Character restrictions and hook removal operators on the odd Young graph

Christine Bessenrodt

	1	Leibniz
10	2	Universität
10	4	Hannover

SLC 80, Lyon

March 26, 2018

Irreducible complex characters of \mathfrak{S}_{n}

Partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ of $n(w r i t t e n ~ a s ~ \lambda \vdash n)$,
where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}>0$ are integers with $\sum_{i=1}^{\ell} \lambda_{i}=n$.

Theorem (Frobenius)

The irreducible complex characters of \mathfrak{S}_{n} are naturally labelled by partitions of n,

$$
\operatorname{lrr}_{\mathbb{C}}\left(\mathfrak{S}_{n}\right)=\left\{\chi^{\lambda} \mid \lambda \vdash n\right\} .
$$

Remark Connection to symmetric functions:
Via the Frobenius characteristic, there is a correspondence

$$
\chi^{\lambda} \longleftrightarrow s_{\lambda} \quad \text { (Schur function) }
$$

Character restriction from \mathfrak{S}_{n} to \mathfrak{S}_{n-1}

Theorem (Branching formula)

For $\lambda \vdash n$,

$$
\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}=\sum_{A} \chi^{\lambda \backslash A}
$$

where the sum runs over the removable corners A of the Young diagram of λ.

$$
\lambda=(5,3,3,2)
$$

$\chi^{(5,3,3,2)} \downarrow_{\mathfrak{S}_{12}}=\chi^{(4,3,3,2)}+\chi^{(5,3,2,2)}+\chi^{(5,3,3,1)}$

Odd degree characters

Let $\lambda \vdash n$.

$$
\chi^{\lambda}(\text { id })=f^{\lambda}=\#\{\text { standard Young tableaux of shape } \lambda\} .
$$

If f^{λ} is odd, we call λ an odd partition, for short: $\lambda \vdash_{o} n$.
What is the number of odd partitions? I.e., we consider

$$
\mathcal{O}(n)=\left\{\lambda \vdash n \mid f^{\lambda} \text { odd }\right\}
$$

or equivalently,

$$
\operatorname{lrr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \mid 2 \nmid f^{\lambda}\right\}
$$

Odd degree characters

Let $\lambda \vdash n$.

$$
\chi^{\lambda}(\text { id })=f^{\lambda}=\#\{\text { standard Young tableaux of shape } \lambda\} .
$$

If f^{λ} is odd, we call λ an odd partition, for short: $\lambda \vdash_{o} n$.
What is the number of odd partitions? I.e., we consider

$$
\mathcal{O}(n)=\left\{\lambda \vdash n \mid f^{\lambda} \text { odd }\right\}
$$

or equivalently,

$$
\operatorname{lrr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right)=\left\{\chi^{\lambda} \in \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \mid 2 \nmid f^{\lambda}\right\}
$$

Theorem (Macdonald 1971, McKay 1972)

Let $n=2^{a_{1}}+\ldots+2^{a_{r}}$ with $a_{1}<\ldots<a_{r}$. Then

$$
\#\left\{\lambda \vdash n \mid f^{\lambda} \text { odd }\right\}=2^{a_{1}+\ldots+a_{r}} .
$$

Odd degree characters and hooks

Denote by $\chi^{\lambda}(\mu)$ the value of χ^{λ} on elements of cycle type μ. Observe that for $n=2^{a_{1}}+\ldots+2^{a_{r}}$ as above,

$$
\chi^{\lambda}\left(1^{n}\right) \equiv \chi^{\lambda}\left(2^{a_{1}}, \ldots, 2^{a_{r}}\right) \quad \bmod 2
$$

This leads to a hook construction of odd degree characters.

Odd degree characters and hooks

Denote by $\chi^{\lambda}(\mu)$ the value of χ^{λ} on elements of cycle type μ. Observe that for $n=2^{a_{1}}+\ldots+2^{a_{r}}$ as above,

$$
\chi^{\lambda}\left(1^{n}\right) \equiv \chi^{\lambda}\left(2^{a_{1}}, \ldots, 2^{a_{r}}\right) \quad \bmod 2
$$

This leads to a hook construction of odd degree characters.
For example, for $n=26=2+8+16$:

McKay's Conjecture

Let G be a finite group, p a prime; set

$$
k_{p^{\prime}}(G)=\#\{\chi \in \operatorname{lrr}(G) \mid p \nmid \chi(1)\} .
$$

Conjecture (McKay)
Let P be a Sylow p-subgroup of G. Then

$$
k_{p^{\prime}}(G)=k_{p^{\prime}}\left(N_{G}(P)\right)
$$

McKay's Conjecture

Let G be a finite group, p a prime; set

$$
k_{p^{\prime}}(G)=\#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$
k_{p^{\prime}}(G)=k_{p^{\prime}}\left(N_{G}(P)\right) .
$$

Remark Olsson 1976: True for $G=S_{n}$ and any prime p.

McKay's Conjecture

Let G be a finite group, p a prime; set

$$
k_{p^{\prime}}(G)=\#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$
k_{p^{\prime}}(G)=k_{p^{\prime}}\left(N_{G}(P)\right) .
$$

Remark Olsson 1976: True for $G=S_{n}$ and any prime p.

Theorem (Malle, Späth 2016)

McKay's Conjecture holds for $p=2$.

McKay's Conjecture

Let G be a finite group, p a prime; set

$$
k_{p^{\prime}}(G)=\#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$
k_{p^{\prime}}(G)=k_{p^{\prime}}\left(N_{G}(P)\right)
$$

Remark Olsson 1976: True for $G=S_{n}$ and any prime p.

Theorem (Malle, Späth 2016)

McKay's Conjecture holds for $p=2$.
Remark For $G=\mathfrak{S}_{n}, P_{n} \in \operatorname{Syl}_{2}\left(\mathfrak{S}_{n}\right)$, a canonical bijection

$$
\operatorname{lrr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right) \rightarrow \operatorname{lrr}_{2^{\prime}}\left(N_{\mathfrak{S}_{n}}\left(P_{n}\right)\right)=\operatorname{Lin}\left(P_{n}\right)
$$

was constructed by [Giannelli, Kleshchev, Navarro, Tiep 2016].

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?
Let $v_{2}(n)$ be the exponent of the highest power of 2 dividing n.

Theorem (Ayyer, Prasad, Spallone, SLC 2015)

Let $\lambda \in \mathcal{O}(n)$. Let $m=v_{2}(n+1)$.
(1) $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ has exactly one constituent of odd degree.
(2) $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ has exactly two constituents of odd degree if the 2^{m}-core of λ is a hook, and no such constituent otherwise.

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?
Let $v_{2}(n)$ be the exponent of the highest power of 2 dividing n.

Theorem (Ayyer, Prasad, Spallone, SLC 2015)

Let $\lambda \in \mathcal{O}(n)$. Let $m=v_{2}(n+1)$.
(1) $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ has exactly one constituent of odd degree.
(2) $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ has exactly two constituents of odd degree if the 2^{m}-core of λ is a hook, and no such constituent otherwise.

Example $\lambda=(5,3,3,2)$.

$$
\chi^{(5,3,3,2)} \downarrow_{\mathfrak{S}_{12}}=\chi^{(4,3,3,2)}+\chi^{(5,3,2,2)}+\chi^{(5,3,3,1)}
$$

degree:
11583
2970
4455
4158

The odd Young graph

$$
\begin{aligned}
& { }^{(6)} \begin{array}{ccccc}
(5,1) & \left(3^{2}\right) & (4,2) & \left(2^{2}, 1^{2}\right) & \left(2^{3}\right) \\
1 & \left(2,1^{4}\right) \\
(5) & (3,2) & \left(2^{2}, 1\right) & 1 \\
\left(1^{5}\right)
\end{array} \quad\left(1^{6}\right) \\
& \text { (4) } \\
& (3,1) \\
& \left(2,1^{2}\right) \\
& \text { (14) } \\
& \text { (2) } \\
& \left(1^{2}\right) \\
& \text { (1) } \\
& \emptyset
\end{aligned}
$$

More general restrictions

Character restriction from level n to $n-2^{k}$:

More general restrictions

Character restriction from level n to $n-2^{k}$:
Theorem (Isaacs, Navarro, Olsson, Tiep 2017)
Let $k \in \mathbb{N}$ such that $2^{k}<n$, and let $\chi \in \operatorname{Irr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right)$.
Then there exists a unique odd-degree irreducible constituent $f_{k}^{n}(X)$ of $\chi_{\mathfrak{S}_{n-2^{k}}}$ appearing with odd multiplicity.

More general restrictions

Character restriction from level n to $n-2^{k}$:
Theorem (Isaacs, Navarro, Olsson, Tiep 2017)
Let $k \in \mathbb{N}$ such that $2^{k}<n$, and let $\chi \in \operatorname{lrr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right)$. Then there exists a unique odd-degree irreducible constituent $f_{k}^{n}(X)$ of $\chi_{\mathfrak{S}_{n-2^{k}}}$ appearing with odd multiplicity.

Thus, for $2^{k}<n$ we have a naturally defined map

$$
f_{k}^{n}: \operatorname{Irr}_{2^{\prime}}\left(\mathfrak{S}_{n}\right) \longrightarrow \operatorname{Irr}_{2^{\prime}}\left(\mathfrak{S}_{n-2^{k}}\right)
$$

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_{k}^{n} !

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_{k}^{n} ! Let $\lambda \in \mathcal{O}(n), \mu \in \mathcal{O}\left(n-2^{k}\right)$. Then

$$
f_{k}^{n}\left(\chi^{\lambda}\right)=\chi^{\mu} \text { if and only if } \mu=\lambda \backslash H \text { for a } 2^{k} \text {-hook } H
$$

In fact, there is a unique 2^{k}-hook H of λ such that $\lambda \backslash H$ is odd.
Correspondingly, we write

$$
f_{k}^{n}: \mathcal{O}(n) \longrightarrow \mathcal{O}\left(n-2^{k}\right), \lambda \mapsto \mu=\lambda \backslash H .
$$

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_{k}^{n} ! Let $\lambda \in \mathcal{O}(n), \mu \in \mathcal{O}\left(n-2^{k}\right)$. Then

$$
f_{k}^{n}\left(\chi^{\lambda}\right)=\chi^{\mu} \text { if and only if } \mu=\lambda \backslash H \text { for a } 2^{k} \text {-hook } H
$$

In fact, there is a unique 2^{k}-hook H of λ such that $\lambda \backslash H$ is odd.
Correspondingly, we write

$$
f_{k}^{n}: \mathcal{O}(n) \longrightarrow \mathcal{O}\left(n-2^{k}\right), \lambda \mapsto \mu=\lambda \backslash H .
$$

Example

$$
\lambda=(5,3,3,2)
$$

f_{1} on the odd Young graph

Remark $f_{1} \neq f_{0} f_{0}$!
For example,

$$
f_{1}((31))=\left(1^{2}\right) \neq(2)=f_{0} f_{0}((3,1)) .
$$

Hook removal on the odd Young graph

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?

Hook removal on the odd Young graph

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?
Remark Not always! But, for example, the map f_{k}^{n} is surjective when 2^{k} appears in the binary expansion of n.

Hook removal on the odd Young graph

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?
Remark Not always! But, for example, the map f_{k}^{n} is surjective when 2^{k} appears in the binary expansion of n.

Question (INOT 2017)

Let $k \leq \ell$ be such that $2^{k}+2^{\ell} \leq n$.
When do the hook removal operators f_{k} and f_{ℓ} commute?
More specifically: when is $f_{k}^{n-2^{\ell}} f_{\ell}^{n}=f_{\ell}^{n-2^{k}} f_{k}^{n}$?

Hook removal on the odd Young graph

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?
Remark Not always! But, for example, the map f_{k}^{n} is surjective when 2^{k} appears in the binary expansion of n.

Question (INOT 2017)

Let $k \leq \ell$ be such that $2^{k}+2^{\ell} \leq n$.
When do the hook removal operators f_{k} and f_{ℓ} commute?
More specifically: when is $f_{k}^{n-2^{\ell}} f_{\ell}^{n}=f_{\ell}^{n-2^{k}} f_{k}^{n}$?
Remark Not always! But, for example, if 2^{ℓ} is the largest binary digit of n.

2-cores and 2-quotients: 2-data

Let $\lambda \vdash n$. Construct the 2-quotient tower $\mathcal{Q}_{2}(\lambda)$:
Row 0: $\quad \mathcal{Q}_{2}^{(0)}(\lambda)=\left(\lambda_{1}^{(0)}\right)=(\lambda)$.
Row k : $\quad \mathcal{Q}_{2}^{(k)}(\lambda)=\left(\lambda_{1}^{(k)}, \ldots, \lambda_{2^{k}}^{(1)}\right)$ contains the partitions in the 2-quotients of the partitions in $\mathcal{Q}_{2}^{(k-1)}(\lambda)$ (the same as those in the 2^{k}-quotient $Q_{2^{k}}(\lambda)$ of λ).
2-core tower $\mathcal{C}_{2}(\lambda)$:
$j \geq 0: \mathcal{C}_{2}^{(j)}(\lambda)=\left(C_{2}\left(\lambda_{1}^{(j)}\right), \ldots, C_{2}\left(\lambda_{2^{k}}^{(j)}\right)\right)$, the 2-cores of the $\lambda_{i}^{(j)}$.

2-cores and 2-quotients: 2-data

Let $\lambda \vdash n$. Construct the 2-quotient tower $\mathcal{Q}_{2}(\lambda)$:
Row 0: $\quad \mathcal{Q}_{2}^{(0)}(\lambda)=\left(\lambda_{1}^{(0)}\right)=(\lambda)$.
Row k : $\quad \mathcal{Q}_{2}^{(k)}(\lambda)=\left(\lambda_{1}^{(k)}, \ldots, \lambda_{2^{k}}^{(1)}\right)$ contains the partitions in the 2-quotients of the partitions in $\mathcal{Q}_{2}^{(k-1)}(\lambda)$
(the same as those in the 2^{k}-quotient $Q_{2^{k}}(\lambda)$ of λ).
2-core tower $\mathcal{C}_{2}(\lambda)$:
$j \geq 0: \mathcal{C}_{2}^{(j)}(\lambda)=\left(C_{2}\left(\lambda_{1}^{(j)}\right), \ldots, C_{2}\left(\lambda_{2^{k}}^{(j)}\right)\right)$, the 2-cores of the $\lambda_{i}^{(j)}$.
k-data $\mathcal{D}_{2}^{(k)}(\lambda)$: row $j<k$ equals $\mathcal{C}_{2}^{(j)}(\lambda)$, row k equals $\mathcal{Q}_{2}^{(k)}(\lambda)$.

Theorem (BGO 2017)

Fix $k \geq 0$. Then λ is odd if and only if for $j<k$ the sum over all partitions in $\mathcal{C}_{2}^{(j)}(\lambda)$ is ≤ 1, and the partitions in $\mathcal{Q}_{2}^{(k)}$ are odd and their sizes are pairwise 2-disjoint (i.e., in binary expansion).

Example

$$
\begin{align*}
& \lambda=\left(5,4,2^{2}, 1^{2}\right), k=2 \\
& \mathcal{Q}_{2}^{(0)}(\lambda): \quad \lambda \\
& \mathcal{Q}_{2}^{(1)}(\lambda): \quad\left(2^{2}, 1^{2}\right) \tag{1}\\
& \mathcal{Q}_{2}^{(2)}(\lambda):\left(1^{2}\right) \\
& \text { (1) } \\
& \mathcal{D}_{2}^{(2)}(\lambda): \\
& \mathcal{C}_{2}^{(0)}(\lambda): \tag{1}\\
& \mathcal{C}_{2}^{(1)}(\lambda) \text { : } \tag{0}\\
& \mathcal{Q}_{2}^{(2)}(\lambda): \quad\left(1^{2}\right) \tag{1}\\
& \text { (0) } \\
& \text { (0) }
\end{align*}
$$

Remark Removal of a 2^{k}-hook from λ is equivalent to removing a box from one of the partitions in row k of $\mathcal{D}_{2}^{(k)}(\lambda)$.

Walking around the odd Young graph

For an odd partition μ, we define the set of odd extensions:

$$
\mathcal{E}\left(\mu, 2^{k}\right)=\left\{\lambda \vdash_{0} n \mid f_{k}^{n}(\lambda)=\mu\right\}, e\left(\mu, 2^{k}\right)=\# \mathcal{E}\left(\mu, 2^{k}\right)
$$

Walking around the odd Young graph

For an odd partition μ, we define the set of odd extensions:

$$
\mathcal{E}\left(\mu, 2^{k}\right)=\left\{\lambda \vdash_{0} n \mid f_{k}^{n}(\lambda)=\mu\right\}, e\left(\mu, 2^{k}\right)=\# \mathcal{E}\left(\mu, 2^{k}\right)
$$

Theorem (B., Giannelli, Olsson 2017)

Assume $2^{k}<n$. Let $d=d(n, k)=v_{2}\left(\left\lfloor\frac{n}{2^{k}}\right\rfloor\right)$. Let $\mu \vdash_{0} n-2^{k}$. Then $e\left(\mu, 2^{k}\right) \neq 0$ if and only if there is a partition $\mu_{i}^{(k)}$ in $\mathcal{Q}_{2}^{(k)}(\mu)$ such that

- $\left|\mu_{i}^{(k)}\right| \equiv 2^{d}-1 \bmod 2^{d+1}$, and
- $C_{2^{d}}\left(\mu_{i}^{(k)}\right)$ is a hook partition.

In this case, $e\left(\mu, 2^{k}\right)=2^{k}$ if $d=0$, and $e\left(\mu, 2^{k}\right)=2$ if $d>0$.

Properties of the hook removal operators

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?

Properties of the hook removal operators

Question (INOT 2017)

For which n, k is the map f_{k}^{n} injective? surjective? bijective?

Theorem (B., Giannelli, Olsson 2017)

Let $n \in \mathbb{N}, k \in \mathbb{N}_{0}$ be such that $2^{k}<n$. Let $d(n, k)=v_{2}\left(\left\lfloor\frac{n}{2^{k}}\right\rfloor\right)$.
(1) If $k=0$ then f_{k}^{n} is surjective if and only $d(n, k) \leq 2$. If $k>0$ then f_{k}^{n} is surjective if and only $d(n, k) \leq 1$.
(2) The map f_{k}^{n} is injective if and only if $k=0$ and n is odd. In this case, the map f_{k}^{n} is bijective.

Commutativity of hook removal operators

Question (INOT 2017)

When do the hook removal operators f_{k}, f_{ℓ} commute?

Commutativity of hook removal operators

Question (INOT 2017)

When do the hook removal operators f_{k}, f_{ℓ} commute?

Theorem (B., Giannelli, Olsson 2017)

Let $n=2^{t}+m$ where $0 \leq m<2^{t}$.
Assume $0 \leq k<\ell \leq t$ and $2^{k}+2^{\ell} \leq n$.
Then, with the exception of the case $n=6, k=0, \ell=1$,

$$
f_{k} f_{\ell}=f_{\ell} f_{k} \text { if and only if } 2^{k}>m \text { or } \ell=t .
$$

Remark Explicit description of the set

$$
T_{k, \ell}(n)=\left\{\lambda \vdash_{o} n \mid f_{k} f_{\ell}(\lambda)=f_{\ell} f_{k}(\lambda)\right\}
$$

and counting formula for $\# T_{k, \ell}(n)$ [BGO 2017].

Compatibility of hook removal operators

Let $k \in \mathbb{N}_{0}$ be such that $2^{k+1} \leq n$. We define

$$
\mathcal{G}_{k}(n)=\left\{\lambda \vdash_{o} n \mid f_{k} f_{k}(\lambda)=f_{k+1}(\lambda)\right\}, G_{k}(n)=\left|\mathcal{G}_{k}(n)\right|
$$

Compatibility of hook removal operators

Let $k \in \mathbb{N}_{0}$ be such that $2^{k+1} \leq n$.
We define

$$
\mathcal{G}_{k}(n)=\left\{\lambda \vdash_{o} n \mid f_{k} f_{k}(\lambda)=f_{k+1}(\lambda)\right\}, G_{k}(n)=\left|\mathcal{G}_{k}(n)\right| .
$$

Write $n=2^{a_{1}}+\ldots+2^{a_{r}}$, where $a_{1}>a_{2}>\ldots>a_{r}$.
Define $p, q \leq r$ to be maximal with $a_{p} \geq k+1$ and $a_{q} \geq k$, resp.
For $J \subseteq I=\{1, \ldots, q\}$ define its G-weight

$$
w_{G}(J)=\left(\prod_{i \in \Lambda \backslash J} 2^{a_{i}-k}\right) \cdot\left(2^{k}-1\right)^{|\backslash J|} \cdot G_{0}\left(\sum_{j \in J} 2^{a_{j}-k}\right)
$$

Counting formulae for G_{0}

$G_{0}(n)$ and hence the G-weights can be computed explicitly:

Theorem (BGO 2017)

(1) $G_{0}(1)=1, G_{0}(2)=2=G_{0}(3)$.
(2) For $t>1, G_{0}\left(2^{t}\right)=2^{t-1}$ and $G_{0}\left(2^{t}+1\right)=4$.
(3) Let $n=2^{a_{1}}+2^{a_{2}}+\ldots+2^{a_{r}}+\varepsilon \geq 2$, where $a_{1}>\cdots>a_{r}>0$ and $\varepsilon \in\{0,1\}$. Then

$$
G_{0}(n)=G_{0}\left(2^{a_{r}}+\varepsilon\right) \cdot \prod_{j=1}^{r-1}\left(2^{a_{j}}-2\right)
$$

Counting formulae for G_{k}

As before, $n=2^{a_{1}}+\ldots+2^{a_{r}}$, where $a_{1}>a_{2}>\ldots>a_{r}$, and $p, q \leq r$ are maximal with $a_{p} \geq k+1$ and $a_{q} \geq k$, respectively.

Theorem (BGO 2017)

For $k>0$,

$$
G_{k}(n)=\left(\prod_{j=q+1}^{r} 2^{a_{j}}\right) \cdot 2^{k} \cdot \sum_{\{p, q\} \subseteq J \subseteq I} w_{G}(J)
$$

Corollary

Assume $2^{k+1} \leq n$.
For $k>0, \mathcal{G}_{k}(n)=\mathcal{O}(n)$ if and only if $\left\lfloor n / 2^{k}\right\rfloor=2$.
For $k=0, \mathcal{G}_{0}(n)=\mathcal{O}(n)$ only holds for $n \in\{2,3,5\}$.
Remark Explicit description of $\mathcal{G}_{k}(n)$ [BGO 2017].

The end

Thank you!

