Character restrictions and hook removal operators on the odd Young graph

Christine Bessenrodt

SLC 80, Lyon

March 26, 2018

Irreducible complex characters of \mathfrak{S}_n

Partitions
$$\lambda = (\lambda_1, \lambda_2, ..., \lambda_\ell)$$
 of n (written as $\lambda \vdash n$),
where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_\ell > 0$ are integers with $\sum_{i=1}^\ell \lambda_i = n$.

Theorem (Frobenius)

The irreducible complex characters of \mathfrak{S}_n are naturally labelled by partitions of n,

 $\operatorname{Irr}_{\mathbb{C}}(\mathfrak{S}_n) = \{\chi^{\lambda} \mid \lambda \vdash n\}.$

Remark Connection to symmetric functions: Via the Frobenius characteristic, there is a correspondence

 $\chi^{\lambda} \longleftrightarrow s_{\lambda}$ (Schur function).

Character restriction from \mathfrak{S}_n **to** \mathfrak{S}_{n-1}

Theorem (Branching formula)

For $\lambda \vdash n$,

$$\chi^{\lambda}\downarrow_{\mathfrak{S}_{n-1}}=\sum_{A}\chi^{\lambda\setminus A}$$

where the sum runs over the removable corners A of the Young diagram of λ .

Odd degree characters

Let $\lambda \vdash n$.

 $\chi^{\lambda}(\mathsf{id}) = f^{\lambda} = \#\{\mathsf{standard Young tableaux of shape } \lambda\}.$

If f^{λ} is odd, we call λ an *odd partition*, for short: $\lambda \vdash_o n$. What is the number of odd partitions? I.e., we consider

$$\mathcal{O}(n) = \{\lambda \vdash n \mid f^{\lambda} \text{ odd } \}$$

or equivalently, $\operatorname{Irr}_{2'}(\mathfrak{S}_n) = \{\chi^{\lambda} \in \operatorname{Irr}(\mathfrak{S}_n) \mid 2 \nmid f^{\lambda}\}$

Odd degree characters

Let $\lambda \vdash n$.

 $\chi^{\lambda}(\mathsf{id}) = f^{\lambda} = \#\{\mathsf{standard Young tableaux of shape } \lambda\}.$

If f^{λ} is odd, we call λ an *odd partition*, for short: $\lambda \vdash_o n$. What is the number of odd partitions? I.e., we consider

$$\mathcal{O}(n) = \{\lambda \vdash n \mid f^{\lambda} \text{ odd } \}$$

or equivalently, $\operatorname{Irr}_{2'}(\mathfrak{S}_n) = \{\chi^{\lambda} \in \operatorname{Irr}(\mathfrak{S}_n) \mid 2 \nmid f^{\lambda}\}$

Theorem (Macdonald 1971, McKay 1972)

Let $n = 2^{a_1} + \ldots + 2^{a_r}$ with $a_1 < \ldots < a_r$. Then

$$\#\{\lambda \vdash n \mid f^{\lambda} \text{ odd }\} = 2^{a_1 + \dots + a_r}$$

Odd degree characters and hooks

Denote by $\chi^{\lambda}(\mu)$ the value of χ^{λ} on elements of cycle type μ . Observe that for $n = 2^{a_1} + \ldots + 2^{a_r}$ as above,

$$\chi^{\lambda}(1^n)\equiv\chi^{\lambda}(2^{a_1},\ldots,2^{a_r})\mod 2.$$

This leads to a *hook construction* of odd degree characters.

Odd degree characters and hooks

Denote by $\chi^{\lambda}(\mu)$ the value of χ^{λ} on elements of cycle type μ . Observe that for $n = 2^{a_1} + \ldots + 2^{a_r}$ as above,

$$\chi^{\lambda}(1^n)\equiv\chi^{\lambda}(2^{a_1},\ldots,2^{a_r})\mod 2.$$

This leads to a *hook construction* of odd degree characters.

For example, for n = 26 = 2 + 8 + 16:

Let G be a finite group, p a prime; set

$$k_{p'}(G) = \#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$k_{p'}(G) = k_{p'}(N_G(P)).$$

Let G be a finite group, p a prime; set

$$k_{p'}(G) = \#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$k_{p'}(G) = k_{p'}(N_G(P)).$$

Remark Olsson 1976: True for $G = S_n$ and any prime p.

Let G be a finite group, p a prime; set

$$k_{p'}(G) = \#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$k_{p'}(G) = k_{p'}(N_G(P)).$$

Remark Olsson 1976: True for $G = S_n$ and any prime p.

Theorem (Malle, Späth 2016)

McKay's Conjecture holds for p = 2.

Let G be a finite group, p a prime; set

$$k_{p'}(G) = \#\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$$

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

$$k_{p'}(G) = k_{p'}(N_G(P)).$$

Remark Olsson 1976: True for $G = S_n$ and any prime p.

Theorem (Malle, Späth 2016)

McKay's Conjecture holds for p = 2.

Remark For $G = \mathfrak{S}_n$, $P_n \in \text{Syl}_2(\mathfrak{S}_n)$, a canonical bijection

$$\operatorname{Irr}_{2'}(\mathfrak{S}_n) \to \operatorname{Irr}_{2'}(N_{\mathfrak{S}_n}(P_n)) = \operatorname{Lin}(P_n)$$

was constructed by [Giannelli, Kleshchev, Navarro, Tiep 2016].

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?

Let $v_2(n)$ be the exponent of the highest power of 2 dividing *n*.

Theorem (Ayyer, Prasad, Spallone, SLC 2015)

Let $\lambda \in \mathcal{O}(n)$. Let $m = v_2(n+1)$.

- $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ has exactly one constituent of odd degree.
- ② χ^{λ} ↑^𝔅_{n+1} has exactly two constituents of odd degree if the 2^{*m*}-core of λ is a hook, and no such constituent otherwise.

Branching revisited

For $\lambda \in \mathcal{O}(n)$, what can we say about constituents of $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ and of $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ of odd degree?

Let $v_2(n)$ be the exponent of the highest power of 2 dividing *n*.

Theorem (Ayyer, Prasad, Spallone, SLC 2015)

Let
$$\lambda \in \mathcal{O}(n)$$
. Let $m = \nu_2(n+1)$.

- **Q** $\chi^{\lambda} \downarrow_{\mathfrak{S}_{n-1}}$ has exactly one constituent of odd degree.
- **2** $\chi^{\lambda} \uparrow^{\mathfrak{S}_{n+1}}$ has exactly two constituents of odd degree if the 2^m -core of λ is a hook, and no such constituent otherwise.

Example $\lambda = (5, 3, 3, 2).$

$$\chi^{(5,3,3,2)}\downarrow_{\mathfrak{S}_{12}} \ = \ \chi^{(4,3,3,2)} \ + \ \chi^{(5,3,2,2)} \ + \ \chi^{(5,3,3,1)}$$

degree: 11583 2970 4455 4158

The odd Young graph

Character restriction from level *n* to $n - 2^k$:

Character restriction from level *n* to $n - 2^k$:

Theorem (Isaacs, Navarro, Olsson, Tiep 2017)

Let $k \in \mathbb{N}$ such that $2^k < n$, and let $\chi \in Irr_{2'}(\mathfrak{S}_n)$. Then there exists a unique odd-degree irreducible constituent $f_k^n(\chi)$ of $\chi_{\mathfrak{S}_{n-2^k}}$ appearing with **odd multiplicity**. Character restriction from level *n* to $n - 2^k$:

Theorem (Isaacs, Navarro, Olsson, Tiep 2017)

Let $k \in \mathbb{N}$ such that $2^k < n$, and let $\chi \in Irr_{2'}(\mathfrak{S}_n)$. Then there exists a unique odd-degree irreducible constituent $f_k^n(\chi)$ of $\chi_{\mathfrak{S}_{n-2^k}}$ appearing with **odd multiplicity**.

Thus, for $2^k < n$ we have a naturally defined map

$$f_k^n$$
: $\operatorname{Irr}_{2'}(\mathfrak{S}_n) \longrightarrow \operatorname{Irr}_{2'}(\mathfrak{S}_{n-2^k}).$

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_k^n !

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_k^n ! Let $\lambda \in \mathcal{O}(n)$, $\mu \in \mathcal{O}(n-2^k)$. Then

 $f_k^n(\chi^{\lambda}) = \chi^{\mu}$ if and only if $\mu = \lambda \setminus H$ for a 2^k-hook H.

In fact, there is a *unique* 2^k -hook H of λ such that $\lambda \setminus H$ is odd. Correspondingly, we write

$$f_k^n: \mathcal{O}(n) \longrightarrow \mathcal{O}(n-2^k), \ \lambda \mapsto \mu = \lambda \setminus H.$$

More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f_k^n ! Let $\lambda \in \mathcal{O}(n)$, $\mu \in \mathcal{O}(n-2^k)$. Then

 $f_k^n(\chi^{\lambda}) = \chi^{\mu}$ if and only if $\mu = \lambda \setminus H$ for a 2^k-hook H.

In fact, there is a *unique* 2^k -hook H of λ such that $\lambda \setminus H$ is odd. Correspondingly, we write

$$f_k^n: \mathcal{O}(n) \longrightarrow \mathcal{O}(n-2^k), \ \lambda \mapsto \mu = \lambda \setminus H.$$

Example

Remark $f_1 \neq f_0 f_0!$ For example,

$$f_1((31)) = (1^2) \neq (2) = f_0 f_0((3,1)).$$

For which n, k is the map f_k^n injective? surjective? bijective?

For which n, k is the map f_k^n injective? surjective? bijective?

Remark Not always! But, for example, the map f_k^n is surjective when 2^k appears in the binary expansion of *n*.

For which n, k is the map f_k^n injective? surjective? bijective?

Remark Not always! But, for example, the map f_k^n is surjective when 2^k appears in the binary expansion of *n*.

Question (INOT 2017)

Let $k \leq \ell$ be such that $2^k + 2^\ell \leq n$. When do the hook removal operators f_k and f_ℓ commute? More specifically: when is $f_k^{n-2^\ell} f_\ell^n = f_\ell^{n-2^k} f_k^n$?

For which n, k is the map f_k^n injective? surjective? bijective?

Remark Not always! But, for example, the map f_k^n is surjective when 2^k appears in the binary expansion of *n*.

Question (INOT 2017)

Let $k \leq \ell$ be such that $2^k + 2^\ell \leq n$. When do the hook removal operators f_k and f_ℓ commute? More specifically: when is $f_k^{n-2^\ell} f_\ell^n = f_\ell^{n-2^k} f_k^n$?

Remark Not always! But, for example, if 2^{ℓ} is the largest binary digit of *n*.

2-cores and 2-quotients: 2-data

Let $\lambda \vdash n$. Construct the 2-quotient tower $\mathcal{Q}_2(\lambda)$: Row 0: $\mathcal{Q}_2^{(0)}(\lambda) = (\lambda_1^{(0)}) = (\lambda)$. Row k: $\mathcal{Q}_2^{(k)}(\lambda) = (\lambda_1^{(k)}, \dots, \lambda_{2^k}^{(1)})$ contains the partitions in the 2-quotients of the partitions in $\mathcal{Q}_2^{(k-1)}(\lambda)$ (the same as those in the 2^k-quotient $\mathcal{Q}_{2^k}(\lambda)$ of λ).

2-core tower
$$C_2(\lambda)$$
:
 $j \ge 0$: $C_2^{(j)}(\lambda) = (C_2(\lambda_1^{(j)}), \dots, C_2(\lambda_{2^k}^{(j)}))$, the 2-cores of the $\lambda_i^{(j)}$.

2-cores and 2-quotients: 2-data

Let $\lambda \vdash n$. Construct the 2-quotient tower $\mathcal{Q}_2(\lambda)$: Row 0: $\mathcal{Q}_2^{(0)}(\lambda) = (\lambda_1^{(0)}) = (\lambda)$. Row k: $\mathcal{Q}_2^{(k)}(\lambda) = (\lambda_1^{(k)}, \dots, \lambda_{2^k}^{(1)})$ contains the partitions in the 2-quotients of the partitions in $\mathcal{Q}_2^{(k-1)}(\lambda)$ (the same as those in the 2^k-quotient $\mathcal{Q}_{2^k}(\lambda)$ of λ).

2-core tower
$$C_2(\lambda)$$
:
 $j \ge 0$: $C_2^{(j)}(\lambda) = (C_2(\lambda_1^{(j)}), \dots, C_2(\lambda_{2^k}^{(j)}))$, the 2-cores of the $\lambda_i^{(j)}$.
 k -data $\mathcal{D}_2^{(k)}(\lambda)$: row $j < k$ equals $C_2^{(j)}(\lambda)$, row k equals $\mathcal{Q}_2^{(k)}(\lambda)$.

Theorem (BGO 2017)

Fix $k \ge 0$. Then λ is odd if and only if for j < k the sum over all partitions in $C_2^{(j)}(\lambda)$ is ≤ 1 , and the partitions in $Q_2^{(k)}$ are odd and their sizes are pairwise 2-disjoint (i.e., in binary expansion).

Example

$$\lambda = (5, 4, 2^2, 1^2), \ k = 2$$

$$\mathcal{D}_{2}^{(2)}(\lambda):$$

$$\mathcal{C}_{2}^{(0)}(\lambda):$$

$$\mathcal{C}_{2}^{(1)}(\lambda):$$

$$(0)$$

$$(1)$$

$$\mathcal{Q}_{2}^{(2)}(\lambda):$$

$$(1^{2})$$

$$(1)$$

$$(0)$$

$$(0)$$

Remark Removal of a 2^k -hook from λ is equivalent to removing a box from one of the partitions in row k of $\mathcal{D}_2^{(k)}(\lambda)$.

Walking around the odd Young graph

For an odd partition $\boldsymbol{\mu},$ we define the set of odd extensions:

$$\mathcal{E}(\mu, 2^k) = \{\lambda \vdash_o n \mid f_k^n(\lambda) = \mu\}, \ e(\mu, 2^k) = \#\mathcal{E}(\mu, 2^k).$$

Walking around the odd Young graph

For an odd partition μ , we define the set of odd extensions:

$$\mathcal{E}(\mu, 2^k) = \{\lambda \vdash_o n \mid f_k^n(\lambda) = \mu\}, \ e(\mu, 2^k) = \#\mathcal{E}(\mu, 2^k).$$

Theorem (B., Giannelli, Olsson 2017)

Assume $2^k < n$. Let $d = d(n, k) = v_2(\lfloor \frac{n}{2^k} \rfloor)$. Let $\mu \vdash_o n - 2^k$. Then $e(\mu, 2^k) \neq 0$ if and only if there is a partition $\mu_i^{(k)}$ in $Q_2^{(k)}(\mu)$ such that

$$ullet ~~ \left| \mu_i^{(k)}
ight| \equiv 2^d - 1 \mod 2^{d+1}$$
, and

• $C_{2^d}(\mu_i^{(k)})$ is a hook partition.

In this case, $e(\mu, 2^k) = 2^k$ if d = 0, and $e(\mu, 2^k) = 2$ if d > 0.

For which n, k is the map f_k^n injective? surjective? bijective?

For which n, k is the map f_k^n injective? surjective? bijective?

Theorem (B., Giannelli, Olsson 2017)

Let $n \in \mathbb{N}$, $k \in \mathbb{N}_0$ be such that $2^k < n$. Let $d(n, k) = \nu_2(\lfloor \frac{n}{2^k} \rfloor)$.

- If k = 0 then f_k^n is surjective if and only $d(n, k) \le 2$. If k > 0 then f_k^n is surjective if and only $d(n, k) \le 1$.
- The map f_kⁿ is injective if and only if k = 0 and n is odd.
 In this case, the map f_kⁿ is bijective.

Commutativity of hook removal operators

Question (INOT 2017)

When do the hook removal operators f_k , f_l commute?

When do the hook removal operators f_k , f_l commute?

Theorem (B., Giannelli, Olsson 2017)

Let $n = 2^t + m$ where $0 \le m < 2^t$. Assume $0 \le k < \ell \le t$ and $2^k + 2^\ell \le n$. Then, with the exception of the case n = 6, k = 0, $\ell = 1$,

$$f_k f_\ell = f_\ell f_k$$
 if and only if $2^k > m$ or $\ell = t$.

Remark Explicit description of the set

$$T_{k,\ell}(n) = \{\lambda \vdash_o n \mid f_k f_\ell(\lambda) = f_\ell f_k(\lambda)\},\$$

and counting formula for $\#T_{k,\ell}(n)$ [BGO 2017].

Compatibility of hook removal operators

Let $k \in \mathbb{N}_0$ be such that $2^{k+1} \leq n$. We define

$$\mathcal{G}_k(n) = \{\lambda \vdash_o n \mid f_k f_k(\lambda) = f_{k+1}(\lambda)\}, G_k(n) = |\mathcal{G}_k(n)|.$$

Compatibility of hook removal operators

Let $k \in \mathbb{N}_0$ be such that $2^{k+1} \leq n$. We define

$$\mathcal{G}_k(n) = \{\lambda \vdash_o n \mid f_k f_k(\lambda) = f_{k+1}(\lambda)\}, G_k(n) = |\mathcal{G}_k(n)|.$$

Write $n = 2^{a_1} + \ldots + 2^{a_r}$, where $a_1 > a_2 > \ldots > a_r$. Define $p, q \le r$ to be maximal with $a_p \ge k + 1$ and $a_q \ge k$, resp. For $J \subseteq I = \{1, \ldots, q\}$ define its *G*-weight

$$w_G(J) = (\prod_{i \in I \setminus J} 2^{a_i - k}) \cdot (2^k - 1)^{|I \setminus J|} \cdot G_0(\sum_{j \in J} 2^{a_j - k}).$$

 $G_0(n)$ and hence the *G*-weights can be computed explicitly:

Theorem (BGO 2017)

1
$$G_0(1) = 1$$
, $G_0(2) = 2 = G_0(3)$.

2 For
$$t > 1$$
, $G_0(2^t) = 2^{t-1}$ and $G_0(2^t + 1) = 4$.

③ Let $n = 2^{a_1} + 2^{a_2} + ... + 2^{a_r} + ε ≥ 2$, where $a_1 > \cdots > a_r > 0$ and ε ∈ {0, 1}. Then

$$G_0(n) = G_0(2^{a_r} + \varepsilon) \cdot \prod_{j=1}^{r-1} (2^{a_j} - 2).$$

Counting formulae for G_k

As before, $n = 2^{a_1} + \ldots + 2^{a_r}$, where $a_1 > a_2 > \ldots > a_r$, and $p, q \le r$ are maximal with $a_p \ge k + 1$ and $a_q \ge k$, respectively.

Theorem (BGO 2017)

For k > 0,

$$G_k(n) = \left(\prod_{j=q+1}^r 2^{a_j}\right) \cdot 2^k \cdot \sum_{\{p,q\}\subseteq J\subseteq I} w_G(J) \,.$$

Corollary

Assume $2^{k+1} \le n$. For k > 0, $\mathcal{G}_k(n) = \mathcal{O}(n)$ if and only if $\lfloor n/2^k \rfloor = 2$. For k = 0, $\mathcal{G}_0(n) = \mathcal{O}(n)$ only holds for $n \in \{2, 3, 5\}$.

Remark Explicit description of $\mathcal{G}_k(n)$ [BGO 2017].

Thank you!