A POSITIVE-DEFINITE INNER PRODUCT FOR VECTOR-VALUED MACDONALD POLYNOMIALS

CHARLES F. DUNKL

Abstract

In a previous paper J.-G. Luque and the author (Sem. Loth. Combin. 2011) developed the theory of nonsymmetric Macdonald polynomials taking values in an irreducible module of the Hecke algebra of the symmetric group \mathcal{S}_{N}. The polynomials are parametrized by (q, t) and are simultaneous eigenfunctions of a commuting set of Cherednik operators, which were studied by Baker and Forrester (IMRN 1997). In the Dunkl-Luque paper there is a construction of a pairing between $\left(q^{-1}, t^{-1}\right)$-polynomials and (q, t)-polynomials, and for which the Macdonald polynomials form a biorthogonal set. The present work is a sequel with the purpose of constructing a symmetric bilinear form for which the Macdonald polynomials form an orthogonal basis and of determining the region of (q, t)-values for which the form is positive-definite. Irreducible representations of the Hecke algebra are characterized by partitions of N. The positivity region depends only on the maximum hook-length of the Ferrers diagram of the partition.

1. Introduction

The theory of nonsymmetric Jack polynomials was generalized by Griffeth [4] to polynomials on the complex reflection groups of type $G(n, p, N)$ taking values in irreducible modules of the groups. This theory simplifies somewhat for the group $G(1,1, N)$, the symmetric group of N objects, where any irreducible module is spanned by standard Young tableaux all of the same shape, corresponding to a partition of N. Luque and the author [3] developed an analogous theory for vectorvalued Macdonald polynomials taking values in irreducible modules of the Hecke algebra of a symmetric group. The structure has parameters (q, t) and depends on a commuting set of Cherednik operators whose simultaneous eigenfunctions are the aforementioned Macdonald polynomials. The paper showed how to construct the polynomials by means of a Yang-Baxter graph (see [5]). Also a bilinear form was

[^0]defined which paired polynomials for the parameters $\left(q^{-1}, t^{-1}\right)$ with those parametrized by (q, t) and resulted in biorthogonality relations for the Macdonald polynomials. The present paper is a sequel whose aim is to define a symmetric bilinear form for which these polynomials are mutually orthogonal. Some other natural conditions are imposed on the form to force uniqueness. The form is positive-definite for a (q, t)-region determined by the specific module.

For purposes of illustration the form is first defined for the scalar case, and leads to expressions only slightly different from the well-known hook-product formulas. For the trivial representation of the Hecke algebra, corresponding to the one-part partition, the vector-valued polynomials specialize to the scalar polynomials. Section 3 contains a short outline of representation theory of the Hecke algebra, the Yang-Baxter graph of vector-valued Macdonald polynomials and the process leading to the definition of the symmetric bilinear form, followed by the characterization of (q, t)-values yielding positivity of the form. The details of the construction of the polynomials and related operators along with the proofs of their properties are found in [3].
1.1. Notation. Let $\mathbb{N}_{0}:=\{0,1,2,3, \ldots\}$. The elements of \mathbb{N}_{0}^{N} are called compositions, and for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{N}_{0}^{N}$ let $|\alpha|:=\sum_{i=1}^{N} \alpha_{i}$. Let $\mathbb{N}_{0}^{N,+}$ denote the set of partitions $\left\{\lambda \in \mathbb{N}_{0}^{N}: \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{N}\right\}$, and let α^{+}denote the nonincreasing rearrangement of α; for example, if $\alpha=(1,2,1,4)$, then $\alpha^{+}=(4,2,1,1)$. There are two partial orders on compositions used in this work: for $\alpha, \beta \in \mathbb{N}_{0}^{N}$ the relation $\alpha \succ \beta$ means $\alpha \neq \beta$ and $\sum_{i=1}^{j}\left(\alpha_{i}-\beta_{i}\right) \geq 0$ for $1 \leq j \leq N$ (the dominance order), and $\alpha \triangleright \beta$ means $|\alpha|=|\beta|$ and $\alpha^{+} \succ \beta^{+}$, or $\alpha^{+}=\beta^{+}$and $\alpha \succ \beta$. The rank function for $\alpha \in \mathbb{N}_{0}^{N}$ is

$$
\begin{equation*}
r_{\alpha}(i):=\#\left\{j: \alpha_{j}>\alpha_{i}\right\}+\#\left\{j: 1 \leq j \leq i, \alpha_{j}=\alpha_{i}\right\}, 1 \leq i \leq N \tag{1.1}
\end{equation*}
$$

We have $\alpha=\alpha^{+}$if and only if $r_{\alpha}(i)=i$ for all i.
The symmetric group \mathcal{S}_{N} is generated by the adjacent transpositions $s_{i}:=(i, i+1)$ for $1 \leq i<N$, where s_{i} acts on an N-tuple $a=\left(a_{1}, \ldots, a_{N}\right)$ by $a . s_{i}=\left(\ldots, a_{i+1}, a_{i}, \ldots\right)$, interchanging entries $\# i$ and $\#(i+1)$. For a composition $\alpha \in \mathbb{N}_{0}^{N}$ the inversion number is $\operatorname{inv}(\alpha):=\#\left\{(i, j): 1 \leq i<j \leq N, \alpha_{i}<\alpha_{j}\right\}$. If $\alpha_{i}<\alpha_{i+1}$ then $\operatorname{inv}\left(\alpha . s_{i}\right)=\operatorname{inv}(\alpha)-1$.

The space of polynomials is $\mathcal{P}:=\mathbb{K}\left[x_{1}, x_{2}, \ldots, x_{N}\right]$, where $\mathbb{K}:=$ $\mathbb{Q}(q, t)$ and q, t are transcendental or generic, that is, complex numbers satisfying $q \neq 1$ and $q^{a} t^{b} \neq 1$ for $a, b \in \mathbb{Z}$ and $-N \leq b \leq N$. For $\alpha \in$
\mathbb{N}_{0}^{N} we write x^{α} for the monomial $\prod_{i=1}^{N} x_{i}^{\alpha_{i}}$. The space of homogeneous polynomials of degree n is defined as $\mathcal{P}_{n}:=\operatorname{span}_{\mathbb{K}}\left\{x^{\alpha}:|\alpha|=n\right\}$ for $n=0,1,2, \ldots$ The group \mathcal{S}_{N} acts on polynomials by permutation of coordinates, $p(x) \rightarrow\left(p s_{i}\right)(x):=p\left(x . s_{i}\right)$.

The Hecke algebra $\mathcal{H}_{N}(t)$ is the associative algebra generated by $\left\{T_{1}, T_{2}, \ldots, T_{N-1}\right\}$ subject to the relations

$$
\begin{align*}
\left(T_{i}+1\right)\left(T_{i}-t\right) & =0 \tag{1.2}\\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, \quad 1 \leq i \leq N-2 \\
T_{i} T_{j} & =T_{j} T_{i}, \quad 1 \leq i<j-1 \leq N-2
\end{align*}
$$

The quadratic relation implies $T_{i}^{-1}=\frac{1}{t}\left(T_{i}+1-t\right) \in \mathcal{H}_{N}(t)$. For generic t there is a linear isomorphism $\mathbb{K} \mathcal{S}_{N} \rightarrow \mathcal{H}_{N}(t)$ generated by $s_{i} \rightarrow T_{i}$.

For $p \in \mathcal{P}$ and $1 \leq i<N$ define

$$
\begin{equation*}
p(x) T_{i}:=(1-t) x_{i+1} \frac{p(x)-p\left(x . s_{i}\right)}{x_{i}-x_{i+1}}+t p\left(x . s_{i}\right) . \tag{1.3}
\end{equation*}
$$

It can be shown straightforwardly that these operators satisfy the defining relations of $\mathcal{H}_{N}(t)$. Also $p s_{i}=p$ (symmetry in $\left(x_{i}, x_{i+1}\right)$) if and only if $p T_{i}=t p$ (because $p T_{i}-t p=\frac{t x_{i}-x_{i+1}}{x_{i}-x_{i+1}}\left(p-p s_{i}\right)$), and $p T_{i}=-p$ if and only if $p(x)=\left(t x_{i}-x_{i+1}\right) p_{0}(x)$ where $p_{0} \in \mathcal{P}$ and $p_{0} s_{i}=p_{0}$. Also $x_{i} T_{i}=x_{i+1}$ and $1 T_{i}=t$.

2. Scalar nonsymmetric Macdonald polynomials

For $f \in \mathcal{P}$ define shift, Cherednik and Dunkl operators by (see [1], and also [3])

$$
\begin{align*}
f w(x) & :=f\left(q x_{N}, x_{1}, x_{2}, \ldots, x_{N-1}\right) \\
f \xi_{i} & :=t^{i-1} f T_{i-1}^{-1} T_{i-2}^{-1} \cdots T_{1}^{-1} w T_{N-1} T_{N-2} \cdots T_{i}, \tag{2.1}\\
f \mathcal{D}_{N} & :=\left(f-f \xi_{N}\right) / x_{N}, f \mathcal{D}_{i}:=\frac{1}{t} f T_{i} \mathcal{D}_{i+1} T_{i} .
\end{align*}
$$

Note that $\xi_{i}=\frac{1}{t} T_{i} \xi_{i+1} T_{i}$. It is a nontrivial result that D_{i} maps \mathcal{P}_{n} to \mathcal{P}_{n-1}. The operators ξ_{i} commute with each other and there is a basis of simultaneous eigenfunctions, the nonsymmetric Macdonald polynomials M_{α}, labeled by $\alpha \in \mathbb{N}_{0}^{N}$ with \triangleright-leading term $q^{a} t^{b} x^{\alpha}$ with $\alpha, \beta \in \mathbb{N}_{0}$ such that

$$
\begin{align*}
M_{\alpha}(x) & =q^{a} t^{b} x^{\alpha}+\sum_{\alpha \triangleright \beta} A_{\alpha \beta}(q, t) x^{\beta} \tag{2.2}\\
M_{\alpha} \xi_{i} & =q^{\alpha_{i}} t^{N-r_{\alpha}(i)} M_{\alpha}, 1 \leq i \leq N
\end{align*}
$$

where the coefficients $A_{\alpha \beta}(q, t)$ are rational functions of (q, t) whose denominators are of the form $\left(1-q^{a} t^{b}\right)$. The spectral vector is $\zeta_{\alpha}(i)=$ $q^{\alpha_{i}} t^{N-r_{\alpha}(i)}, 1 \leq i \leq N$. There is a simple relation between M_{α} and $M_{\alpha . s_{i}}$ when $\alpha_{i}<\alpha_{i+1}$ and $\rho=\zeta_{\alpha}(i+1) / \zeta_{\alpha}(i)=q^{\alpha_{i+1}-\alpha_{i}} t^{r_{\alpha}(i)-r_{\alpha}(i+1)}$, namely

$$
\begin{align*}
M_{\alpha} T_{i} & =M_{\alpha s_{i}}-\frac{1-t}{1-\rho} M_{\alpha} \tag{2.3}\\
M_{\alpha . s_{i}} T_{i} & =\frac{(1-\rho t)(t-\rho)}{(1-\rho)^{2}} M_{\alpha}+\frac{\rho(1-t)}{(1-\rho)} M_{\alpha . s_{i}} \tag{2.4}
\end{align*}
$$

and $\zeta_{\alpha . s_{i}}=\zeta_{\alpha} . s_{i}$. If $\alpha_{i}=\alpha_{i+1}$ then

$$
\begin{equation*}
M_{\alpha} T_{i}=t M_{\alpha} \tag{2.5}
\end{equation*}
$$

The other step needed to construct any M_{α} starting from 1 is the affine step

$$
\begin{align*}
M_{\alpha \Phi} & =x_{N}\left(M_{\alpha} w\right) \tag{2.6}\\
\alpha \Phi & :=\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{N}, \alpha_{1}+1\right) \\
\zeta_{\alpha \Phi} & =\left(\zeta_{\alpha}(2), \ldots, \zeta_{\alpha}(N), q \zeta_{\alpha}(1)\right)
\end{align*}
$$

Formulas (2.3) and (2.6) can be interpreted as edges of a YangBaxter graph for generating the polynomials (see [5, Sec. 9]). This graph has the root $\left(\mathbf{0},\left[t^{N-i}\right]_{i=1}^{N}, 1\right)$ and nodes $\left(\alpha, \zeta_{\alpha}, M_{\alpha}\right)$. There are steps $\left(\alpha, \zeta_{\alpha}, M_{\alpha}\right) \xrightarrow{s_{i}}\left(\alpha . s_{i}, \zeta_{\alpha} \cdot s_{i}, M_{\alpha . s_{i}}\right)$ for $\alpha_{i+1}>\alpha_{i}$ given by

$$
M_{\alpha s_{i}}=M_{\alpha} T_{i}+\frac{1-t}{1-\zeta_{\alpha}(i+1) / \zeta_{\alpha}(i)} M_{\alpha}
$$

and affine steps $\left(\alpha, \zeta_{\alpha}, M_{\alpha}\right) \xrightarrow{\Phi}\left(\alpha \Phi, \zeta_{\alpha \Phi}, M_{\alpha \Phi}\right)$ (given by (2.6)).
There is a short proof using Macdonald polynomials that \mathcal{D}_{N} maps \mathcal{P}_{N} to \mathcal{P}_{N-1} : when $\alpha_{N}=0$ then $r_{\alpha}(N)=N, \zeta_{\alpha}(N)=1$ and $M_{\alpha} \xi_{N}=$ M_{α}, thus $M_{\alpha} \mathcal{D}_{N}=0$; if $\alpha_{N} \geq 1$ then the raising (affine) formula is $M_{\alpha}(x)=x_{N} M_{\beta} w(x)$ where $\beta=\left(\alpha_{N}-1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{N-1}\right)$, thus

$$
M_{\alpha}\left(1-\xi_{N}\right)=\left(1-\zeta_{\alpha}(N)\right) M_{\alpha},
$$

which is divisible by x_{N}.
Our logical outline is to first state a number of hypotheses to be satisfied by the inner product, then deduce consequences leading to a formula which is used as a definition. To finish one has to show that the hypotheses are satisfied. The presentation is fairly sketchy for the scalar case which is mostly intended as illustration. The material for vector-valued Macdonald polynomials is more detailed.

The hypotheses (BF1) for the symmetric bilinear form $\langle\cdot, \cdot\rangle$ on \mathcal{P}, with $w^{*}:=T_{N-1}^{-1} \cdots T_{1}^{-1} w T_{N-1} \cdots T_{1}$, are (for $f, g \in \mathcal{P}$):

$$
\begin{align*}
\langle 1,1\rangle & =1 \tag{2.7}\\
\left\langle f T_{i}, g\right\rangle & =\left\langle f, g T_{i}\right\rangle, 1 \leq i<N \tag{2.8}\\
\left\langle f \xi_{N}, g\right\rangle & =\left\langle f, g \xi_{N}\right\rangle \tag{2.9}\\
\left\langle f \mathcal{D}_{N}, g\right\rangle & =(1-q)\left\langle f, x_{N}\left(g w^{*} w\right)\right\rangle . \tag{2.10}
\end{align*}
$$

From the definition of $w^{*}=T_{N-1}^{-1} \cdots T_{1}^{-1} \xi_{1}$ it follows that

$$
\begin{align*}
\left\langle f, g w^{*}\right\rangle & =\left\langle f, g T_{N-1}^{-1} \cdots T_{1}^{-1} \xi_{1}\right\rangle=\left\langle f \xi_{1}, g T_{N-1}^{-1} \cdots T_{1}^{-1}\right\rangle \tag{2.11}\\
& =\left\langle f \xi_{1} T_{1}^{-1} \cdots T_{N-1}^{-1}, g\right\rangle=\langle f w, g\rangle .
\end{align*}
$$

(It is a trivial exercise to show $\left\langle f T_{i}^{-1}, g\right\rangle=\left\langle f, g T_{i}^{-1}\right\rangle$.) Here w^{*} is taken as a symbolic name without claiming that it is the adjoint. Since it is possible that there is a subspace \mathcal{N} of \mathcal{P} such that $\langle f, h\rangle=0$ for all $f \in \mathcal{P}$ and $h \in \mathcal{N}$, the adjoint of an operator is only defined modulo \mathcal{N}. It follows from (2.8), (2.9) and $\xi_{i}=\frac{1}{t} T_{i} \xi_{i+1} T_{i}$ that $\left\langle f \xi_{i}, g\right\rangle=\left\langle f, g \xi_{i}\right\rangle$ for all $f, g \in \mathcal{P}$ and all i. This implies the mutual orthogonality of $\left\{M_{\alpha}: \alpha \in \mathbb{N}_{0}^{N}\right\}$ because the spectral vector ζ_{α} determines α. Implicitly $t \in \mathbb{R}$ since the eigenvalues of T_{i} are $t,-1$. If $\operatorname{deg} f \neq \operatorname{deg} g$ then $\langle f, g\rangle=0$ because the Macdonald polynomials form a homogeneous basis. For convenience denote $\langle f, f\rangle=\|f\|^{2}$ (no claim is being made about positivity).

Definition 1. For $z \in \mathbb{K}$ let

$$
\begin{equation*}
u(z):=\frac{(t-z)(1-z t)}{(1-z)^{2}} \tag{2.12}
\end{equation*}
$$

Note that $u\left(z^{-1}\right)=u(z)$.
Proposition 1. Suppose (BF1) holds, $a_{i}<\alpha_{i+1}$ and

$$
\rho=q^{\alpha_{i+1}-\alpha_{i}} t^{r_{\alpha}(i)-r_{\alpha}(i+1)} .
$$

Then

$$
\left\|M_{\alpha \cdot s_{i}}\right\|^{2}=u(\rho)\left\|M_{\alpha}\right\|^{2} .
$$

Proof. From equation (2.3) we infer $\left\langle M_{\alpha} T_{i}, M_{\alpha . s_{i}}\right\rangle=\left\|M_{\alpha . s_{i}}\right\|^{2}$ (by hypothesis $\left\langle M_{\alpha}, M_{\alpha . s_{i}}\right\rangle=0$), and by equation (2.4) we have

$$
\begin{aligned}
\left\langle M_{\alpha} T_{i}, M_{\alpha . s_{i}}\right\rangle & =\left\langle M_{\alpha}, M_{\alpha . s_{i}} T_{i}\right\rangle \\
& =\frac{(1-\rho t)(t-\rho)}{(1-\rho)^{2}}\left\|M_{\alpha}\right\|^{2}=u(\rho)\left\|M_{\alpha}\right\|^{2} .
\end{aligned}
$$

Definition 2. For $\alpha \in \mathbb{N}_{0}^{N}$ let

$$
\begin{equation*}
\mathcal{E}(\alpha):=\prod_{1 \leq i<j \leq N, \alpha_{i}<\alpha_{j}} u\left(q^{\alpha_{j}-\alpha_{i}} t^{r_{\alpha}(i)-r_{\alpha}(j)}\right) . \tag{2.13}
\end{equation*}
$$

Proposition 2. Suppose (BF1) holds and $\alpha \in \mathbb{N}_{0}^{N}$. Then $\left\|M_{\alpha^{+}}\right\|^{2}=$ $\mathcal{E}(\alpha)\left\|M_{\alpha}\right\|^{2}$.
Proof. Arguing by induction on inv (α) it suffices to show that $\alpha_{i}<$ α_{i+1} implies $\mathcal{E}(\alpha) / \mathcal{E}\left(\alpha . s_{i}\right)=u\left(q^{\alpha_{i+1}-\alpha_{i}} t^{r_{\alpha}(i)-r_{\alpha}(i+1)}\right)$. The factors corresponding to pairs (l, j) with $l, j \neq i, i+1$ are the same in the products, and the pairs with just one of $i, i+1$ are interchanged in $\mathcal{E}(\alpha), \mathcal{E}\left(\alpha . s_{i}\right)$. There is only one factor in $\mathcal{E}(\alpha)$ that is not in $\mathcal{E}\left(\alpha . s_{i}\right)$, namely $u\left(q^{\alpha_{i+1}-\alpha_{i}} t^{r_{\alpha}(i)-r_{\alpha}(i+1)}\right)$ coming from $(i, i+1)$. Thus

$$
\mathcal{E}(\alpha)\left\|M_{\alpha}\right\|^{2}=\mathcal{E}\left(\alpha . s_{i}\right)\left\|M_{\alpha . s_{i}}\right\|^{2}
$$

Lemma 1. Suppose $\alpha \in \mathbb{N}_{0}^{N}$. Then $M_{\alpha \Phi} \mathcal{D}_{N}=\left(1-q \zeta_{\alpha}(1)\right) M_{\alpha} w$.
Proof. By definition we have

$$
\begin{aligned}
M_{\alpha \Phi} \mathcal{D}_{N} & =\left(1 / x_{N}\right) M_{\alpha \Phi}\left(1-\xi_{N}\right) \\
& =\left(1 / x_{N}\right)\left(1-\zeta_{\alpha \Phi}(N)\right) M_{\alpha \Phi}=\left(1-q \zeta_{\alpha}(1)\right) M_{\alpha} w .
\end{aligned}
$$

Remark 1. It is incompatible with (2.7), (2.8) and (2.9) to require either $\left\langle f \mathcal{D}_{N}, g\right\rangle=c\left\langle f, x_{N} g\right\rangle$ with some constant c, or $\left\langle x_{N} f, x_{N} g\right\rangle=\langle f, g\rangle$. Let $f=M_{\alpha \Phi}$ and $g=M_{\beta} w$ with $|\alpha|=|\beta| ;$ then $\left\langle f, x_{N} g\right\rangle=\left\langle M_{\alpha \Phi}, M_{\beta \Phi}\right\rangle$ while

$$
\left\langle f \mathcal{D}_{N}, g\right\rangle=\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha} w, M_{\beta} w\right\rangle=\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha}, M_{\beta} w w^{*}\right\rangle
$$

If $\alpha \neq \beta$ then $\left\langle f, x_{N} g\right\rangle=0$ but in general $\left\langle M_{\alpha}, M_{\beta} w w^{*}\right\rangle \neq 0$; for example $\alpha=(1,0,0,0)$ and $\beta=(0,1,0,0)$. For the second part let $f=$ $M_{\alpha} w$ so that $\left\langle x_{N} f, x_{N} g\right\rangle=\left\langle M_{\alpha \Phi}, M_{\beta \Phi}\right\rangle$, while $\langle f, g\rangle=\left\langle M_{\alpha}, M_{\beta} w w^{*}\right\rangle$.
Proposition 3. Suppose (BF1) holds and $\alpha \in \mathbb{N}_{0}^{N}$. Then $\left\|M_{\alpha \Phi}\right\|^{2}=$ $\frac{1-q \zeta_{\alpha}(1)}{1-q}\left\|M_{\alpha}\right\|^{2}$.
Proof. Let $g \in \mathcal{P}$ with $\operatorname{deg} g=|\alpha|$. Then by the previous lemma

$$
\left\langle M_{\alpha \Phi} \mathcal{D}_{N}, g\right\rangle=\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha} w, g\right\rangle=\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha}, g w^{*}\right\rangle .
$$

Specialize to $g w^{*}=M_{\alpha}$ to obtain

$$
\left\langle M_{\alpha \Phi} \mathcal{D}_{N}, M_{\alpha}\left(w^{*}\right)^{-1}\right\rangle=\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha}, M_{\alpha}\right\rangle .
$$

By (2.10) we have

$$
\begin{aligned}
\left\langle M_{\alpha \Phi} \mathcal{D}_{N}, M_{\alpha}\left(w^{*}\right)^{-1}\right\rangle & =(1-q)\left\langle M_{\alpha \Phi}, x_{N}\left(M_{\alpha}\left(w^{*}\right)^{-1} w^{*} w\right)\right\rangle \\
& =(1-q)\left\langle M_{\alpha \Phi}, M_{\alpha \Phi}\right\rangle .
\end{aligned}
$$

This completes the proof.

Next we use (BF1) to derive a formula for $\left\|M_{\lambda}\right\|^{2}$ for any $\lambda \in \mathbb{N}_{0}^{N,+}$. Suppose $\lambda_{m} \geq 1$ and $\lambda_{i}=0$ for $i>m$. Let

$$
\begin{aligned}
\alpha & =\left(\lambda_{1}, \ldots, \lambda_{m-1}, 0, \ldots 0, \lambda_{m}\right) \\
\beta & =\left(\lambda_{m}-1, \lambda_{1}, \ldots, \lambda_{m-1}, 0, \ldots\right)
\end{aligned}
$$

so that $\alpha=\beta \Phi$, and $\gamma=\beta^{+}=\left(\lambda_{1}, \ldots, \lambda_{m-1}, \lambda_{m}-1,0, \ldots\right)$. Then $\left\|M_{\lambda}\right\|^{2}=\mathcal{E}(\alpha)\left\|M_{\alpha}\right\|^{2}, \quad\left\|M_{\alpha}\right\|^{2}=\frac{1-q \zeta_{\beta}(1)}{1-q}\left\|M_{\beta}\right\|^{2}$ and $\left\|M_{\gamma}\right\|^{2}=$ $\mathcal{E}(\beta)\left\|M_{\beta}\right\|^{2}$. The rank vectors for α, β are $(\ldots, m+1, \ldots, N, m)$ and $(m, 1,2, \ldots, m-1, m+1 \ldots)$ respectively. Then

$$
\begin{align*}
& \mathcal{E}(\alpha)=\prod_{i=m+1}^{N} u\left(q^{\lambda_{m}} t^{i-m}\right)=t^{N-m} \frac{\left(1-q^{\lambda_{m}}\right)\left(1-q^{\lambda_{m}} t^{N-m+1}\right)}{\left(1-q^{\lambda_{m}} t\right)\left(1-q^{\lambda_{m}} t^{N-m}\right)} \tag{2.14}\\
& \zeta_{\beta}(1)=q^{\lambda_{m}-1} t^{N-m} \\
& \mathcal{E}(\beta)=\prod_{i=1}^{m-1} u\left(q^{\lambda_{i}-\lambda_{m}+1} t^{m-i}\right)
\end{align*}
$$

and

$$
\left\|M_{\lambda}\right\|^{2}=\frac{1-q^{\lambda_{m}} t^{N-m}}{1-q} \frac{\mathcal{E}(\alpha)}{\mathcal{E}(\beta)}\left\|M_{\gamma}\right\|^{2} .
$$

(The product $\mathcal{E}(\alpha)$ telescopes. If $m=N$ then $\mathcal{E}(\alpha)=1$.) This is the key ingredient for an inductive argument. Denote the transpose of (the Ferrers diagram) $\lambda \in \mathbb{N}_{0}^{N,+}$ by λ^{\prime}, so that $\operatorname{arm}(\lambda ; i, j)=\lambda_{i}-j$ and leg $(\lambda ; i, j)=\lambda_{j}^{\prime}-i$, and define the hook product

$$
\begin{equation*}
h_{q, t}(\lambda ; z):=\prod_{(i, j) \in \lambda}\left(1-z q^{\operatorname{arm}(i, j)} t^{\operatorname{leg}(i, j)}\right) . \tag{2.15}
\end{equation*}
$$

The changes in the hook product going from λ to γ come from the hooks at $\left\{\left(i, \lambda_{m}\right): 1 \leq i \leq m-1\right\}$ and $\left\{(m, j): 1 \leq j \leq \lambda_{m}\right\}$. Thus

$$
\begin{equation*}
\frac{h_{q, t}(\lambda ; z)}{h_{q, t}(\gamma ; z)}=\prod_{i=1}^{m-1} \frac{1-z q^{\lambda_{i}-\lambda_{m}} t^{m-i}}{1-z q^{\lambda_{i}-\lambda_{m}} t^{m-i-1}}\left(1-z q^{\lambda_{m}-1}\right) \tag{2.16}
\end{equation*}
$$

because $\prod_{j=1}^{\lambda_{m}-1} \frac{1-z q^{\lambda_{m}-j}}{1-z q^{\lambda_{m}-j-1}}(1-z)=1-z q^{\lambda_{m}-1}$ by telescoping (this telescoping property is unique to the scalar case and the norm formulas for the vector-valued case look quite different). Furthermore

$$
\frac{h_{q, t}(\lambda ; t z)}{h_{q, t}(\gamma ; t z)} \frac{h_{q, t}(\gamma ; z)}{h_{q, t}(\lambda ; z)}=t^{1-m} \prod_{i=1}^{m-1} u\left(z q^{\lambda_{i}-\lambda_{m}} t^{m-i}\right) \frac{1-z t q^{\lambda_{m}-1}}{1-z q^{\lambda_{m}-1}} .
$$

Set $z=q$ to obtain

$$
\mathcal{E}(\beta)=t^{m-1}\left(\frac{1-q^{\lambda_{m}}}{1-t q^{\lambda_{m}}}\right) \frac{h_{q, t}(\lambda ; t q)}{h_{q, t}(\gamma ; t q)} \frac{h_{q, t}(\gamma ; q)}{h_{q, t}(\lambda ; q)}
$$

and

$$
\begin{align*}
\frac{\left\|M_{\lambda}\right\|^{2}}{\left\|M_{\gamma}\right\|^{2}}= & t^{1-m}\left(\frac{1-q^{\lambda_{m}} t^{N-m}}{1-q}\right)\left(\frac{1-q^{\lambda_{m}} t}{1-q^{\lambda_{m}}}\right) \tag{2.17}\\
& \times \frac{h_{q, t}(\lambda ; q)}{h_{q, t}(\gamma ; q)} \frac{h_{q, t}(\gamma ; t q)}{h_{q, t}(\lambda ; t q)} t^{N-m} \frac{\left(1-q^{\lambda_{m}}\right)\left(1-q^{\lambda_{m}} t^{N-m+1}\right)}{\left(1-q^{\lambda_{m}} t\right)\left(1-q^{\lambda_{m}} t^{N-m}\right)} \\
= & t^{N-2 m+1}\left(\frac{1-q^{\lambda_{m}} t^{N-m+1}}{1-q}\right) \frac{h_{q, t}(\lambda ; q)}{h_{q, t}(\gamma ; q)} \frac{h_{q, t}(\gamma ; t q)}{h_{q, t}(\lambda ; t q)} .
\end{align*}
$$

Define the generalized q, t factorial for $\lambda \in \mathbb{N}_{0}^{N,+}$ by $(z ; q, t)_{\lambda}=$ $\prod_{i=1}^{N}\left(z t^{1-i} ; q\right)_{\lambda_{i}}$, where $(z ; q)_{n}:=\prod_{i=1}^{N}\left(1-z q^{i-1}\right)$.

Theorem 1. Suppose (BF1) holds and $\lambda \in \mathbb{N}_{0}^{N,+}$. Then

$$
\begin{align*}
\left\|M_{\lambda}\right\|^{2} & =t^{k(\lambda)} \frac{h_{q, t}(\lambda ; q)}{h_{q, t}(\lambda ; q t)} \frac{\left(q t^{N-1} ; q\right)_{\lambda}}{(1-q)^{|\lambda|}} \tag{2.18}\\
k(\lambda) & :=\sum_{i=1}^{N}(N-2 i+1) \lambda_{i}
\end{align*}
$$

Proof. The formula gives the trivial result $\|1\|^{2}=1$, where $M_{0}=1$. One needs only check

$$
\frac{\left(q t^{N-1} ; q, t\right)_{\lambda}}{\left(q t^{N-1} ; q, t\right)_{\gamma}}=\frac{\left(q t^{N-m} ; q\right)_{\lambda_{m}}}{\left(q t^{N-m} ; q\right)_{\lambda_{m}-1}=1-q^{\lambda_{m}} t^{N-m}}
$$

and $k(\lambda)-k(\gamma)=N-2 m+1$.
Note that $k(\lambda)=\sum_{i=1}^{\lfloor N / 2\rfloor}\left(\lambda_{i}-\lambda_{N+1-i}\right)(N-2 i+1) \geq 0$. We now use formula (2.18), together with $\left\langle M_{\alpha}, M_{\beta}\right\rangle=0$ for $\alpha \neq \beta$ and $\left\|M_{\alpha}\right\|^{2}=$ $\mathcal{E}(\alpha)^{-1}\left\|M_{\alpha^{+}}\right\|^{2}$, as definition of the form. It is straightforward to check properties (2.7), (2.8) and (2.9). For (2.10) we need to show $\left\|M_{\alpha \Phi}\right\|^{2}=\frac{1-q \zeta_{\alpha}(1)}{1-q}\left\|M_{\alpha}\right\|^{2}$ (detailed argument in Section 3) and the formula $\left\langle f \mathcal{D}_{N}, g\right\rangle=(1-q)\left\langle f, x_{N}\left(g w^{*} w\right)\right\rangle$. It suffices to prove this for $f=M_{\gamma}$ and $g w^{*}=M_{\beta}$ with $|\gamma|=|\beta|+1$; indeed $\left\langle M_{\gamma} \mathcal{D}_{N}, M_{\beta}\left(w^{*}\right)^{-1}\right\rangle=$ $\left\langle M_{\gamma} \mathcal{D}_{N} w^{-1}, M_{\beta}\right\rangle$ and $\left\langle M_{\gamma}, x_{N} M_{\beta} w\right\rangle=\left\langle M_{\gamma}, M_{\beta \Phi}\right\rangle$. If $\gamma=\alpha \Phi$ for some α then both terms vanish for $\alpha \neq \beta$, otherwise the equation

Figure 1. Logarithmic coordinates, $\mathrm{N}=4$
$\left\|M_{\alpha \Phi}\right\|^{2}=\frac{1-q \zeta_{\alpha}(1)}{1-q}\left\|M_{\alpha}\right\|^{2}$ holds. If $\gamma_{N}=0$ then $M_{\gamma} \mathcal{D}_{N}=0$ and $\left\langle M_{\gamma}, M_{\beta \Phi}\right\rangle=0$ (since $\gamma \neq \beta \Phi$).

The last of our concerns here is to determine the (q, t) region of positivity of $\langle\cdot, \cdot\rangle$. Inspection of the norm formula shows that there is an even number of factors of the form $1-q^{a} t^{b}$ where $a \geq 1$ and $0 \leq b \leq N$. There are two possibilities: either each such factor is positive or each is negative. Always assume $q, t>0$ and $q \neq 1$. If each is positive then $0<q<1$ and $q^{a} t^{b} \leq q t^{b}$. If $0<t \leq 1$ then $q t^{b} \leq q<1$, or if $t>1$ then $q t^{b} \leq q t^{N}<1$, that is $q<t^{-N}$. If each factor is negative then $q>1$: if $t \geq 1$ then $q^{a} t^{b} \geq q>1$, or if $0<t \leq 1$ then $q^{a} t^{b} \geq q t^{b} \geq q t^{N}>1$, that is, $q>t^{-N}$.

Proposition 4. The inner product $\langle\cdot, \cdot\rangle$ is positive-definite, that is, $\left\langle M_{\alpha}, M_{\alpha}\right\rangle>0$ for all $\alpha \in \mathbb{N}_{0}^{N}$ provided $q, t>0$, and $q<\min \left(1, t^{-N}\right)$ or $q>\max \left(1, t^{-N}\right)$.

Figure 1 is an illustration of the positivity region with $N=4$ using logarithmic coordinates.

3. Vector-valued Macdonald polynomials.

These are polynomials whose values lie in an irreducible $\mathcal{H}_{N}(t)$ module. The generating relations for the Hecke algebra $\mathcal{H}_{N}(t)$ are stated in (1.2). For the purpose of constructing a positive symmetric bilinear form we make the restriction $t>0$. Also throughout $q, t \neq 0,1$.
3.1. Representations of the Hecke algebra. The irreducible modules of $\mathcal{H}_{N}(t)$ correspond to partitions of N and are constructed in terms of Young tableaux (see [2]).

Let τ be a partition of N, that is, $\tau \in \mathbb{N}_{0}^{N,+}$ and $|\tau|=N$. Thus $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right)$ and often the trailing zero entries are dropped when writing τ. The length of τ is $\ell(\tau)=\max \left\{i: \tau_{i}>0\right\}$. There is a Ferrers diagram of shape τ (given the same label), with boxes at points (i, j) with $1 \leq i \leq \ell(\tau)$ and $1 \leq j \leq \tau_{i}$. A tableau of shape τ is a filling of the boxes with numbers, and a reverse standard Young tableau (RSYT) is a filling with the numbers $\{1,2, \ldots, N\}$ so that the entries decrease in each row and each column. Denote the set of RSYT's of shape τ by $\mathcal{Y}(\tau)$ and let $V_{\tau}=\operatorname{span}_{\mathbb{K}}\{S: S \in \mathcal{Y}(\tau)\}$ with orthogonal basis $\mathcal{Y}(\tau)$ (recall $\mathbb{K}=\mathbb{Q}(q, t))$. Set $n_{\tau}:=\operatorname{dim} V_{\tau}=\# \mathcal{Y}(\tau)$. The formula for the dimension is a hook-length product. For $1 \leq i \leq N$ and $S \in \mathcal{Y}(\tau)$ the entry i is at coordinates (row $(i, S), \operatorname{col}(i, S)$) and the content of the entry is $c(i, S):=\operatorname{col}(i, S)-\operatorname{row}(i, S)$. Each $S \in \mathcal{Y}(\tau)$ is uniquely determined by its content vector $[c(i, S)]_{i=1}^{N}$. For example let $\tau=(4,3)$ and $S=\begin{array}{llll}4 & 3 & 1 & \\ 7 & 6 & 5 & 2\end{array}$. Then the content vector is $[1,3,0,-1,2,1,0]$. There is a representation of $\mathcal{H}_{N}(t)$ on V_{τ}, also denoted by τ (slight abuse of notation). The description will be given in terms of the actions of $\left\{T_{i}\right\}$ on the basis elements.

Definition 3. The representation τ of $\mathcal{H}_{N}(t)$ is defined by the action of the generators specified as follows: for $1 \leq i<N$ and $S \in \mathcal{Y}(\tau)$,
(1) if row $(i, S)=$ row $(i+1, S)$ (implying $\operatorname{col}(i, S)=\operatorname{col}(i+1, S)+$ 1 and $c(i, S)-c(i+1, S)=1)$ then

$$
S \tau\left(T_{i}\right)=t S
$$

(2) if $\operatorname{col}(i, S)=\operatorname{col}(i+1, S)$ (implying $\operatorname{row}(i, S)=\operatorname{row}(i+1, S)+$ 1 and $c(i, S)-c(i+1, S)=-1)$ then

$$
S \tau\left(T_{i}\right)=-S ;
$$

(3) if row $(i, S)<\operatorname{row}(i+1, S)$ and $\operatorname{col}(i, S)>\operatorname{col}(i+1, S)$ then $c(i, S)-c(i+1, S) \geq 2$; the tableau $S^{(i)}$ obtained from S by
exchanging i and $i+1$, is an element of $\mathcal{Y}(\tau)$ and

$$
S \tau\left(T_{i}\right)=S^{(i)}+\frac{t-1}{1-t^{c(i+1, S)-c(i, S)}} S
$$

(4) if $c(i, S)-c(i+1, S) \leq-2$, thus row $(i, S)>\operatorname{row}(i+1, S)$ and $\operatorname{col}(i, S)<\operatorname{col}(i+1, S)$, then with $b=c(i, S)-c(i+1, S)$,

$$
S \tau\left(T_{i}\right)=\frac{t\left(t^{b+1}-1\right)\left(t^{b-1}-1\right)}{\left(t^{b}-1\right)^{2}} S^{(i)}+\frac{t^{b}(t-1)}{t^{b}-1} S
$$

The formulas in (4) are consequences of those in (3) by interchanging S and $S^{(i)}$ and applying the relations $\left(\tau\left(T_{i}\right)+I\right)\left(\tau\left(T_{i}\right)-t I\right)=0$ (where I denotes the identity operator on V_{τ}). There is a partial order on $\mathcal{Y}(\tau)$ related to the inversion number, namely

$$
\begin{equation*}
\operatorname{inv}(S):=\#\{(i, j): 1 \leq i<j \leq N, c(i, S) \geq c(j, S)+2\} \tag{3.1}
\end{equation*}
$$

so inv $\left(S^{(i)}\right)=\operatorname{inv}(S)-1$ in (3) above. The inv-maximal element S_{0} of $\mathcal{Y}(\tau)$ has the numbers $N, N-1, \ldots, 1$ entered column-by-column, and the inv-minimal element S_{1} of $\mathcal{Y}(\tau)$ has the numbers $N, N-1, \ldots, 1$ entered row-by-row. The set $\mathcal{Y}(\tau)$ can be given the structure of a Yang-Baxter graph, with root S_{0}, sink S_{1} with arrows labeled by T_{i} joining S to $S^{(i)}$ as in (3). Some properties can be proved by induction on the inversion number. Recall $u(z)=\frac{(t-z)(1-t z)}{(1-z)^{2}}=u\left(z^{-1}\right)$.

Definition 4. The bilinear symmetric form $\langle\cdot, \cdot\rangle_{0}$ on V_{τ} is defined to be the linear extension of

$$
\begin{equation*}
\left\langle S, S^{\prime}\right\rangle_{0}=\delta_{S, S^{\prime}} \prod_{\substack{i<j \\ c(j, S)-c(i, S) \geq 2}} u\left(t^{c(i, S)-c(j, S)}\right) . \tag{3.2}
\end{equation*}
$$

Proposition 5. Suppose $f, g \in V_{\tau}$. Then $\left\langle f \tau\left(T_{i}\right), g\right\rangle_{0}=\left\langle f, g \tau\left(T_{i}\right)\right\rangle_{0}$ for $1 \leq i<N$. If $c(i, S)-c(i+1, S) \geq 2$ for some i, S then $\left\langle S^{(i)}, S^{(i)}\right\rangle_{0}=u\left(t^{c(i, S)-c(i+1, S)}\right)\langle S, S\rangle_{0}$.

Proof. If row $(i, S)=$ row $(i+1, S)$ or $\operatorname{col}(i, S)=\operatorname{col}(i+1, S)$ then

$$
\left\langle S \tau\left(T_{i}\right), S\right\rangle_{0}=t\langle S, S\rangle_{0}=\left\langle S, S \tau\left(T_{i}\right)\right\rangle_{0}
$$

or

$$
\left\langle S \tau\left(T_{i}\right), S\right\rangle_{0}=-\langle S, S\rangle_{0}=\left\langle S, S \tau\left(T_{i}\right)\right\rangle_{0}
$$

respectively. If $c(i, S)-c(i+1, S) \geq 2$ and $b=c(i+1, S)-c(i, S)$ then $\left\langle S^{(i)}, S^{(i)}\right\rangle_{0} /\langle S, S\rangle_{0}=u\left(t^{-b}\right)$ (in the product the only difference
is the term $(i, i+1)$, appearing in $\left.\left\langle S^{(i)}, S^{(i)}\right\rangle_{0}\right)$. Then

$$
\begin{aligned}
\left\langle S \tau\left(T_{i}\right), S^{(i)}\right\rangle_{0} & =\left\langle S^{(i)}, S^{(i)}\right\rangle_{0}+\frac{t-1}{1-t^{b}}\left\langle S^{(i)}, S\right\rangle_{0}=\left\langle S^{(i)}, S^{(i)}\right\rangle_{0}, \\
\left\langle S^{(i)} \tau\left(T_{i}\right), S\right\rangle_{0} & =\frac{t\left(t^{b+1}-1\right)\left(t^{b-1}-1\right)}{\left(t^{b}-1\right)^{2}}\langle S, S\rangle_{0}+\frac{t^{b}(t-1)}{t^{b}-1}\left\langle S^{(i)}, S\right\rangle_{0} \\
& =\frac{t\left(t^{b+1}-1\right)\left(t^{b-1}-1\right)}{\left(t^{b}-1\right)^{2}}\langle S, S\rangle_{0}=u\left(t^{b}\right)\langle S, S\rangle_{0},
\end{aligned}
$$

thus $\left\langle S \tau\left(T_{i}\right), S^{(i)}\right\rangle_{0}=\left\langle S^{(i)} \tau\left(T_{i}\right), S\right\rangle_{0}$. These statements imply that $\left\langle f \tau\left(T_{i}\right), g\right\rangle_{0}=\left\langle f, g \tau\left(T_{i}\right)\right\rangle_{0}$ for $f, g \in V_{\tau}$.

Furthermore if $t>0$ then $\langle S, S\rangle_{0} \geq 0$; each term is of the form $\frac{\left(t-t^{m}\right)\left(1-t^{m+1}\right)}{\left(1-t^{m}\right)^{2}}$ with $m \geq 2$; either all parts are positive or all are negative depending on $0<t<1$ or $t>1$ respectively (the limit as $t \rightarrow 1$ is $\frac{m^{2}-1}{m^{2}}>0$). Denote $\langle f, f\rangle_{0}=\|f\|_{0}^{2}$ for $f \in V_{\tau}$.

There is a commutative set of Jucys-Murphy elements in $\mathcal{H}_{N}(t)$ which are diagonalized with respect to the basis $\mathcal{Y}(\tau)$.

Definition 5. Set $\phi_{N}:=1$ and $\phi_{i}:=\frac{1}{t} T_{i} \phi_{i+1} T_{i}$ for $1 \leq i<N$.
Proposition 6. Suppose $1 \leq i \leq N$ and $S \in \mathcal{Y}(\tau)$. Then $S \tau\left(\phi_{i}\right)=$ $t^{c(i, S)} S$.

Proof. Arguing inductively suppose that $S \tau\left(\phi_{i+1}\right)=t^{c(i+1, S)} S$ for all $S \in \mathcal{Y}(\tau)$; this is trivially true for $i=N-1$ since $c(N, S)=0$ and $\phi_{N}=$ 1. If row $(i, S)=\operatorname{row}(i+1, S)$ then $S \tau\left(\phi_{i}\right)=\frac{1}{t} S \tau\left(T_{i}\right) \tau\left(\phi_{i+1}\right) \tau\left(T_{i}\right)=$ $t^{c(i+1, S)+1} S$ and $c(i, S)=c(i+1, S)+1$. If $\operatorname{col}(i, S)=\operatorname{col}(i+1, S)$ then $S \tau\left(\phi_{i}\right)=\frac{1}{t} S \tau\left(T_{i}\right) \tau\left(\phi_{i+1}\right) \tau\left(T_{i}\right)=\frac{1}{t} t^{c(i+1, S)} S$ and $c(i, S)=$ $c(i+1, S)-1$ (since $\left.S \tau\left(T_{i}\right)=-S\right)$. Suppose $c(i, S)-c(i+1, S) \geq 2$. Then the matrices \mathcal{T}, Φ of $\tau\left(T_{i}\right), \tau\left(\phi_{i+1}\right)$ respectively with respect to the basis $\left[S, S^{(i)}\right]$ are

$$
\mathcal{T}=\left[\begin{array}{cc}
-\frac{1-t}{1-\rho} & 1 \\
\frac{(1-t)(t-\rho)}{(1-\rho)^{2}} & \frac{\rho(1-t)}{1-\rho}
\end{array}\right], \Phi=\left[\begin{array}{cc}
t^{c(i+1, S)} & 0 \\
0 & t^{c(i, S)}
\end{array}\right]
$$

where $\rho=t^{c(i+1, S)-c(i, S)}$. A simple calculation shows

$$
\frac{1}{t} \mathcal{T} \Phi \mathcal{T}=\left[\begin{array}{cc}
t^{c(i, S)} & 0 \\
0 & t^{c(i+1, S)}
\end{array}\right]
$$

3.2. Polynomials and operators. Let $\mathcal{P}_{\tau}:=\mathcal{P} \otimes V_{\tau}$. The equation $\operatorname{deg}(f)=n$ means $f \in \mathcal{P}_{n} \otimes V_{\tau}$. The action of $\mathcal{H}_{N}(t)$ and the operators
are defined as follows: with $p \in \mathcal{P}, S \in \mathcal{Y}(\tau)$ and $1 \leq i<N$,

$$
\begin{equation*}
(p(x) \otimes S) \boldsymbol{T}_{i}:=(1-t) x_{i+1} \frac{p(x)-p\left(x . s_{i}\right)}{x_{i}-x_{i+1}} \otimes S+p\left(x . s_{i}\right) \otimes S \tau\left(T_{i}\right) \tag{3.3}
\end{equation*}
$$

$$
(p(x) \otimes S) \boldsymbol{w}:=p\left(q x_{N}, x_{1}, \ldots, x_{N-1}\right) \otimes S \tau(\omega)
$$

$$
\begin{align*}
\xi_{i} & :=t^{i-N} \boldsymbol{T}_{i-1}^{-1} \cdots \boldsymbol{T}_{1}^{-1} \boldsymbol{w} \boldsymbol{T}_{N-1} \cdots \boldsymbol{T}_{i}, \tag{3.6}\\
\mathcal{D}_{N} & :=\left(1-\xi_{N}\right) / x_{N}, \mathcal{D}_{i}:=\frac{1}{t} \boldsymbol{T}_{i} \mathcal{D}_{i+1} \boldsymbol{T}_{i} .
\end{align*}
$$

By the braid relations we have

$$
\begin{aligned}
T_{i+1} \omega & =T_{1} \cdots T_{i+1} T_{i} T_{i+1} T_{i+2} \cdots T_{N-1} \\
& =T_{1} \cdots T_{i} T_{i+1} T_{i} T_{i+2} \cdots T_{N-1}=\omega T_{i}
\end{aligned}
$$

for $1 \leq i<N-1$. It follows that $\boldsymbol{T}_{i+1} \boldsymbol{w}=\boldsymbol{w} \boldsymbol{T}_{i}$ acting on \mathcal{P}_{τ}. The operators $\left\{\xi_{i}\right\}$ mutually commute and the simultaneous polynomial eigenfunctions are the vector-valued (nonsymmetric) Macdonald polynomials. The factor t^{i-N} in ξ_{i} appears to differ from the scalar case, but if $\tau=(N)$, the trivial representation, then $S \tau\left(T_{i}\right)=t S$ (the unique RSYT of shape (N)) and $S \tau(\omega)=t^{N-1} S$, and thus ξ_{i} coincides with (2.1). The operator ξ_{i} acting on constants coincides with $I \otimes \tau\left(\phi_{i}\right):$

$$
\begin{aligned}
(1 \otimes S) \xi_{i} & =t^{i-N} \otimes S \tau\left(T_{i-1}^{-1} \cdots T_{1}^{-1} T_{1} T_{2} \cdots T_{N-1} T_{N-1} \cdots T_{i}\right) \\
& =t^{i-N} \otimes S \tau\left(T_{i} \cdots T_{N-1} T_{N-1} \cdots T_{i}\right) \\
& =1 \otimes S \tau\left(\phi_{i}\right)=t^{c(i, S)}(1 \otimes S)
\end{aligned}
$$

For each $\alpha \in \mathbb{N}_{0}^{N}$ and $S \in \mathcal{Y}(\tau)$ there is an $\left\{\xi_{i}\right\}$ eigenfunction

$$
\begin{equation*}
M_{\alpha, S}(x)=\eta(\alpha, S) x^{\alpha} \otimes S \tau\left(R_{\alpha}\right)+\sum_{\alpha \triangleright \beta} x^{\beta} \otimes B_{\alpha, \beta, S}(q, t), \tag{3.8}
\end{equation*}
$$

where $\eta(\alpha, S)=q^{a} t^{b}$ with $a, b \in \mathbb{N}_{0}, R_{\alpha} \in \mathcal{H}_{N}(t), B_{\alpha, \beta, S}(q, t) \in$ V_{τ}. Furthermore R_{α} is an analog of r_{α} (see [3, p. 9]); if $\alpha \in \mathbb{N}_{0}^{N,+}$ then $R_{\alpha}=I$, and if $\alpha_{i}<\alpha_{i+1}$ then $R_{\alpha . s_{i}}=R_{\alpha} T_{i}$ (there is a definition of R_{α} below). Furthermore

$$
\begin{align*}
M_{\alpha, S} \xi_{i} & =\zeta_{\alpha, S}(i) M_{\alpha, S}, 1 \leq i \leq N, \tag{3.9}\\
\zeta_{\alpha, S}(i) & =q^{\alpha_{i}} t^{c\left(r_{\alpha}(i), S\right)}
\end{align*}
$$

These polynomials are produced with the Yang-Baxter graph. The typical node (labeled by (α, S)) is

$$
\left(\alpha, S, \zeta_{\alpha, S}, R_{\alpha}, M_{\alpha, S}\right)
$$

and the root is $\left(\mathbf{0}, S_{0},\left[t^{c\left(i, S_{0}\right)}\right]_{i=1}^{N}, I, 1 \otimes S_{0}\right)$.
There are steps:

- if $\alpha_{i}<\alpha_{i+1}$ there is a step labeled s_{i}

$$
\begin{align*}
\left(\alpha, S, \zeta_{\alpha, S}, R_{\alpha}, M_{\alpha, S}\right) & \rightarrow\left(\alpha . s_{i}, S, \zeta_{\alpha . s_{i}, S}, R_{\alpha . s_{i}}, M_{\alpha . s_{i}, S}\right), \\
M_{\alpha . s_{i}, S} & =M_{\alpha, S} \boldsymbol{T}_{i}+\frac{t-1}{\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)-1} M_{\alpha, S}, \tag{3.10}\\
R_{\alpha . s_{i}} & =R_{\alpha} T_{i}, \eta\left(\alpha . s_{i}, S\right)=\eta(\alpha, S)
\end{align*}
$$

(note that $\left.\left(x_{i}^{\alpha_{i}} x_{i+1}^{\alpha_{i+1}} \otimes S R_{\alpha}\right) \boldsymbol{T}_{i}=x_{i}^{\alpha_{i+1}} x_{i+1}^{\alpha_{i}} \otimes S \tau\left(R_{\alpha} T_{i}\right)+\cdots\right)$;

- if $\alpha_{i}=\alpha_{i+1}, j=r_{\alpha}(i)$ (thus $j+1=r_{\alpha}(i+1)$, and $R_{\alpha} T_{i}=$ $T_{j} R_{\alpha}$; see [3, Lemma 2.14]) and $c(j, S)-c(j+1, S) \geq 2$ there is a step

$$
\begin{align*}
\left(\alpha, S, \zeta_{\alpha, S}, R_{\alpha}, M_{\alpha, S}\right) & \rightarrow\left(\alpha, S^{(j)},\left(\zeta_{\alpha, S}\right) \cdot s_{i}, R_{\alpha}, M_{\alpha, S^{(j)}}\right) \\
M_{\alpha, S^{(j)}} & =M_{\alpha, S} \boldsymbol{T}_{i}+\frac{t-1}{\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)-1} M_{\alpha, S}, \tag{3.11}\\
\frac{\zeta_{\alpha, S}(i+1)}{\zeta_{\alpha, S}(i)} & =t^{c(j+1, S)-c(j, S)}, \eta\left(\alpha, S^{(j)}\right)=\eta(\alpha, S) ;
\end{align*}
$$

For these formulas to be valid it is required that the denominators $\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)-1 \neq 0$, that is, $q^{\alpha_{i+1}-\alpha_{i}} t^{c\left(r_{\alpha}(i+1), S\right)-c\left(r_{\alpha}(i), S\right)} \neq 1$. From the bound $\left|c(j, S)-c\left(j^{\prime}, S\right)\right| \leq \tau_{1}+\ell(\tau)-2$ we obtain the necessary condition $q^{q} t^{b} \neq 1$ for $a \geq 0$ and $|b| \leq \tau_{1}+\ell(\tau)-2$. These conditions are satisfied in the region of positivity described in Proposition 11.

The other possibilities for the action of \boldsymbol{T}_{i} are:

- if $\alpha_{i}>\alpha_{i+1}$ set $\rho:=\zeta_{\alpha, S}(i) / \zeta_{\alpha, S}(i+1)$ then

$$
\begin{equation*}
M_{\alpha, S} \boldsymbol{T}_{i}=\frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}} M_{\alpha . s_{i}, S}+\frac{\rho(1-t)}{(1-\rho)} M_{\alpha, S} \tag{3.12}
\end{equation*}
$$

- if $\alpha_{i}=\alpha_{i+1}$ and $j=r_{\alpha}(i), c(j, S)-c(j+1, S) \leq 2, \rho=$ $t^{c(j, S)-c(j+1, S)}$ then

$$
\begin{equation*}
M_{\alpha, S} \boldsymbol{T}_{i}=\frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}} M_{\alpha, S^{(j)}}+\frac{\rho(1-t)}{(1-\rho)} M_{\alpha, S} \tag{3.13}
\end{equation*}
$$

- if $\alpha_{i}=\alpha_{i+1}$ and $j=r_{\alpha}(i)$, row $(j, S)=\operatorname{row}(j+1, S)$ then $M_{\alpha, S} \boldsymbol{T}_{i}=t M_{\alpha, S} ;$
- if $\alpha_{i}=\alpha_{i+1}$ and $j=r_{\alpha}(i), \operatorname{col}(j, S)=\operatorname{col}(j+1, S)$ then $M_{\alpha, S} \boldsymbol{T}_{i}=-M_{\alpha, S}$.
The degree-raising operation, namely, the affine step, takes α to $\alpha \Phi:=\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{N}, \alpha_{1}+1\right):$

$$
\begin{align*}
\left(\alpha, S, \zeta_{\alpha, S}, R_{\alpha}, M_{\alpha, S}\right) & \rightarrow\left(\alpha \Phi, S, \zeta_{\alpha \Phi, S}, R_{\alpha \Phi}, M_{\alpha \Phi, S}\right) \\
M_{\alpha \Phi, S} & =x_{N}\left(M_{\alpha, S} \boldsymbol{w}\right) \tag{3.14}\\
\alpha \Phi & =\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{N}, \alpha_{1}+1\right) \\
\zeta_{\alpha \Phi, S} & =\left(\zeta_{\alpha, S}(2), \ldots, \zeta_{\alpha, S}(N), q \zeta_{\alpha, S}(1)\right)
\end{align*}
$$

The inversion number inv (α) of $\alpha \in \mathbb{N}_{0}^{N}$ is the length of the shortest product $g=s_{i_{1}} s_{i_{2}} \cdots s_{i_{m}}$ such that $\alpha . g=\alpha^{+}$. From this and the YangBaxter graph we deduce that the series of steps $s_{i_{1}}, s_{i_{2}}, \cdots, s_{i_{m}}$ leads from $M_{\alpha, S}$ to $M_{\alpha^{+}, S}$ and $R_{\alpha} T_{i_{i}} T_{i_{2}} \cdots T_{i_{m}}=R_{\alpha^{+}}=I$.

Definition 6. Suppose $\alpha \in \mathbb{N}_{0}^{N}$. Then $R_{\alpha}:=\left(T_{i_{i}} T_{i_{2}} \cdots T_{i_{m}}\right)^{-1}$ where $\alpha . s_{i_{1}} s_{i_{2}} \cdots s_{i_{m}}=\alpha^{+}$and $m=\operatorname{inv}(\alpha)$.

There may be different products $\alpha . s_{j_{1}} s_{j_{2}} \cdots s_{i j}=\alpha^{+}$of length inv (α) but they all give the same value of R_{α} by the braid relations. It is shown in [3, p. 10, Eq. (2.15)] that $R_{\alpha} \omega=t^{N-m} \phi_{m} R_{\alpha \Phi}$ with $m=r_{\alpha}(1)$.
3.3. The bilinear symmetric form. We will define a symmetric bilinear form $\langle\cdot, \cdot\rangle$ on \mathcal{P}_{τ} satisfying certain postulates, using the same logical outline as in Section 2; first we derive consequences from these, then state the definition and show that the desired properties apply.

The hypotheses (BF2) for the symmetric bilinear form $\langle\cdot, \cdot\rangle$ on \mathcal{P}_{τ}, with $\boldsymbol{w}^{*}:=\boldsymbol{T}_{N-1}^{-1} \cdots \boldsymbol{T}_{1}^{-1} \boldsymbol{w} \boldsymbol{T}_{N-1} \cdots \boldsymbol{T}_{1}$, are (for $f, g \in \mathcal{P}_{\tau}, S, S^{\prime} \in$ $\mathcal{Y}(\tau), 1 \leq i<N)$:

$$
\begin{align*}
\left\langle 1 \otimes S, 1 \otimes S^{\prime}\right\rangle & =\left\langle S, S^{\prime}\right\rangle_{0} \tag{3.15a}\\
\left\langle f \boldsymbol{T}_{i}, g\right\rangle & =\left\langle f, g \boldsymbol{T}_{i}\right\rangle \tag{3.15b}\\
\left\langle f \xi_{N}, g\right\rangle & =\left\langle f, g \xi_{N}\right\rangle \tag{3.15c}\\
\left\langle f \mathcal{D}_{N}, g\right\rangle & =(1-q)\left\langle f, x_{N}\left(g \boldsymbol{w}^{*} \boldsymbol{w}\right)\right\rangle \tag{3.15d}
\end{align*}
$$

Properties (3.15b) and (3.15c) imply $\left\langle f \xi_{i}, g\right\rangle=\left\langle f, g \xi_{i}\right\rangle$ for each i and thus the $M_{\alpha, S}$'s are mutually orthogonal. As in the scalar case $\langle f \boldsymbol{w}, g\rangle=\left\langle f, g \boldsymbol{w}^{*}\right\rangle$. As before denote $\langle f, f\rangle=\|f\|^{2}$. First we will show that these hypotheses determine the form uniquely when $q, t \neq 0,1$ without recourse to the Macdonald polynomials. We use the commutation relationships $\left(x_{i+1} f\right) \boldsymbol{T}_{i}=x_{i}\left(f \boldsymbol{T}_{i}\right)+(t-1) x_{i+1} f$ and $\left(x_{j} f\right) \boldsymbol{T}_{i}=$ $x_{j}\left(f \boldsymbol{T}_{i}\right)$ for $f \in \mathcal{P}_{\tau}$ and $j \neq i, i+1$ (a simple direct computation).

Proposition 7. Suppose (BF2) holds. Then for $1 \leq i \leq j \leq N$ and $q, t \neq 0,1$ there are operators $A_{i, j}, B_{i, j}$, on \mathcal{P}_{τ} preserving degree of homogeneity such that $A_{i, i}$ and $B_{i, i}$ are invertible and for $f, g \in \mathcal{P}_{\tau}$

$$
\begin{aligned}
\left\langle f \mathcal{D}_{i}, g\right\rangle & =\sum_{j=i}^{N}\left\langle f, x_{j}\left(g A_{i, j}\right)\right\rangle \\
\left\langle f, x_{i} g\right\rangle & =\sum_{j=i}^{N}\left\langle f \mathcal{D}_{j}, g B_{i, j}\right\rangle
\end{aligned}
$$

Proof. Suppose $i=N$. Then $A_{N, N}=(1-q) \boldsymbol{w}^{*} \boldsymbol{w}$ and $B_{N, N}=A_{N, N}^{-1}$ by (3.15d). Arguing by induction suppose the statement is true for $k+1 \leq i \leq N$. Then for any $f, g \in \mathcal{P}_{\tau}$

$$
\begin{aligned}
\left\langle f \mathcal{D}_{k}, g\right\rangle & =\frac{1}{t}\left\langle f \boldsymbol{T}_{k} \mathcal{D}_{k+1} \boldsymbol{T}_{k}, g\right\rangle=\frac{1}{t}\left\langle f \boldsymbol{T}_{k} \mathcal{D}_{k+1}, g \boldsymbol{T}_{k}\right\rangle \\
& =\frac{1}{t} \sum_{j=k+1}^{N}\left\langle f \boldsymbol{T}_{k}, x_{j}\left(g \boldsymbol{T}_{k} A_{k+1, j}\right)\right\rangle \\
& =\frac{1}{t} \sum_{j=k+1}^{N}\left\langle f,\left\{x_{j}\left(g \boldsymbol{T}_{k} A_{k+1, j}\right)\right\} \boldsymbol{T}_{k}\right\rangle .
\end{aligned}
$$

Hence

$$
\begin{gathered}
\left\{x_{k+1}\left(g \boldsymbol{T}_{k} A_{k+1, k+1}\right)\right\} \boldsymbol{T}_{k}=x_{k}\left(g \boldsymbol{T}_{k} A_{k+1, k+1} \boldsymbol{T}_{k}\right) \\
+(t-1) x_{k+1}\left(g \boldsymbol{T}_{k} A_{k+1, k+1}\right) \\
\left\{x_{j}\left(g \boldsymbol{T}_{k} A_{k+1, j}\right)\right\} \boldsymbol{T}_{k}=x_{j}\left(g \boldsymbol{T}_{k} A_{k+1, j} \boldsymbol{T}_{k}\right)
\end{gathered}
$$

Thus set $A_{k, k}:=\frac{1}{t} \boldsymbol{T}_{k} A_{k+1, k+1} \boldsymbol{T}_{k}, A_{k, k+1}:=\frac{t-1}{t} \boldsymbol{T}_{k} A_{k+1, k+1}$ and $A_{k, j}:=$ ${ }_{t}^{1} \boldsymbol{T}_{k} A_{k+1, j} \boldsymbol{T}_{k}$ for $j>k+1$. Next

$$
\left\langle f, x_{k}\left(g A_{k, k}\right)\right\rangle=\left\langle f \mathcal{D}_{k}, g\right\rangle-\sum_{j=k+1}^{N}\left\langle f, x_{j}\left(g A_{k, j}\right)\right\rangle .
$$

Replace g by $g A_{k, k}^{-1}$ and use the inductive hypothesis to get

$$
\begin{aligned}
\left\langle f, x_{k} g\right\rangle & =\left\langle f \mathcal{D}_{k}, g A_{k, k}^{-1}\right\rangle+\sum_{m=k+1}^{N}\left\langle f \mathcal{D}_{m}, g B_{k, m}\right\rangle \\
B_{k, m} & :=-\sum_{j=k+1}^{m} A_{k, k}^{-1} A_{k, j} B_{j, m}, B_{k, k}:=A_{k, k}^{-1}
\end{aligned}
$$

This completes the induction.

Corollary 1. The symmetric bilinear form is uniquely determined by the hypotheses (BF2). If $\operatorname{deg}(f)<\operatorname{deg}(g)$ then $\langle f, g\rangle=0$.

Proof. If $\operatorname{deg}(g)=n \geq 1$ then g can be expressed as a sum $g=$ $\sum_{i=1}^{N} x_{i} g_{i}$ with deg $\left(g_{i}\right)=n-1$ for i such that $g_{i} \neq 0$. This shows that if $f=1 \otimes S$ and $\operatorname{deg}(g) \geq 1$ then $\langle f, g\rangle=0$ because $f \mathcal{D}_{i}=0$ for all i. Arguing inductively suppose the stated orthogonality property holds for all h with $\operatorname{deg}(h) \leq k$ and let $\operatorname{deg}(f)=k+1, \operatorname{deg}(g)>k$. Then $\left\langle f, x_{i} g\right\rangle=\sum_{j=i}^{N}\left\langle f \mathcal{D}_{j}, g B_{i, j}\right\rangle=0$ because $\operatorname{deg}\left(f \mathcal{D}_{j}\right)=k<\operatorname{deg}\left(g B_{i, j}\right)$. Thus the orthogonality property holds for $k+1$. The form is uniquely defined for $\mathcal{P}_{0} \otimes V_{\tau}$ and a similar inductive argument shows that $\langle f, g\rangle$ is uniquely determined when $\operatorname{deg}(f)=\operatorname{deg}(g)>0$.

However the result does not prove existence. A closer look at the formulas shows that $(1-q)^{|\alpha|}\left\langle x^{\alpha} \otimes S, x^{\beta} \otimes S^{\prime}\right\rangle$ is a Laurent polynomial in q, t (a sum of $q^{a} t^{b}$ with $a, b \in \mathbb{Z}$) for any $\alpha, \beta \in \mathbb{N}_{0}^{N}, S, S^{\prime} \in \mathcal{Y}(\tau)$.

Recall $u(z):=\frac{(1-t z)(t-z)}{(1-z)^{2}}$.
Lemma 2. Suppose (BF2) holds and suppose (α, S) satisfies $\alpha_{i}<\alpha_{i+1}$. Then with $\rho=\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)$ we have

$$
\left\|M_{\alpha \cdot s_{i}, S}\right\|^{2}=u(\rho)\left\|M_{\alpha, S}\right\|^{2} .
$$

Proof. From (3.10) and (3.12) we have

$$
\begin{aligned}
M_{\alpha, S} \boldsymbol{T}_{i} & =-\frac{1-t}{1-\rho} M_{\alpha, S}+M_{\alpha . s_{i}, S}, \\
M_{\alpha . s_{i}, S} \boldsymbol{T}_{i} & =\frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}} M_{\alpha, S}+\frac{\rho(1-t)}{(1-\rho)} M_{\alpha . s_{i}, S} .
\end{aligned}
$$

Take the inner product of the first equation with $M_{\alpha . s_{i}, S}$ and use $\left\langle M_{\alpha, S}, M_{\alpha . s_{i}, S}\right\rangle=0$, then take the inner product of the second equation with $M_{\alpha, S}$ and again use $\left\langle M_{\alpha, S}, M_{\alpha . s_{i}, S}\right\rangle=0$ to obtain

$$
\begin{aligned}
\left\langle M_{\alpha, S} \boldsymbol{T}_{i}, M_{\alpha . s_{i}, S}\right\rangle & =\left\|M_{\alpha . s_{i}, S}\right\|^{2}, \\
\left\langle M_{\alpha, S}, M_{\alpha . s_{i}, S} \boldsymbol{T}_{i}\right\rangle & =\frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}}\left\|M_{\alpha, S}\right\|^{2} .
\end{aligned}
$$

The hypothesis $\left\langle M_{\alpha, S} \boldsymbol{T}_{i}, M_{\alpha . s_{i}, S}\right\rangle=\left\langle M_{\alpha, S}, M_{\alpha . s_{i}, S} \boldsymbol{T}_{i}\right\rangle$ completes the proof.

Lemma 3. Suppose (BF2) holds and suppose (α, S) satisfies $\alpha_{i}=\alpha_{i+1}$, $j=r_{\alpha}(i), c(j, S)-c(j+1, S) \geq 2$. Then with

$$
\rho=\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)=t^{c(j+1, S)-c(j, S)}
$$

we have

$$
\left\|M_{\alpha, S^{(j)}}\right\|^{2}=u(\rho)\left\|M_{\alpha, S}\right\|^{2}=\frac{\left\|S^{(j)}\right\|_{0}^{2}}{\|S\|_{0}^{2}}\left\|M_{\alpha, S}\right\|^{2}
$$

Proof. Using the same argument as in the previous lemma on formulas (3.11) and (3.13), one shows $\left\|M_{\alpha, S^{(j)}}\right\|^{2}=u(\rho)\left\|M_{\alpha, S}\right\|^{2}$. Proposition 5 asserted that $u(\rho)=\left\|S^{(j)}\right\|_{0}^{2} /\|S\|_{0}^{2}$.

Definition 7. For $\alpha \in \mathbb{N}_{0}^{N}, S \in \mathcal{Y}(\tau)$ let

$$
\begin{equation*}
\mathcal{E}(\alpha, S):=\prod_{\substack{1 \leq i<j \leq N \\ \alpha_{i}<\alpha_{j}}} u\left(q^{\alpha_{j}-\alpha_{i}} t^{c\left(r_{\alpha}(j), S\right)-c\left(r_{\alpha}(i), S\right)}\right) . \tag{3.16}
\end{equation*}
$$

There are inv (α) terms in $\mathcal{E}(\alpha, S)$.
Lemma 4. Suppose $\alpha \in \mathbb{N}_{0}^{N}, S \in \mathcal{Y}(\tau)$. Then

$$
M_{\alpha \Phi, S} \mathcal{D}_{N}=\left(1-q \zeta_{\alpha, S}(1)\right) M_{\alpha, S} \boldsymbol{w}
$$

Proof. By definition we have

$$
\begin{aligned}
M_{\alpha \Phi, S} \mathcal{D}_{N} & =\left(1 / x_{N}\right) M_{\alpha \Phi, S}\left(I-\xi_{N}\right)=\left(1 / x_{N}\right)\left(1-\zeta_{\alpha \Phi, S}(N)\right) M_{\alpha \Phi, S} \\
& =\left(1-q \zeta_{\alpha, S}(1)\right) M_{\alpha, S} \boldsymbol{w} .
\end{aligned}
$$

The following is proved exactly like Propositions 2 and 3.
Proposition 8. Suppose (BF2) holds and $\alpha \in \mathbb{N}_{0}^{N}, S \in \mathcal{Y}(\tau)$. Then

$$
\begin{aligned}
\left\|M_{\alpha^{+}, S}\right\|^{2} & =\mathcal{E}(\alpha, S)\left\|M_{\alpha, S}\right\|^{2} \\
\left\|M_{\alpha, \Phi, S}\right\|^{2} & =\frac{1-q^{\alpha_{1}+1} t^{c\left(r_{\alpha}(1), S\right)}}{1-q}\left\|M_{\alpha, S}\right\|^{2} .
\end{aligned}
$$

The intention here is to find the explicit formula for $\left\|M_{\alpha, S}\right\|^{2}$ implied by (BF2) and then prove that, as a definition, it satisfies (BF2). We use the same inductive scheme as in Section 2.

Suppose (BF2) holds and $\lambda \in \mathbb{N}_{0}^{N,+}, S \in \mathcal{Y}(\tau)$ and $\lambda_{m}>0=\lambda_{m+1}$. Then set

$$
\begin{align*}
\alpha & :=\left(\lambda_{1}, \ldots, \lambda_{m-1}, 0, \ldots 0, \lambda_{m}\right) \tag{3.17}\\
r_{\alpha} & =(1, \ldots, m-1, m+1, \ldots, N, m) \\
\beta & :=\left(\lambda_{m}-1, \lambda_{1}, \ldots, \lambda_{m-1}, 0, \ldots\right) \\
r_{\beta} & =(m, 1, \ldots, m-1, m+1, \ldots, N) \\
\gamma & :=\left(\lambda_{1}, \ldots, \lambda_{m-1}, \lambda_{m}-1,0, \ldots\right)=\beta^{+} .
\end{align*}
$$

Thus $\left\|M_{\lambda, S}\right\|^{2}=\mathcal{E}(\alpha, S)\left\|M_{\alpha, S}\right\|^{2}$ and $\left\|M_{\beta, S}\right\|^{2}=\mathcal{E}(\beta, S)^{-1}\left\|M_{\gamma, S}\right\|^{2} ;$ by Proposition 8 we have $\left\|M_{\alpha, S}\right\|^{2}=\frac{1-q^{\lambda m} t^{c(m, S)}}{1-q}\left\|M_{\beta, S}\right\|^{2}$. Also $\alpha \cdot\left(s_{N-1} s_{N-2} \cdots s_{m}\right)=\lambda$ and $\beta \cdot\left(s_{1} s_{2} \cdots s_{m-1}\right)=\gamma$ thus $R_{\alpha}=$ $T_{m}^{-1} \cdots T_{N-1}^{-1}$ and $R_{\beta}=T_{m-1}^{-1} \cdots T_{1}^{-1}$. The leading term of $M_{\beta, S}$ is $\eta(\beta, S) x^{\beta} \otimes S \tau\left(R_{\beta}\right)$, so the leading term of $M_{\gamma, S}$ is $\eta(\beta, S) x^{\gamma} \otimes S$ (and $\eta(\gamma, S)=\eta(\beta, S))$.

Apply \mathbf{w} to $M_{\beta, S}$. Then we have

$$
\begin{align*}
x_{N}\left(\left(x^{\beta}\right) w\right) S \tau\left(R_{\beta} \omega\right) & =q^{\beta_{1}} x^{\alpha} \otimes S \tau\left(\left(T_{m-1}^{-1} \cdots T_{1}^{-1}\right) T_{1} \cdots T_{N-1}\right) \tag{3.18}\\
& =q^{\beta_{1}} x^{\alpha} \otimes S \tau\left(T_{m} \cdots T_{N-1}\right),
\end{align*}
$$

and

$$
\begin{align*}
S \tau\left(T_{m} \cdots T_{N-1}\right) & =S \tau\left(\left(T_{m} \cdots T_{N-1}\right)\left(T_{N-1} \cdots T_{m}\right) R_{\alpha}\right) \tag{3.19}\\
& =t^{N-m} S \tau\left(\phi_{m} R_{\alpha}\right)=t^{N-m+c(m, S)} S \tau\left(R_{\alpha}\right) .
\end{align*}
$$

Thus

$$
\begin{align*}
& \eta(\alpha, S)=q^{\lambda_{m}-1} t^{N-m+c(m, S)} \eta(\beta, S) \tag{3.20}\\
& \eta(\lambda, S)=\eta(\alpha, S)=q^{\lambda_{m}-1} t^{N-m+c(m, S)} \eta(\gamma, S)
\end{align*}
$$

Compute

$$
\begin{align*}
\mathcal{E}(\alpha, S) & =\prod_{j=m+1}^{N} u\left(q^{\lambda_{m}} t^{c(m, S)-c(j, S)}\right), \tag{3.21}\\
\mathcal{E}(\beta, S) & =\prod_{i=1}^{m-1} u\left(q^{\lambda_{i}-\lambda_{m}+1} t^{c(i, S)-c(m, S)}\right) .
\end{align*}
$$

The argument also shows that $\eta(\lambda, S)=q^{\Sigma_{1}(\lambda)} t^{\Sigma_{2}(\lambda, S)}$ where $\Sigma_{1}(\lambda):=\frac{1}{2} \sum_{i=1}^{N} \lambda_{i}\left(\lambda_{i}-1\right)$ and $\Sigma_{2}(\lambda, S)=\sum_{i=1}^{N} \lambda_{i}(N-i+c(i, S))$. Recall $k(\lambda)=\sum_{i=1}^{N}(N-2 i+1) \lambda_{i}$ for $\lambda \in \mathbb{N}_{0}^{N,+}$.

Theorem 2. Suppose (BF2) holds, $\lambda \in \mathbb{N}_{0}^{N,+}$ and $S \in \mathcal{Y}(\tau)$. Then

$$
\begin{aligned}
\left\|M_{\lambda, S}\right\|^{2} & =t^{k(\lambda)}\|S\|_{0}^{2}(1-q)^{-|\lambda|} \prod_{i=1}^{N}\left(q t^{c(i, S)} ; q\right)_{\lambda_{i}} \\
& \times \prod_{1 \leq i<j \leq N} \frac{\left(q t^{c(i, S)-c(j, S)-1} ; q\right)_{\lambda_{i}-\lambda_{j}}\left(q t^{c(i, S)-c(j, S)+1} ; q\right)_{\lambda_{i}-\lambda_{j}}}{\left(q t^{c(i, S)-c(j, S)} ; q\right)_{\lambda_{i}-\lambda_{j}}^{2}}
\end{aligned}
$$

Proof. Denote the (i, j)-product by Π_{λ}. Suppose $\lambda_{m}>0=\lambda_{m+1}$ and $\gamma=\left(\lambda_{1}, \ldots, \lambda_{m-1}, \lambda_{m}-1,0, \ldots\right)$. with α, β as in (3.17). Then

$$
\begin{align*}
\frac{\Pi_{\lambda}}{\Pi_{\gamma}}= & \prod_{i=1}^{m-1} \frac{\left(1-q^{\lambda_{i}-\lambda_{m}+1} t^{c(i, S)-c(m, S)}\right)^{2}}{\left(1-q^{\lambda_{i}-\lambda_{m}+1} t^{c(i, S)-c(m, S)-1}\right)\left(1-q^{\lambda_{i}-\lambda_{m}+1} t^{c(i, S)-c(m, S)+1}\right)} \tag{3.22}\\
& \times \prod_{j=m+1}^{N} \frac{\left(1-q^{\lambda_{m}} t^{c(m, S)-c(j, S)-1}\right)\left(1-q^{\lambda_{m}} t^{c(m, S)-c(j, S)+1}\right)}{\left(1-q^{\lambda_{m}} t^{c(m, S)-c(j, S)}\right)^{2}} \\
= & t^{2 m-1-N} \prod_{i=1}^{m-1} u\left(q^{\lambda_{i}-\lambda_{m}+1} t^{c(i, S)-c(m, S)}\right)^{-1} \prod_{j=m+1}^{N} u\left(q^{\lambda_{m}} t^{c(m, S)-c(j, S)}\right) \\
= & t^{2 m-1-N} \mathcal{E}(\alpha, S) / \mathcal{E}(\beta, S) .
\end{align*}
$$

Also $\prod_{i=1}^{N}\left(q t^{c(i, S)} ; q\right)_{\lambda_{i}} / \prod_{i=1}^{N}\left(q t^{c(i, S)} ; q\right)_{\gamma_{i}}=1-q^{\lambda_{m}} t^{c(m, S)}$. The formula satisfies the relation $\left\|M_{\lambda, S}\right\|^{2}=\frac{1-q^{\lambda m} t^{c(m, S)}}{1-q} \frac{\mathcal{E}(\alpha, S)}{\mathcal{E}(\beta, S)}\left\|M_{\gamma, S}\right\|^{2}$ and is valid at $\lambda=\mathbf{0}$ since $M_{0, S}=1 \otimes S$ and $\|1 \otimes S\|^{2}=\|S\|_{0}^{2}$.

Definition 8. The symmetric bilinear form is given by (3.22) for $\lambda \in$ $\mathbb{N}_{0}^{N,+}, S \in \mathcal{Y}(\tau)$, by $\left\|M_{\alpha, S}\right\|^{2}=\mathcal{E}(\alpha, S)^{-1}\left\|M_{\alpha^{+}, S}\right\|^{2}$ for $\alpha \in \mathbb{N}_{0}^{N}$ and by $\left\langle M_{\alpha, S}, M_{\beta, S^{\prime}}\right\rangle=0$ for $(\alpha, S) \neq\left(\beta, S^{\prime}\right)$.

Next we show that the definition satisfies the hypotheses (BF2).
The step s_{i} with $\alpha_{i}<\alpha_{i+1}$ satisfies (3.15b) because of the value $\frac{\mathcal{E}\left(\alpha . s_{i}, S\right)}{\mathcal{E}(\alpha, S)}$. It remains to check the step with $\alpha_{i}=\alpha_{i+1}$ and the affine step. The (i, j)-product in (3.22) can be written as (note $t^{-1} u(z)=$ $\left.\frac{(1-z / t)(1-t z)}{(1-z)^{2}}\right)$

$$
\prod_{1 \leq i<j \leq N} t^{\lambda_{j}-\lambda_{i}} \prod_{l=1}^{\lambda_{i}-\lambda_{j}} u\left(q^{l} t^{c(i, S)-c(j, S)}\right)
$$

Suppose $\alpha \in \mathbb{N}_{0}^{N}$ and $\lambda:=\alpha^{+}$; in the formula for $\mathcal{E}(\alpha, S)$ the condition $(i<j) \&\left(\alpha_{i}<\alpha_{j}\right)$ is equivalent to $(i<j) \&\left(r_{\alpha}(i)>r_{\alpha}(j)\right)$. Let $v_{\alpha}=r_{\alpha}^{-1}$ so that $\lambda_{i}=\alpha_{v_{\alpha}(i)}$. Then the product can be indexed by $\left(v_{\alpha}\left(i^{\prime}\right)<v_{\alpha}\left(j^{\prime}\right)\right) \&\left(i^{\prime}>j^{\prime}\right)\left(\right.$ where $\left.i^{\prime}=r_{\alpha}(i), j^{\prime}=r_{\alpha}(j)\right)$. Thus

$$
\mathcal{E}(\alpha, S)=\prod_{1 \leq j^{\prime}<i^{\prime} \leq N, v_{\alpha}\left(i^{\prime}\right)<v_{\alpha}\left(j^{\prime}\right)} u\left(q^{\left.\lambda_{i^{\prime}}-\lambda_{j^{\prime}} t^{c\left(i^{\prime}, S\right)-c\left(j^{\prime}, S\right)}\right) . . ~ . ~ . ~}\right.
$$

Proposition 9. Suppose $\alpha_{i}=\alpha_{i+1}, j=r_{\alpha}(i)$ and $m=c(j, S)-$ $c(j+1, S) \geq 2$. Then $\left\|M_{\alpha, S^{(j)}}\right\|^{2}=\frac{\left(1-t^{1-m}\right)\left(t-t^{-m}\right)}{\left(1-t^{-m}\right)^{2}}\left\|M_{\alpha, S}\right\|^{2}$.

Proof. By hypothesis $\zeta_{\alpha, S}(i)=q^{\alpha_{i}} t^{c(j, S)}$ and $\zeta_{\alpha, S}(i+1)=q^{\alpha_{i}} t^{c(j+1, S)}$ so that $\zeta_{\alpha, S}(i+1) / \zeta_{\alpha, S}(i)=t^{-m}$. Also by Proposition 5 we have $\left\|S^{(j)}\right\|_{0}^{2}=u\left(t^{-m}\right)\|S\|_{0}^{2}$. Suppose first that $\alpha \in \mathbb{N}_{0}^{N,+}$. Then $j=i$. In the formula for $\left\|M_{\alpha, S}\right\|^{2}$ the first product does not change when S is replaced by $S^{(j)}$; the factors $\left(q t^{c(i, S)} ; q\right)_{\lambda_{i}},\left(q t^{c(i+1, S)} ; q\right)_{\lambda_{i}}$ trade places. By a similar argument the (i, j)-product also does not change, and $\left\|M_{\alpha, S^{(j)}}\right\|^{2} /\left\|S^{(j)}\right\|_{0}^{2}=\left\|M_{\alpha, S}\right\|^{2} /\|S\|_{0}^{2}$. Otherwise $\alpha \neq \alpha^{+}$and

$$
\begin{align*}
\frac{\left\|M_{\alpha, S^{(j)}}\right\|^{2}}{\left\|S^{(j)}\right\|_{0}^{2}} & =\frac{\left\|M_{\alpha^{+}, S^{(j)}}\right\|^{2}}{\mathcal{E}\left(\alpha, S^{(j)}\right)\left\|S^{(j)}\right\|_{0}^{2}}=\frac{\left\|M_{\alpha^{+}, S}\right\|^{2}}{\mathcal{E}\left(\alpha, S^{(j)}\right)\|S\|_{0}^{2}} \tag{3.23}\\
& =\frac{\mathcal{E}(\alpha, S)}{\mathcal{E}\left(\alpha, S^{(j)}\right)} \frac{\left\|M_{\alpha, S}\right\|^{2}}{\|S\|_{0}^{2}}
\end{align*}
$$

Recall $\mathcal{E}(\alpha, S)=\prod_{1 \leq l<n \leq N, \alpha_{l}<\alpha_{n}} u\left(q^{\alpha_{n}-\alpha_{l}} t^{c\left(r_{\alpha}(n), S\right)-c\left(r_{\alpha}(l), S\right)}\right)$ and the product does not change when S is replaced by $S^{(j)}$ (the factors involving $l=i$ or $n=i$ are interchanged with those involving $l=i+1$ or $n=i+1$). Thus $\mathcal{E}\left(\alpha, S^{(j)}\right)=\mathcal{E}(\alpha, S)$.

Proposition 10. Suppose $\alpha \in \mathbb{N}_{0}^{N}, S \in \mathcal{Y}(\tau)$. Then

$$
\left\|M_{\alpha \Phi, S}\right\|^{2}=\frac{1-q^{\alpha_{1}+1} t^{c\left(r_{\alpha}(1), S\right)}}{1-q}\left\|M_{\alpha, S}\right\|^{2}
$$

Proof. We need to compute various ratios of $\mathcal{E}(\alpha, S),\left\|M_{\alpha^{+}, S}\right\|^{2}$, $\mathcal{E}(\alpha \Phi, S),\left\|M_{(\alpha \Phi)^{+}, S}\right\|^{2}$. Also $r_{\alpha}(i+1)=r_{\alpha \Phi}(i)$ for $1 \leq i<N$, $r_{\alpha}(1)=r_{\alpha \Phi}(N)$. Let $\lambda:=\alpha^{+}$. Then $\lambda_{r_{\alpha}(i)}=\alpha_{i}$ for all i. Let $m:=r_{\alpha}(1)$. This implies $\#\left\{i: \alpha_{i}>\alpha_{1}\right\}=m-1$, thus $\lambda_{m-1}>\lambda_{m}$ and $(\alpha \Phi)_{m}^{+}=\lambda_{m}+1$. Also $k\left((\alpha \Phi)^{+}\right)-k(\lambda)=N-2 m+1$. This implies

$$
\begin{aligned}
&\left\|M_{(\alpha \Phi)^{+}, S}\right\|^{2} \\
&\left\|M_{\lambda, S}\right\|^{2}
\end{aligned}=t^{N-2 m+1} \frac{1-q^{\lambda_{m}+1} t^{c(m, S)}}{1-q} .
$$

Let $\mu:=(\alpha \Phi)^{+}$. Then

$$
\mathcal{E}(\alpha \Phi, S)=\prod_{\substack{i<j \\ v_{\Phi}(i)>v_{\alpha \Phi}(j)}} u\left(q^{\mu_{i}-\mu_{j}} t^{c(i, S)-c(j, S)}\right)
$$

and

$$
\mathcal{E}(\alpha, S)=\prod_{\substack{i<j \\ v_{\alpha}(i)>v_{\alpha}(j)}} u\left(q^{\lambda_{i}-\lambda_{j}} t^{c(i, S)-c(j, S)}\right)
$$

From $v_{\alpha}(i)=v_{\alpha \Phi}(i)+1$ except $v_{\alpha}(m)=1, v_{\alpha \Phi}(m)=N$ the inversions $\left\{(i, j): i<j, v_{\alpha}(i)>v_{\alpha}(j)\right\}$ occur in both the products provided that $j \neq m$ in which case the pairs $\{(i, m): 1 \leq i \leq m-1\}$ do not occur in $\mathcal{E}(\alpha \Phi, S)$, or if $i=m$ and the pairs $\{(m, j): m<j \leq N\}$ do not occur in $\mathcal{E}(\alpha, S)$. Also $\mu_{i}=\lambda_{i}$ for all i except $\mu_{m}=\lambda_{m}+1$. Thus

$$
\begin{aligned}
& \frac{\mathcal{E}(\alpha, S)}{\mathcal{E}(\alpha \Phi, S)}=\prod_{i=1}^{m-1} u\left(q^{\lambda_{i}-\lambda_{m}} t^{c(i, S)-c(m, S)}\right) \\
& \times \prod_{j=m+1}^{N} u\left(q^{\lambda_{m}+1-\lambda_{j}} t^{c(m, S)-c(j, S)}\right)^{-1}
\end{aligned}
$$

and

$$
\frac{\left\|M_{\alpha \Phi, S}\right\|^{2}}{\left\|M_{\alpha, S}\right\|^{2}}=\frac{\left\|M_{(\alpha \Phi)^{+}, S}\right\|^{2}}{\left\|M_{\lambda, S}\right\|^{2}} \frac{\mathcal{E}(\alpha, S)}{\mathcal{E}(\alpha \Phi, S)}=\frac{1-q^{\lambda_{m}+1} t^{c(m, S)}}{1-q} .
$$

Finally $\zeta_{\alpha, S}(1)=q^{\alpha_{1}} t^{c\left(r_{\alpha}(1), S\right)}=q^{\lambda_{m}} t^{c(m, S)}$.
Corollary 2. The bilinear form satisfies (3.15d).
Proof. By Lemma 4 we have

$$
\begin{aligned}
\left\langle M_{\alpha \Phi, S} \mathcal{D}_{N}, M_{\alpha, S}\left(\boldsymbol{w}^{*}\right)^{-1}\right\rangle & =\left(1-q \zeta_{\alpha, S}(1)\right)\left\langle M_{\alpha, S} \boldsymbol{w}, M_{\alpha, S}\left(\boldsymbol{w}^{*}\right)^{-1}\right\rangle \\
& =\left(1-q \zeta_{\alpha, S}(1)\right)\left\|M_{\alpha, S}\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle M_{\alpha \Phi, S}, x_{N}\left(M_{\alpha, S}\left(\boldsymbol{w}^{*}\right)^{-1}\right) \boldsymbol{w}^{*} \boldsymbol{w}\right\rangle & =\left\langle M_{\alpha \Phi, S}, M_{\alpha \Phi, S}\right\rangle \\
& =\frac{1-q \zeta_{\alpha, S}(1)}{1-q}\left\|M_{\alpha, S}\right\|^{2}
\end{aligned}
$$

by the proposition, thus $(1-q)\left\langle M_{\alpha \Phi, S}, x_{N} g \boldsymbol{w}^{*} \boldsymbol{w}\right\rangle=\left\langle M_{\alpha \Phi, S} \mathcal{D}_{N}, g\right\rangle$ when $g=M_{\alpha, S}\left(\boldsymbol{w}^{*}\right)^{-1}$. It suffices to prove

$$
\left\langle f \mathcal{D}_{N}, g\right\rangle=(1-q)\left\langle f, x_{N}\left(g \boldsymbol{w}^{*} \boldsymbol{w}\right)\right\rangle
$$

for $f=M_{\gamma, S}$ and $g \boldsymbol{w}^{*}=M_{\beta, S^{\prime}}$ with $|\gamma|=|\beta|+1$. If $\gamma_{N}=0$ then $M_{\gamma, S} \mathcal{D}_{N}=0$ and $\left\langle M_{\gamma, S} \mathcal{D}_{N}, M_{\beta . S^{\prime}}\left(\boldsymbol{w}^{*}\right)^{-1}\right\rangle=0$ while

$$
\left\langle M_{\gamma, S}, x_{N}\left(M_{\beta, S^{\prime}} \boldsymbol{w}\right)\right\rangle=\left\langle M_{\gamma, S}, M_{\beta \Phi, S^{\prime}}\right\rangle=0
$$

because $\gamma \neq \beta \Phi$. If $\gamma=\alpha \Phi$ for some α with $(\alpha, S) \neq\left(\beta, S^{\prime}\right)$ then

$$
\left\langle M_{\alpha \Phi, S}, x_{N}\left(M_{\beta, S^{\prime}} \boldsymbol{w}\right)\right\rangle=\left\langle M_{\alpha \Phi, S}, M_{\beta \Phi, S^{\prime}}\right\rangle=0
$$

and

$$
\begin{aligned}
\left\langle M_{\alpha \Phi, S} \mathcal{D}_{N}, M_{\beta . S^{\prime}}\left(\boldsymbol{w}^{*}\right)^{-1}\right\rangle & =\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha, S} \boldsymbol{w}, M_{\beta . S^{\prime}}\left(\boldsymbol{w}^{*}\right)^{-1}\right\rangle \\
& =\left(1-q \zeta_{\alpha}(1)\right)\left\langle M_{\alpha, S}, M_{\beta . S^{\prime}}\right\rangle=0 .
\end{aligned}
$$

The case $(\alpha, S)=\left(\beta, S^{\prime}\right)$ is already done.
Proposition 11. Suppose $\operatorname{dim} V_{\tau} \geq 2, q, t>0$ and $q \neq 1$. Then the form $\langle\cdot, \cdot\rangle$ is positive-definite provided $0<q<\min \left(t^{-h_{\tau}}, t^{h_{\tau}}\right)$ or $q>$ $\max \left(t^{-h_{\tau}}, t^{h_{\tau}}\right)$, that is, $\min \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)<t<\max \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)$.
Proof. In the definition of $\left\langle M_{\alpha, S}, M_{\alpha, S}\right\rangle$ there is an even number of factors of the form $1-q^{a} t^{b}$ where $a=1,2,3, \ldots$ and b is one of $c(i, S)$, $c(i, S)-c(j, S)$, or $c(i, S)-c(j, S) \pm 1$. The $c(i, S)$ values lie in $\left[1-\ell(\tau), \tau_{1}-1\right]$; thus $-h_{\tau} \leq b \leq h_{\tau}$ where $h_{\tau}=\tau_{1}+\ell(\tau)-1$, the maximum hook length in the Ferrers diagram λ. Consider the four cases
(1) $0<q<1,0<t<1$. Then $q^{a} t^{b} \leq q t^{-h_{\tau}}<1$ provided $q<t^{h_{\tau}}$.
(2) $0<q<1, t \geq 1$. Then $q^{a} t^{b} \leq q t^{h_{\tau}}<1$ provided $q<t^{-h_{\tau}}$.
(3) $q>1,0<t<1$. Then $q^{a} t^{b} \geq q t^{h_{\tau}}>1$ provided $q>t^{-h_{\tau}}$.
(4) $q>1, t \geq 1$. Then $q^{q} t^{b} \geq q t^{-h_{\gamma}}>1$ provided $q>t^{h_{\tau}}$.

Thus $\left\|M_{\alpha, S}\right\|^{2}>0$ if $\min \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)<t<\max \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)$.
There is an illustration in Figure 2 with $h_{\tau}=3$ (for $\tau=(2,1)$ or $\tau=(2,2))$.

From a similar argument it follows that the transformation formulas for Macdonald polynomials have no poles when $\min \left(q^{-1 / k}, q^{1 / k}\right)<t<$ $\max \left(q^{-1 / k}, q^{1 / k}\right)$ with $k=h_{\tau}-1$.
3.4. Singular polynomials. A singular polynomial $f \in \mathcal{P}_{\tau}$ is one which satisfies $f \mathcal{D}_{i}=0$ for all i when (q, t) are specialized to some specific relation of the form $q^{a} t^{b}=1$. By Proposition 7 the polynomial f satisfies $\langle f, g\rangle=0$ for all $g \in \mathcal{P}_{\tau}$, and in particular $\langle f, f\rangle=0$. Thus the singular polynomial phenomenon can not occur in the (q, t) region of positivity. The boundary of the region does allow singular polynomials. There are Macdonald polynomials which are singular when specialized to $q=t^{h_{\tau}}$ or $q=t^{-h_{\tau}}$. These values do not produce poles in the polynomial coefficients as remarked above, since $\frac{1}{h_{\tau}}<\frac{1}{h_{\tau}-1}$.

Figure 2. Logarithmic coordinates, $h=3$
Proposition 12. Suppose $\alpha \in \mathbb{N}_{0}^{N}, S \in \mathcal{Y}(\tau)$ and $\alpha_{i}=0$ for $m<i \leq$ N. Then $M_{\alpha, S} \mathcal{D}_{j}=0$ for $m<j \leq N$.
Proof. Arguing by induction the start is

$$
M_{\alpha, S} \mathcal{D}_{N}=\frac{1}{x_{N}} M_{\alpha, S}\left(1-\xi_{N}\right)=\frac{1}{x_{N}}\left(1-\zeta_{\alpha, S}(N)\right) M_{\alpha, S}=0,
$$

since $\zeta_{\alpha, S}(N)=1$. Suppose now that $\beta_{i}=0$ for $i \geq k+1$ implies $M_{\beta, S^{\prime}} \mathcal{D}_{j}=0$ for $j \geq k+1$ and any $\left(\beta, S^{\prime}\right)$. Suppose $\alpha_{i}=0$ for $i \geq k$. Then $r_{\alpha}(i)=i$ and $\zeta_{\alpha, S}(i)=t^{r(i, S)}$ for $i \geq k$ and $M_{\alpha, S} \boldsymbol{T}_{k}$ is one of $t M_{\alpha, S},-M_{\alpha, S}, M_{\alpha, S^{(k)}}-\frac{t-1}{\rho-1} M_{\alpha, S}, \frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}} M_{\alpha, S^{(k)}}-\frac{t-1}{(1-\rho)} M_{\alpha, S}$ depending on $c(k+1, S)-c(k, S)=1,=-1, \geq 2, \leq-2$ respectively and $\rho=t^{c(k+1, S)-c(k, S)}$. Then $M_{\alpha, S} \mathcal{D}_{k}=\frac{1}{t}\left(M_{\alpha, S} \boldsymbol{T}_{k}\right) \mathcal{D}_{k+1} \boldsymbol{T}_{k}$ and $\left(M_{\alpha, S} \boldsymbol{T}_{k}\right) \mathcal{D}_{k+1}=0$ by the inductive hypothesis.
Lemma 5. Suppose $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m-1}, 1,0, \ldots\right)$ with $\alpha_{i} \geq 1$ for $i \leq m$ and $S \in \mathcal{Y}(\tau)$. Then

$$
M_{\alpha, S} \mathcal{D}_{m}=t^{m-N} \prod_{j=m}^{N-1} u\left(q t^{c(m, S)-c(j+1, S)}\right) M_{\alpha^{(N)}, S} \mathcal{D}_{N} \boldsymbol{T}_{N-1} \cdots \boldsymbol{T}_{m},
$$

where $\alpha^{(N)}=\left(\alpha_{1}, \ldots, \alpha_{m-1}, 0,0, \ldots, 1\right)$.

Proof. For $m \leq j \leq N$ let $\alpha^{(j)}=\left(\alpha_{1}, \ldots, \alpha_{m-1}, 0, \ldots, \stackrel{j}{1}, 0 \ldots\right)$ so that $\alpha_{i}^{(j)}=\alpha_{i}$ except $\alpha_{j}^{(j)}=1$ and $\alpha_{m}^{(j)}=0($ when $j \neq m)$. Then $\zeta_{\alpha^{(j)}, S}(j)=q t^{c(m, S)}$ and $\zeta_{\alpha^{(j)}, S}(j+1)=t^{c(j+1, S)}\left(\right.$ since $\left.r_{\alpha^{(m)}}(j)=m\right)$ and

$$
M_{\alpha^{(j)}, S} \boldsymbol{T}_{j}=\frac{(1-t \rho)(t-\rho)}{(1-\rho)^{2}} M_{\alpha^{(j+1)}, S}+\frac{\rho(1-t)}{(1-\rho)} M_{\alpha^{(j)}, S}
$$

from (3.12) with $\rho=q t^{c(m, S)-c(j+1, S)}$. Thus

$$
\begin{aligned}
M_{\alpha^{(j)}, S} \mathcal{D}_{j} & =\frac{1}{t} M_{\alpha^{(j)}, S} \boldsymbol{T}_{j} \mathcal{D}_{j+1} \boldsymbol{T}_{j} \\
& =\frac{1}{t} u\left(q t^{c(m, S)-c(j+1, S)}\right) M_{\alpha^{(j+1)}, S} \mathcal{D}_{j+1} \boldsymbol{T}_{j}
\end{aligned}
$$

because $M_{\alpha^{(j)}, S} \mathcal{D}_{j+1}=0$. Iterate this formula starting with $j=m$ and $\alpha^{(m)}=\alpha$, ending with $j=N-1$ to obtain the stated formula.

Recall that S_{1} is the $i n v$-minimal RSYT with the numbers $N, N-$ $1, N-2, \ldots, 1$ entered row-by-row and let $l=\ell(\tau), \alpha=\left(1^{\tau_{l}}, 0^{N-\tau_{l}}\right)$. Thus the entry at $(l, 1)$ is τ_{l} and $c\left(\tau_{l}, S_{1}\right)=1-l$. The entry at $\left(1, \tau_{1}\right)$ is $N-\tau_{1}+1$ and $c\left(N-\tau_{1}+1, S_{1}\right)=\tau_{1}-1$.
Proposition 13. $M_{\alpha, S_{1}}$ is singular for $q=t^{h_{\tau}}$.
Proof. By the lemma with $m=\tau_{l}$, we have

$$
M_{\alpha, S_{1}} \mathcal{D}_{\tau_{l}}=t^{\tau_{l}-N} \prod_{j=\tau_{l}}^{N-1} u\left(q t^{1-l-c\left(j+1, S_{1}\right)}\right) M_{\alpha^{(N)}, S_{1}} \mathcal{D}_{N} \boldsymbol{T}_{N-1} \cdots \boldsymbol{T}_{\tau_{l}} .
$$

The factors in the denominator of the product are of the form 1 $q t^{1-l-c\left(j+1, S_{1}\right)}$ with $c\left(j+1, S_{1}\right) \leq \tau_{1}-1$ so that $1-l-c\left(j+1, S_{1}\right) \geq$ $2-l-\tau_{1}=1-h_{\tau}>h_{\tau}$. Furthermore the numerator factor at $j=$ $N-\tau_{1}$ is $\left(t-q t^{2-l-\tau_{1}}\right)\left(1-q t^{3-l-\tau_{1}}\right)$ which vanishes at $q t^{-h_{\tau}}=1$. By Proposition 12 we have $M_{\alpha, S_{1}} \mathcal{D}_{i}=0$ for $i>\tau_{l}$. If $1 \leq i<\tau_{l}$ then $M_{\alpha, S_{1}} \boldsymbol{T}_{i}=t M_{\alpha, S_{1}}$ (because $i, i+1$ are in the same row of S_{1}), thus

$$
\begin{aligned}
M_{\alpha, S_{1}} \mathcal{D}_{i} & =t^{i-\tau_{l}} M_{\alpha, S_{i}} \boldsymbol{T}_{i} \boldsymbol{T}_{i+1} \cdots \boldsymbol{T}_{\tau_{l}-1} \mathcal{D}_{\tau_{l}} \boldsymbol{T}_{\tau_{l}-1} \cdots \boldsymbol{T}_{i} \\
& =M_{\alpha, S_{i}} \mathcal{D}_{\tau_{l}} \boldsymbol{T}_{\tau_{l}-1} \cdots \boldsymbol{T}_{i}=0
\end{aligned}
$$

when $q=t^{h_{\tau}}$.
We apply the same argument to S_{0} where the numbers $N, N-1, \ldots, 1$ are entered column-by-column. Let $m=\tau_{\tau_{1}}^{\prime}$, that is, the length of the last column of τ. Then the entry at $\left(\tau_{1}, 1\right)$ is m and $c\left(m, S_{0}\right)=\tau_{1}-1$. Also the entry at $(l, 1)$ is $N-l+1$ and $c(N-l+1)=1-l$.

Proposition 14. Set $\alpha=\left(1^{m}, 0^{N-m}\right)$. Then $M_{\alpha, S_{0}}$ is singular for $q=t^{-h_{\tau}}$.
Proof. By Lemma 5 we have

$$
M_{\alpha, S_{0}} \mathcal{D}_{m}=t^{m-N} \prod_{j=m}^{N-1} u\left(q t^{\tau_{1}-1-c\left(j+1, S_{1}\right)}\right) M_{\alpha^{(N)}, S_{0}} \mathcal{D}_{N} \boldsymbol{T}_{N-1} \cdots \boldsymbol{T}_{m}
$$

The factors in the denominator of the product are of the form $1-$ $q t^{\tau_{1}-1-c\left(j+1, S_{1}\right)}$ with $c\left(j+1, S_{1}\right) \geq 1-l$ so that $\tau_{1}-1-c\left(j+1, S_{1}\right) \leq$ $\tau_{1}+l-2<h_{\tau}$. Furthermore the numerator factor at $j=N-l$ is $\left(t-q t^{\tau_{1}+l-2}\right)\left(1-q t^{\tau_{1}+l-1}\right)$ which vanishes at $q t^{h_{\tau}}=1$. The rest of the argument is as in the previous proposition with the difference that $M_{\alpha, S_{0}} \boldsymbol{T}_{i}=-M_{\alpha, S_{0}}$ for $1 \leq i<m$.

In conclusion we have constructed a symmetric bilinear form on \mathcal{P}_{τ} for which the operators \boldsymbol{T}_{i} and ξ_{i} are self-adjoint, the Macdonald polynomials $M_{\alpha, S}$ are mutually orthogonal, and the form is positive-definite for $q>0, q \neq 1$ and $\left.\min \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)<t<\max \left(q^{-1 / h_{\tau}}, q^{1 / h_{\tau}}\right)\right)$ where $h_{\tau}=\tau_{1}+\ell(\tau)-1$. The bound is sharp, as demonstrated by the existence of singular polynomials for $q=t^{ \pm h_{\tau}}$.

References

[1] T. H. Baker, P. J. Forrester, A q-analogue of the type A Dunkl operator and integral kernel, Int. Math. Res. Notices 14 (1997), 667-686.
[2] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), 2-52.
[3] C. F. Dunkl and J.-G. Luque, Vector valued Macdonald polynomials, Sém. Lothar. Combin. B66b (2011), 68 pp.
[4] S. Griffeth, Orthogonal functions generalizing Jack polynomials, Trans. Amer. Math. Soc. 362 (2010), 6131-6157.
[5] A. Lascoux, Yang-Baxter graphs, Jack and Macdonald polynomials, Ann. Combin. 5 (2001), 397-424.

Department. of Mathematics, University of Virginia, CharlottesVILLE VA 22904-4137, US

E-mail address, C.D.: cfd5z@virginia.edu
URL: http://people.virginia.edu/~~fd5z/home.html

[^0]: 2010 Mathematics Subject Classification. Primary 20C08, 33D52; Secondary 05E10, 33D80.

 Key words and phrases. Hecke algebra, nonsymmetric Macdonald polynomials.

