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One of the most difficult questions in modular computations is the
complexity of computations mod p for a large prime p of coefficients

in the expansion of an algebraic function.

[D. Chudnovsky & G. Chudnovsky, 1990]
Computer Algebra in the Service of

Mathematical Physics and Number Theory
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Main objects and goal

• p, a prime number

• N, a positive integer

• Fp, the finite field with p elements

• a ∈ Fp

• E(t, y) ∈ Fp[t, y], irreducible with E(0, a) = 0 and ∂E
∂y (0, a) 6= 0

• f (t) = ∑n fntn, the unique root in Fp[[t]] of E(t, f (t)) = 0 with f (0) = a

Goal: design efficient algorithms for computing fN

. Efficiency: measured in terms of bit operations (Turing machine model)

. Assume: input E has degree d = degy E and height h = degt E, both O(1)
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A special case: d = 1

• f (t) = ∑n fntn ∈ Fp[[t]] ∩Fp(t) ⇐⇒ ( fn)n satisfies a recurrence

fn+h = ch−1 fn+h−1 + · · ·+ c0 fn, n ≥ 0.

• This recurrence rewrites in matrix form
fN

fN+1
...

fN+h−1


︸ ︷︷ ︸

VN

=


1

. . .
1

c0 c1 · · · ch−1


︸ ︷︷ ︸

C


fN−1

fN
...

fN+h−2


︸ ︷︷ ︸

VN−1

= CN


f0
f1
...

fh−1


︸ ︷︷ ︸

V0

, N ≥ 1.

• Binary powering: compute CN recursively, using

CN =

{
(CN/2)2, if N is even,
C · (C N−1

2 )2, else.

• Cost: O(log N) ops. in Fp, thus Õ(log N · log p) bit ops.

. This is an ideal complexity result!

. Open question: ∃? algorithm of complexity Poly(log N, log p) for d ≥ 2?

. Concrete challenge: for f = 1√
1−4t

, compute fN mod p = (2N
N ) mod p.
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Ten methods to compute fN
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Guiding example

Problem: count 2-3-4 trees −→ fn = nb. of trees with n internal nodes �

. Generating function:

f = ∑
n

fntn = 1 + 3t + 27t2 + 333t3 + 4752t4 + 73764t5 + · · ·,

root of
E(t, y) = y− 1− t(y2 + y3 + y4).
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(log p)-algorithms
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Method 1: non-linear recurrences

• Starting point: the sequence ( fn)n≥0 satisfies a non-linear recurrence.

• This yields an algorithm for fN using Poly(Nd) operations in Fp, thus of
bit complexity Õ(log p · Poly(Nd)).

• E.g., for 2-3-4 trees, with

E(t, y) = y− 1− t(y2 + y3 + y4) ∈ Fp[t, y],

we have for n ≥ 1:

fn = ∑
i+j=n−1

fi f j + ∑
i+j+k=n−1

fi f j fk + ∑
i+j+k+`=n−1

fi f j fk f`.

. fN can be computed in O(N4) ops. in Fp, i.e., in Õ(N4 · log p) bit ops.

Alin Bostan Algebraic power series mod p



9 / 32

Method 2: fixed-point theorem

• Starting point: f is the limit of the sequence (Fk)k of power series in Fp[[t]]
defined by F0 = a, and Fk+1(t) = Fk(t)− E(t, Fk(t)) for k ≥ 0.

• This yields an algorithm for fN using N products of power series mod tN

• Each such product can be performed in Õ(N) ops. in Fp via FFT

• E.g., for 2-3-4 trees, with

E(t, y) = y− 1− t(y2 + y3 + y4) ∈ Fp[t, y],

compute:

F0 = 1, Fk+1 = 1 + tF2
k + tF3

k + tF4
k mod tN+1 for 0 ≤ k ≤ N.

. fN can be computed in Õ(N2) ops. in Fp, i.e., in Õ(N2 · log p) bit ops.
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Method 3: Newton iteration

• Starting point: f is the limit of the sequence (Gk)k of power series in Fp[[t]]

defined by G0 = a, and Gk+1(t) = Gk(t)−
E(t, Gk(t))
∂E
∂y (t, Gk(t))

for k ≥ 0.

• This yields an algorithm for fN using products of power series mod t2k
,

for k = 1, . . . , log N

• Each such product can be done in Õ(2k) ops. in Fp, for a total of Õ(N)

• E.g., for 2-3-4 trees, with

E(t, y) = y− 1− t(y2 + y3 + y4) ∈ Fp[t, y],

compute:

G0 = 1, Gk+1 = Gk −
Gk − (1 + tG2

k + tG3
k + tG4

k )

1− 2tGk − 3tG2
k − 4tG3

k
mod t2k+1

for k ≥ 0.

. fN can be computed in Õ(N) ops. in Fp, i.e., in Õ(N · log p) bit ops.
[Lipson, 1976; Kung, Traub, 1978]

Alin Bostan Algebraic power series mod p



11 / 32

Method 4: linear recurrences

• Starting point:

Abel’s theorem (1827)

The sequence ( fi)i satisfies a linear recurrence with polynomial coefficients

pr(n) fn+r + · · ·+ p0(n) fn = 0, (n ∈N)

• This yields an algorithm for fN using O(N) operations in Fp
(†)

• E.g., for 2-3-4 trees, with

E(t, y) = y− 1− t(y2 + y3 + y4) ∈ Fp[t, y],

determine, then unroll, the recurrence:

162 n (n + 1) (2 n + 1) fn + 108 (n + 1)
(

26 n2 + 77 n + 63
)

fn+1+

· · ·+ 75 (3 n + 17) (3 n + 19) (n + 6) fn+6 = 0.

. fN can be computed in O(N) ops. in Fp, i.e., in Õ(N · log p) bit ops.(†)

(†) Under the additional assumption that pr(n) 6= 0 for n = 0, . . . , N.
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Method 5: linear recurrences, and baby-steps / giant-steps

• Starting point: Abel’s theorem, combined with the following strategy
• Un = ( fn, . . . , fn+r−1)

T satisfies the 1st order matrix recurrence

Un+1 =
1

pr(n)
A(n)Un with A(n) =


pr(n)

. . .
pr(n)

−p0(n) −p1(n) . . . −pr−1(n)

 .

=⇒ fN reads off the matrix factorial A(N − 1) · · · A(0)(†)

• [Chudnovsky-Chudnovsky, 1987]: (BS)–(GS) strategy

(BS) Compute P = A(x +
√

N − 1) · · · A(x + 1)A(x) Õ(
√

N)

(GS) Evaluate P at 0,
√

N, 2
√

N, . . . , (
√

N − 1)
√

N Õ(
√

N)

Return P((
√

N − 1)
√

N) · · · P(
√

N) · P(0) O(
√

N)

. fN can be computed in Õ(
√

N) ops. in Fp, i.e., in Õ(
√

N · log p) bit ops.(†)

(†) Under the additional assumption that pr(n) 6= 0 for n = 0, . . . , N.
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Recap: (log p)-algorithms

Method arithmetic complexity bit complexity

1. non-linear recurrences Õ(Nd) Õ(Nd · log p)
2. fixed-point theorem Õ(N2) Õ(N2 · log p)
3. Newton iteration Õ(N) Õ(N · log p)
4. linear recurrences O(N) Õ(N · log p)
5. baby-steps / giant-steps Õ(

√
N) Õ(

√
N · log p)
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(log N)-algorithms
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General strategy

• Starting point:

Christol’s theorem (1979)

If f ∈ Fp[[t]] is algebraic, then there exists an Fp-vector space V such that:

dimFp V < +∞,

V contains f ,

V is left stable by the section (Cartier) operators Sr (0 ≤ r < p)

Sr
(
c0 + c1t + c2t2 + · · ·

)
= cr + cr+pt + cr+2pt2 + · · · .

• Each choice of V yields an algorithm for fN using logp N applications of
the section operators on elements in V:

if N = (r` · · · r1r0)p then fN =
(
Sr` · · · Sr1 Sr0 f

)
(0)

. The choice of V has an impact on the complexity!

. Different proofs of Christol’s theorem lead to different (log N)-algorithms.
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Method 6: Mahler equations

• Starting point: If f ∈ Fp[[t]] is algebraic, then it satisfies a Mahler equation

a0(t) f (t) + a1(t) f (tp) + · · ·+ ar(t) f (tpr
) = 0,

with coefficients aj in Fp[t] with deg(aj) ≤ Poly(pd), and a0 6= 0.

• Then for some N ≤ Poly(pd), one may take in Christol’s theorem

V = VectFp

〈
r

∑
i=0

ci( f /a0)
pi

, ci ∈ Fp[t]≤N

〉

[Christol, Kamae, Mendès France, Rauzy, 1980]

• This yields an algorithm for fN using O(log N) sections in V.

. fN can be computed using Õ(Poly(pd) · log N) bit ops.
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Example: counting 2-3-4 trees modulo 2

Problem: count 2-3-4 trees −→ fn = nb. of trees with n internal nodes �

f = ∑
n

fntn = 1 + 3t + 27t2 + 333t3 + · · ·, root of E = y− 1− t(y2 + y3 + y4)

. Mahler equation t + f (t) + (t2 + t + 1) f (t2) + t f (t4) + t2 f (t8) = 0 mod 2

. fn mod 2 =


f(n−1)/2 mod 2, if n ≡ 3 mod 4.
f(n−1)/2 + f(n−1)/4 mod 2, if n ≡ 1 mod 4,
fn/2 + fn/2−1 + f(n−2)/8 mod 2, if n ≡ 2 mod 8,
fn/2 + fn/2−1 mod 2, else.

. Computation of fN modulo 2 in O(log N) bit operations.
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Method 7: diagonals

• Starting point:

Furstenberg’s theorem (1967)

If E(0, 0) = 0 and ∂E
∂y (0, 0) 6= 0, then

f (t) = Diag (g) where g(x, y) =
y · ∂E

∂y (xy, y)

y−1 · E(xy, y)
.

• Christol’s argument (1979): Since f (t) = Diag
a(x, y)
b(x, y)

, we have

Sr f (t)

=Sr

(
Diag

a(x, y)
b(x, y)

)
= Diag Sr

( a(x, y)
b(x, y)

)
= Diag

Sr
(
a(x, y)b(x, y)p−1)

b(x, y)
,

so one may take in Christol’s thm V = Diag
(

1
b(x,y) ·Fp[x, y]≤(degx b, degy b)

)
• This yields an algorithm for fN using O(log N) sections in V.

. fN can be computed using Õ(p2 · log N) bit ops.

Alin Bostan Algebraic power series mod p



18 / 32

Method 7: diagonals

• Starting point:

Furstenberg’s theorem (1967)

If E(0, 0) = 0 and ∂E
∂y (0, 0) 6= 0, then

f (t) = Diag (g) where g(x, y) =
y · ∂E

∂y (xy, y)

y−1 · E(xy, y)
.

• Christol’s argument (1979): Since f (t) = Diag
a(x, y)
b(x, y)

, we have

Sr f (t) =Sr

(
Diag

a(x, y)
b(x, y)

)

= Diag Sr

( a(x, y)
b(x, y)

)
= Diag

Sr
(
a(x, y)b(x, y)p−1)

b(x, y)
,

so one may take in Christol’s thm V = Diag
(

1
b(x,y) ·Fp[x, y]≤(degx b, degy b)

)
• This yields an algorithm for fN using O(log N) sections in V.

. fN can be computed using Õ(p2 · log N) bit ops.
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Alin Bostan Algebraic power series mod p



19 / 32

Method 8: Partial diagonals

• Starting point: Only a small part of b(x, y)p−1 is enough to compute a
section in method 7: O(1) strips of width O(1) and length O(p)
• Example: p = 109, E = (1 + t)(t− y) + t2y2 + (1 + t)y3 + y4

. fN can be computed using Õ(p · log N) bit ops. [B., Christol, Dumas, 2016]
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Method 9: Furstenberg-like and Hermite-Padé approximation

• Starting point:

Theorem [B., Caruso, Christol, Dumas, 2018]

One may take in Christol’s theorem

V =

 P(t, f (t))
∂E
∂y (t, f (t))

∣∣∣ P ∈ Fp[t, y ], degy P < d and degt P < h

 .

• This yields an algorithm for fN using O(log N) sections in V.

. Applying a section to g =
P(t, f (t))
∂E
∂y (t, f (t))

amounts to:

expanding g mod t2dh p Õ(p) by Newton iterations

solving a Hermite-Padé approximation problem at order 2dh = O(1).

. fN can be computed using Õ(p · log N) bit ops.
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Method 10: Hermite-Padé and baby-steps / giant-steps

• Starting point: Only O(1) coefficients (of index from p to p) of g =
P(t, f )
∂E
∂y (t, f )

are needed in Method 9! (since we are only interested in one of its sections)

• Idea: g is algebraic, hence D-finite, so use baby-steps / giant-steps to
compute those coefficients in Õ(

√
p) ops.

• Main difficulty to overcome: divisions by p (as in Method 5)

• Solution: lift to p-adics, control precision loss

. fN can be computed using Õ(
√

p · log N) bit ops.
[B., Caruso, Christol, Dumas, 2018]
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Overview: Ten methods to compute fN mod p

Method bit complexity

1. non-linear recurrences Poly(Nd · log p)
2. fixed-point theorem Õ(N2 · log p)
3. Newton iteration Õ(N · log p)
4. linear recurrences Õ(N · log p)
5. baby-steps / giant-steps Õ(

√
N · log p)

6. Mahler equations Poly(pd · log N)
7. diagonals Õ(p2 · log N)
8. partial diagonals Õ(p · log N)
9. Furstenberg + Hermite-Padé Õ(p · log N)

10. Hermite-Padé + BS–GS Õ(
√

p · log N)
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Bonus
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Timings (method 8)
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A difficult but nice case

For

f =
1√

(1− at)2 − 4t2

and

N =
p− 1

2
,

computing fN mod p reduces to computing the number of points
(x, y) ∈ Fp ×Fp on the elliptic curve

y2 = x(1 + ax + x2).

This can be done in polynomial time in log p by Schoof’s algorithm (1985).
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An amusing conjecture

Let

Cn =
1

n + 1

(
2n
n

)
be the nth Catalan number. Then:

The last digit (in base 10) of Cn is never 3;

For n� 0, the last digit of any odd Cn is always 5.
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Thanks for your attention!
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Fast multiplication and division of power series

[Schönhage-Strassen, 1971]: FFT-multiplication in Fp[x]<N using Õ(N) ops.

[Sieveking-Kung, 1972]: Newton iteration for the reciprocal of f ∈ Fp[[x]]:

g0 =
1
f0

and gκ+1 = gκ + gκ(1− f gκ) mod x2κ+1
for κ ≥ 0

R(N) = R(N/2) + Õ(N) =⇒ R(N) = Õ(N)

Corollary: Division of power series at precision N in Õ(N)

Alin Bostan Algebraic power series mod p
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Application: fast polynomial Euclidean division

Given F, G ∈ Fp[x]≤N , compute (Q, R) in Euclidean division F = QG + R

Schoolbook algorithm: O(N2)

Better idea: look at F = QG + R from the infinity: Q ∼+∞ F/G

Formally: Let N = deg(F), n = deg(G), then deg(Q) = N − n, deg(R) < n
and

F(1/x)xN︸ ︷︷ ︸
rev(F)

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+ R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Strassen’s algorithm [1973]: Õ(N)

Compute rev(Q) = rev(F)/rev(G) mod xN−n+1 Õ(N)

Recover Q O(N)

Deduce R = F−QG Õ(N)

Alin Bostan Algebraic power series mod p
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Subproduct tree

Problem: Given a0, . . . , an−1 ∈ Fp, compute A = ∏n−1
i=0 (x− ai)

Cost: S(n) = 2 · S(n/2) + Õ(n) =⇒ S(n) = Õ(n).
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Fast multipoint evaluation [Borodin-Moenck, 1974]

Given a0, . . . , an−1 ∈ Fp, P ∈ Fp[x]<n, compute P(a0), . . . , P(an−1)

Naive algorithm: Compute the P(ai) independently O(n2)

Idea: Use recursively Bézout’s identity P(a) = P(x) mod (x− a)

Divide and conquer: FFT-type idea, evaluation by repeated division

P0 = P mod (x− a0) · · · (x− an/2−1)

P1 = P mod (x− an/2) · · · (x− an−1)

=⇒
{

P0(a0) = P(a0), . . . , P0(an/2−1) = P(an/2−1)
P1(an/2) = P(an/2), . . . , P1(an−1) = P(an−1)
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Fast multipoint evaluation [Borodin-Moenck, 1974]

Given a0, . . . , an−1 ∈ Fp, P ∈ Fp[x]<n, compute P(a0), . . . , P(an−1)

Cost: E(n) = 2 · E(n/2) + Õ(n) =⇒ E(n) = Õ(n).
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