQ
′
λ

= q(
r+1
2 )

∑
λ`n
`(λ)=r

q−2b(λ)−
∑
i<j mi(λ)mj(λ)

[
r

m(λ)

]
q

· revqQ
′
λ

= q(
r+1
2 )

∑
λ`n
`(λ)=r

q−b(λ) ·

[
q
∑
i<j −mi(λ)mj(λ)

[
r

m(λ)

]
q

]
·
[
q−b(λ)revqQ

′
λ(x; q)

]

= q(
r+1
2 )−(r2)

∑
λ`n
`(λ)=r

q−b(λ) ·
[

r
m(λ)

]
q−1

·Q′λ(x; q−1)

= q(
r+1
2 )−(r2)q−(r2)−(n−r)(r−1) · [q(

r
2)+(n−r)(r−1) · ωCn,r(x; q−1)]

= q(
r+1
2 )−r(r−1)−(n−r)(r−1) ·Dn,r(x; q)

= q(
r+1
2 )−nr+n ·Dn,r(x; q).

The second equality used
∑

i

(
mi(λ)+1

2

)
+
∑

i<jmi(λ)mj(λ) =
(
`(λ)+1

2

)
. The fourth

equality comes from the fact that the degree of the palindromic polynomial
[
`(λ)
m(λ)

]
q

is∑
i<jmi(λ)mj(λ) and that the q-degree of Q′λ(x; q) is b(λ).
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Going back to the assertion of the lemma, we have

∆′ek−1
en
∣∣
t=0

= q(
k
2)−n

n∑
r=k

(−1)n−r
[
r − 1
k − 1

]
q

∑
λ`n
`(λ)=r

q−2b(µ)+
∑
i (
mi(λ)+1

2 )
[

r
m(λ)

]
q

· revqQ
′
λ

= q(
k
2)−n

n∑
r=k

(−1)n−r
[
r − 1
k − 1

]
q

· q(
r+1
2 )−nr+n ·Dn,r(x; q).

Cancelation of a factor of qn completes the proof. �

We are in a position to give our proof of Equation (1.10), and thus give a new proof of
the Delta Conjecture at t = 0.

Theorem 4.2 (Garsia, H., Remmel, Yoo [3]). Let k ≤ n be positive integers. We have

∆′ek−1
en
∣∣
t=0

= ∆′ek−1
en
∣∣
q=0,t=q

= Cn,k.

Proof. Let j ≥ 1. Given Lemma 4.1 and Lemma 2.2, the symmetric function e⊥j ∆′ek−1
en|t=0

has the following D-function expansion, where we adopt the convention that Dn,k = 0 if
k > n or if k < 0:

(4.6) e⊥j ∆′ek−1
en
∣∣
t=0

= q(
k
2)+(j2)

n∑
r=k

(−1)n−r
[
r − 1
k − 1

]
q

q(
r+1
2 )−nr

[
r
j

]
q

×
r∑

m=r−j

q(r−m)(n−j−m)

[
j

r −m

]
q

Dn−j,m.

If we want e⊥j ∆′ek−1
en|t=0 to satisfy the recursion of Lemma 3.1, we must have

(4.7) e⊥j ∆′ek−1
en
∣∣
t=0

=

j∑
r=0

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

∆′ek−r−1
en−j

∣∣
t=0
.

By Lemma 4.1, we know

(4.8)

j∑
r=0

q(
r
2)
[
k
a

]
q

[
k + j − r − 1

j − r

]
q

∆′ek−r−1
en−j

∣∣
t=0

=

j∑
r=0

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

q(
k−r
2 )

n−j∑
b=k−r

(−1)n−j−b
[

b− 1
k − r − 1

]
q

q(
b+1
2 )−(n−j)bDn−j,b.

We want to show that the right-hand side of Equation (4.6) is equal to the right-hand side
of Equation (4.8). To this end, let p be an integer in the range k − j ≤ p ≤ n − j. The
coefficient of Dn−j,p in Equation (4.6) is

(4.9) q(
k
2)+(j2)

p+j∑
r=p

(−1)n−r
[
r − 1
k − 1

]
q

q(
r+1
2 )−nr

[
r
j

]
q

q(r−p)(n−j−p)
[

j
r − p

]
q

,

whereas the coefficient of Dn−j,p in Equation (4.8) is

(4.10)

j∑
r=k−p

q(
r
2)
[
k
r

]
q

[
k + j − r − 1

j − r

]
q

q(
k−r
2 )(−1)n−j−p

[
p− 1

k − r − 1

]
q

q(
p+1
2 )−(n−j)p.
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Theorem 4.2 will be proven if we can only establish the equality of the expressions (4.9) and
(4.10). This is Lemma 3.3. �

We use Theorem 4.2 to derive the more general Theorem 1.2. In this proof we will use
the notation of plethysm; see [5].

Proof of Theorem 1.2. Let k ≤ n be positive integers. The polynomials Q′µ and revq(Q
′
µ)

have Schur expansions

Q′µ =
∑
λ`n

Kλ,µ(q)sλ,

revq(Q
′
µ) =

∑
λ`n

qb(µ)Kλ,µ(1/q)sλ.

By Equation (1.7), Equation (4.3), and the truth of the Delta Conjecture at q = 0 (i.e.,
Theorem 4.2) we have the following identity:

(4.11) qk(k−1)
∑
µ`n

(−1)n−`(µ)q−n−b(µ)+
∑n
i=1 (mi+1

2 )
[
`(µ)− 1
k − 1

]
q

[
`(µ)
m(µ)

]
q

Kλ,µ(1/q)

=
∑
µ`n
`(µ)=k

qb(µ)

[
`(µ)
m(µ)

]
q

Kλ′,µ(q).

Equation (4.11) is also recorded in [3, Prop. 3.2].
Using reasoning identical to that of our derivation of Equation (4.3), we see that ∆′sνen|t=0

has the following expansion in the q-reversed Q′-basis:
(4.12)

∆′sνen
∣∣
t=0

=
∑
µ`n

(−1)n−`(µ)sν(q, q
2, . . . , q`(µ)−1)q−n−2b(µ)+

∑
i (
mi(µ)+1

2 )
[
`(µ)
m(µ)

]
q

· revq(Q
′
µ).

Multiplying both sides of (4.11) by sλ, summing over λ and applying ω, we get the following
equivalent form of (4.11):

(4.13) qk(k−1)
∑
µ`n

(−1)n−`(µ)q−n−b(µ)+
∑n
i=1 (mi+1

2 )
[
`(µ)− 1
k − 1

]
q

[
`(µ)
m(µ)

]
q

∑
λ

Kλ′,µ(1/q)sλ

=
∑
µ`n
`(µ)=k

qb(µ)

[
`(µ)
m(µ)

]
q

Q′µ

for all λ ` n and 1 ≤ k ≤ n.
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Note that the sum on the right-hand side of (4.13) also occurs on the right-hand side in
Theorem 1.2. By Equation (4.12), the following equation is equivalent to Theorem 1.2:

(4.14)
∑
µ`n

(−1)n−`(µ)q−b(µ)−n+
∑
i (
mi(µ)+1

2 )
[
`(µ)
m(µ)

]
q

∑
λ

sλKλ′,µ(1/q)sν(q, q
2, . . . , q`(µ)−1)

=
∑
µ`n

(−1)n−`(µ)q−(`(µ)2 )−(`(µ)2 )+`(µ)(`(µ)−1)−n−b(µ)+
∑
i (
mi(µ)+1

2 )
[
`(µ)
m(µ)

]
q

∑
λ

sλKλ′,µ(1/q)

×
∑
k,ρ

`(ρ)=k−1, |ρ|=|ν|

q|ν|+b(ρ)

[
`(µ)− 1
k − 1

]
q

[
k − 1
m(ρ)

]
q

Kν,ρ(q).

If we can show that the coefficients of sλKλ′,µ(1/q) in the inner sums on both sides of (4.14)
are equal for any µ ` n then (4.14), and hence Theorem 1.2, will follow. Replacing `(µ) by
j + 1, we see that this statement can be expressed as

sν(1, q, q
2, . . . , qj−1) =

∑
k,ρ

`(ρ)=k−1, |ρ|=|ν|

qb(ρ)

[
j

k − 1

]
q

[
k − 1
m(ρ)

]
q

Kν,ρ(q),(4.15)

for any nonnegative integer j.
To prove (4.15), multiply both sides of (4.15) by sν = sν [x] and sum over ν. Using the

Cauchy identity, (4.15) is thus equivalent to

hn

[
(1− qj) x

1− q

]
=

∑
k,ρ

`(ρ)=k−1, |ρ|=|ν|

qb(ρ)

[
j

k − 1

]
q

[
k − 1
m(ρ)

]
q

∑
ν

sν [x]Kν,ρ(q),(4.16)

for any nonnegative integer j. Using [3, Eqn. 14] this can be expressed as

hn

[
(1− qj) x

1− q

]
=

∑
ρ, |ρ|=|ν|

qn(ρ)

[
j
`(ρ)

]
q

[`(ρ)]!(1− q)`(ρ)Pρ

[
x

1− q
; q

]
,(4.17)

for any nonnegative integer j. Here Pρ is the Hall–Littlewood P -function. Making the
transformations x 7→ x/(1 − q) and y 7→ 1 − qj in [3, Eqn. 17], another expression for the
left-hand side of (4.17) is ∑

ρ, |ρ|=|ν|

Pρ

[
x

1− q
; q

]
Q′ρ[1− qj; q].(4.18)

By [3, Lem. 3.3] we have

Q′ρ[1− qj; q] = qb(ρ)(1− qj)(1− qj−1) · · · (1− qj−`(ρ)+1).(4.19)

Using (4.19) in (4.18) and simplifying, we see that the right-hand side of (4.17) is the same
as (4.18), which completes the proof. �

We want to prove the algebraic interpretation of ∆′sνen at t = 0 given in Theorem 1.3.
This interpretation is based on the q-reversal of the following symmetric function identity.
We consider symmetric functions in two infinite variable sets: x and y. We let ωx and ωy

be the ω involution acting on the x and y variables (respectively).
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Proposition 4.3. Let n,m ≥ 0. We have

(4.20)
∑
ν`m

sν(y) · ωx∆′sνen(x)
∣∣
t=0

=
∑
k≥0

qm−k+1ωyCm,k−1(y; q) · ωxCn,k(x; q).

Proof. By Theorem 1.2,∑
ν`m

sν(y) · ωx∆′sνen(x)
∣∣
t=0

=
∑
ν`m

sν(y) · ωx

|ν|+1∑
k=`(ν)+1

Pν,k−1(q)
∑
µ`n
`(µ)=k

qb(µ)

[
k

m(µ)

]
q

Q′µ(x; q)

=
∑
ν`m

sν(y) · ωx

|ν|+1∑
k=`(ν)+1

Pν,k−1(q) · ωxCn,k(x; q)

=
∑
ν`m

|ν|+1∑
k=`(ν)+1

q|ν|−(k2)
∑
ρ`m

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

Kν,ρ(q)sν(y) · ωxCn,k(x; q)

=
∑
ν`m

|ν|+1∑
k=`(ν)+1

qm−k+1
∑
ρ`m

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

Kν,ρ(q)sν(y) · ωxCn,k(x; q)

=
∑
ν`m
k≥1

qm−k+1
∑
ρ`m

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

Kν,ρ(q)sν(y) · ωxCn,k(x; q)

=
∑
k≥1

qm−k+1
∑
ρ`m

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

[∑
ν`m

Kν,ρ(q)sν(y)

]
· ωxCn,k(x; q)

=
∑
k≥1

qm−k+1
∑
ρ`m

`(ρ)=k−1

qb(ρ)

[
k − 1
m(ρ)

]
q

Q′ρ(y; q) · ωxCn,k(x; q)

=
∑
k≥1

qm−k+1ωyCm,k−1(y; q) · ωxCn,k(x; q),

which is what we wanted to prove. �

We want to q-reverse the identity of Proposition 4.3.

Proposition 4.4. Let n,m ≥ 0. We have
(4.21)∑
ν`m

qb(ν)sν(y) · (revq ◦ ωx)∆′sνen(x)
∣∣
t=0

=
∑
k≥0

qmn−km−kn+n+k(k−1)Dm,k−1(y; q) ·Dn,k(x; q).

Proof. We want to q-reverse both sides of Equation (4.20). We begin with the left-hand side.

Claim: For any partition ν ` m, the q-degree of ∆′sνen|t=0 is (n− 1)m− b(ν).
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To see why the Claim is true, let ν ` m and consider Equation (4.12), recapitulated here:

∆′sνen
∣∣
t=0

=
∑
µ`n

(−1)n−`(µ)sν(q, q
2, . . . , q`(µ)−1)q−n−2b(µ)+

∑
i (
mi(µ)+1

2 )
[
`(µ)
m(µ)

]
q

· revq(Q
′
µ).

We know that Q′µ (and also revq(Q
′
µ)) has q-degree b(µ). If µ ` n is such that `(µ) > `(ν) so

that the µ-summand on the right-hand side of Equation (4.12) does not vanish, the q-degree
of this µ-summand is therefore

(4.22)

`(ν)∑
i=j

νj(`(µ)− j)− n− 2b(µ) +
∑
i

(
mi(µ) + 1

2

)
+
∑
i<j

mi(µ)mj(µ) + b(µ),

or equivalently

(4.23) m(`(µ)− 1)− b(ν)− n− b(µ) +
∑
i

(
mi(µ) + 1

2

)
+
∑
i<j

mi(µ)mj(µ).

It is not hard to see that Expression (4.23) is maximized uniquely when µ = (1n), in which
case it equals

(4.24) m(n− 1)− b(ν)− n−
(
n

2

)
+

(
n+ 1

2

)
= m(n− 1)− b(ν),

which completes the proof of the Claim.
Our Claim implies that the overall q-degree of the left-hand side of Equation 4.20 (and

hence also the right-hand side) is m(n − 1); this corresponds to the summand ν = (m) so
that b(ν) = 0. The q-reversal of the left-hand side of Equation (4.20) is therefore

(4.25) qm(n−1)
∑
ν`m

qb(ν)−(n−1)msν(y) · (revq ◦ ωx)∆′sνen(x)
∣∣
t=0
,

which coincides with the left-hand side of Equation (4.21).
Now we q-reverse the right-hand side of Equation (4.20). Since the q-degree of Cm,k−1(y; q)

is (k − 2)m −
(
k−1

2

)
and the q-degree of Cn,k(x; q) is (k − 1)n −

(
k
2

)
, the q-reversal of the

right-hand side of Equation (4.20) is

(4.26) qm(n−1)
∑
k≥0

q−m+k−1 ·
[
q−(k−2)m+(k−1

2 )Dm,k−1(y; q)
]
·
[
q−(k−1)n+(k2)Dn,k(x; q)

]
,

which is equivalent to the right-hand side of Equation (4.21). �

We are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. If λ ` m and µ ` n are any partitions, the Frobenius image of the
irreducible Sm×Sn-module Sλ⊗Sµ is Frob(Sλ⊗Sµ) = sλ(y) ·sµ(x), regarded as an element
of the ring Λ(x)⊗ Λ(y) of formal power series which are separately symmetric in the x and
y variables.

More generally, if V is any finite-dimensional Sm×Sn-module, there exist unique integers
cλ,µ ≥ 0 such that

(4.27) V ∼=Sm×Sn

⊕
λ,µ

cλ,µS
λ ⊗ Sµ.
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We then set

(4.28) Frob(V ) :=
∑
λ,µ

cλ,µsλ(y)sµ(x).

Finally, if V =
⊕

d≥0 Vd is a graded Sm × Sn-module with each graded piece Vd finite-
dimensional, we set

(4.29) grFrob(V ; q) :=
∑
d≥0

Frob(V ) · qd.

If U is a graded Sm-module and W is a graded Sn-module, we have

(4.30) grFrob(U ⊗W ; q) = grFrob(U ; q) · grFrob(W ; q).

Recall that the Sm ×Sn-module Vn,m is defined by

(4.31) Vn,m =
⊕
k≥0

(Rm,k−1 ⊗Rn,k){−mn+ km+ kn− n− k(k − 1)}.

Applying Equation (1.15), we see that the right-hand side of Equation (4.21) may be ex-
pressed as

(4.32)
∑
k≥0

qmn−km−kn+n+k(k−1)Dm,k−1(y; q) ·Dn,k(x; q) = grFrob(Vn,m; q).

On the other hand, for any graded Sm×Sn-module V and any partition ν ` m, we have

(4.33) coefficient of sν(y) in grFrob(V ; q) = grFrob(HomSm(Sν , V ); q).

Therefore, we have

(4.34) (revq ◦ ωx)∆′sνen(x)
∣∣
t=0

= q−b(ν) · grFrob(HomSm(Sν , Vn,m); q),

which is what we wanted to prove. �

5. Closing remarks

In this paper we found an expansion of ω∆′sνen|t=0 in the dual Hall–Littlewood basis for
any partition ν ` m. This led to the algebraic interpretation of (revq ◦ω)∆′sνen|t=0 presented
in Theorem 1.3 involving tensor products of Rn,k modules. It may be interesting to find a
simpler module whose graded Frobenius image is (revq ◦ ω)∆′sνen|t=0.

Let k ≤ n be positive integers. The ring Rn,k has the following geometric interpretation.
Denote by Pk−1 the (k− 1)-dimensional complex projective space of lines through the origin
in Ck and let (Pk−1)n denote the n-fold Cartesian product of Pk−1 with itself. In joint work
with Pawlowski [10], the second author defined the open subvariety Xn,k ⊆ (Pk−1)n given by

(5.1) Xn,k := {(`1, . . . , `n) ∈ (Pk−1)n : `1 + · · ·+ `n = Ck}.
A typical point in Xn,k is an n-tuple (`1, . . . , `n) of one-dimensional subspaces of Ck which
together span Ck.

The symmetric group Sn acts on Xn,k by the rule π.(`1, . . . , `n) := (`π1 , . . . , `πn) for any
permutation π = π1 . . . πn ∈ Sn. If H•(Xn,k) denotes the singular cohomology of Xn,k with
integer coefficients, this gives rise to an action of Sn on H•(Xn,k). Pawlowski and the second
author prove [10] that

(5.2) H•(Xn,k) = Z[x1, . . . , xn]/〈en, en−1, . . . , en−k+1, x
k
1, x

k
2, . . . , x

k
n〉.
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The identification (5.2) may be regarded as both an isomorphism of graded rings and an
isomorphism of graded Z[Sn]-modules. The variable xi represents the Chern class c1(`∗i )
of the dual to the ith tautological line bundle `i � Xn,k. In particular, we have Rn,k =
Q⊗Z H

•(Xn,k).
The isomorphism (5.2), together with the fact that Xn,n is homotopy equivalent to the

manifold F`(n) of complete flags in Cn, justify the statement that Xn,k is the flag variety
attached to the Delta Conjecture (i.e., the Macdonald eigenoperator ∆′ek−1

). Given an arbi-
trary partition ν, it would be interesting to find an analogous variety Xn,ν with an action of
Sn which would play the corresponding role for the operator ∆′sν . That is, the cohomology
ring H•(Xn,ν) should carry an action of Sn such that (upon tensoring with Q), the graded
Frobenius image of this action is (revq ◦ ω)∆′sνen|t=0. The space Xn,k solves this problem
when ν = (1k−1). Theorem 1.3 might be helpful in constructing such a space Xn,ν in general.

We close by giving a geometric interpretation of Equation (4.20), recapitulated here:∑
ν`m

sν(y) · ωx∆′sνen(x)
∣∣
t=0

=
∑
k≥0

qm−k+1ωyCm,k−1(y; q) · ωxCn,k(x; q).

IfM = M0⊕M1⊕· · ·⊕Md is any graded vector space withMd 6= 0, let M̃ = M̃0⊕M̃1⊕· · ·⊕M̃d

be the reversed graded vector space with components

(5.3) M̃i := Md−i, 0 ≤ i ≤ d.

In terms of reversals of R-modules, Equation (4.20) reads

(5.4) ω∆′sνen
∣∣
t=0

= grFrob(HomSn(Sν ,Wn,m)),

where

(5.5) Wn,m :=
⊕
k≥0

(R̃m,k−1 ⊗ R̃n,k){−m+ k − 1}.

Taking the reversal R̃n,k of the quotient Rn,k := Q[x1, . . . , xn]/In,k is not a natural ring-
theoretic operation, but it has a geometric interpretation in terms of the variety Xn,k.

Let X+
n,k = Xn,k ∪ {∞} denote the one-point compactification of Xn,k, where ∞ is the

adjoined point. The Borel–Moore homology H̄•(Xn,k) of Xn,k is the (singular) homology of
the pair (X+

n,k, {∞}):

(5.6) H̄•(Xn,k) := H•(X
+
n,k, {∞}).

The action of Sn on Rn,k is both continuous and proper, and so induces a (graded) action
of Sn on the Borel–Moore homology H̄•(Xn,k). By Poincaré duality and Equation (5.2), we
have the isomorphism of Sn-modules

(5.7) R̃n,k
∼=Sn Q⊗Z H̄•(Xn,k).

This yields a geometric interpretation of Equation (4.20) in terms of Borel–Moore homology.
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