Algebraic power series $\bmod p$

 -fast computation of coefficients-
Alin Bostan

Coráa

One of the most difficult questions in modular computations is the complexity of computations mod p for a large prime p of coefficients in the expansion of an algebraic function.
[D. Chudnovsky \& G. Chudnovsky, 1990]
Computer Algebra in the Service of Mathematical Physics and Number Theory

Main objects and goal

- p, a prime number
- N, a positive integer
- \mathbb{F}_{p}, the finite field with p elements
- $a \in \mathbb{F}_{p}$
- $E(t, y) \in \mathbb{F}_{p}[t, y]$, irreducible with $E(0, a)=0$ and $\frac{\partial E}{\partial y}(0, a) \neq 0$
- $f(t)=\sum_{n} f_{n} t^{n}$, the unique root in $\mathbb{F}_{p}[[t]]$ of $E(t, f(t))=0$ with $f(0)=a$

Main objects and goal

- p, a prime number
- N, a positive integer
- \mathbb{F}_{p}, the finite field with p elements
- $a \in \mathbb{F}_{p}$
- $E(t, y) \in \mathbb{F}_{p}[t, y]$, irreducible with $E(0, a)=0$ and $\frac{\partial E}{\partial y}(0, a) \neq 0$
- $f(t)=\sum_{n} f_{n} t^{n}$, the unique root in $\mathbb{F}_{p}[[t]]$ of $E(t, f(t))=0$ with $f(0)=a$

Goal: design efficient algorithms for computing f_{N}

Main objects and goal

- p, a prime number
- N, a positive integer
- \mathbb{F}_{p}, the finite field with p elements
- $a \in \mathbb{F}_{p}$
- $E(t, y) \in \mathbb{F}_{p}[t, y]$, irreducible with $E(0, a)=0$ and $\frac{\partial E}{\partial y}(0, a) \neq 0$
- $f(t)=\sum_{n} f_{n} t^{n}$, the unique root in $\mathbb{F}_{p}[[t]]$ of $E(t, f(t))=0$ with $f(0)=a$

Goal: design efficient algorithms for computing f_{N}
\triangleright Efficiency: measured in terms of bit operations (Turing machine model)
\triangleright Assume: input E has degree $d=\operatorname{deg}_{y} E$ and height $h=\operatorname{deg}_{t} E$, both $O(1)$

A special case: $d=1$

- $f(t)=\sum_{n} f_{n} t^{n} \in \mathbb{F}_{p}[[t]] \cap \mathbb{F}_{p}(t) \Longleftrightarrow\left(f_{n}\right)_{n}$ satisfies a recurrence

$$
f_{n+h}=c_{h-1} f_{n+h-1}+\cdots+c_{0} f_{n}, \quad n \geq 0 .
$$

- This recurrence rewrites in matrix form

$$
\underbrace{\left[\begin{array}{c}
f_{N} \\
f_{N+1} \\
\vdots \\
f_{N+h-1}
\end{array}\right]}_{V_{N}}=\underbrace{\left[\begin{array}{cccc}
1 & & \\
& & \ddots & \\
& & & 1 \\
c_{0} & c_{1} & \cdots & c_{h-1}
\end{array}\right]}_{C} \underbrace{\left[\begin{array}{c}
f_{N-1} \\
f_{N} \\
\vdots \\
f_{N+h-2}
\end{array}\right]}_{V_{N-1}}=C^{N} \underbrace{\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{h-1}
\end{array}\right]}_{V_{0}}, \quad N \geq 1 .
$$

- Binary powering: compute C^{N} recursively, using

$$
C^{N}= \begin{cases}\left(C^{N / 2}\right)^{2}, & \text { if } N \text { is even, } \\ C \cdot\left(C^{\frac{N-1}{2}}\right)^{2}, & \text { else. }\end{cases}
$$

- Cost: $O(\log N)$ ops. in \mathbb{F}_{p}, thus $\widetilde{O}(\log N \cdot \log p)$ bit ops.
\triangleright This is an ideal complexity result!
\triangleright Open question: \exists ? algorithm of complexity Poly $(\log N, \log p)$ for $d \geq 2$?

Ten methods to compute f_{N}

Guiding example

Problem: count 2-3-4 trees $\longrightarrow \quad f_{n}=$ nb. of trees with n internal nodes \square

\triangleright Generating function:

$$
f=\sum_{n} f_{n} t^{n}=1+3 t+27 t^{2}+333 t^{3}+4752 t^{4}+73764 t^{5}+\cdots,
$$

root of

$$
E(t, y)=y-1-t\left(y^{2}+y^{3}+y^{4}\right)
$$

$(\log p)$-algorithms

Method 1: non-linear recurrences

- Starting point: the sequence $\left(f_{n}\right)_{n \geq 0}$ satisfies a non-linear recurrence.
- This yields an algorithm for f_{N} using Poly $\left(N^{d}\right)$ operations in \mathbb{F}_{p}, thus of bit complexity $\tilde{O}\left(\log p \cdot \operatorname{Poly}\left(N^{d}\right)\right)$.
- E.g., for 2-3-4 trees, with

$$
E(t, y)=y-1-t\left(y^{2}+y^{3}+y^{4}\right) \in \mathbb{F}_{p}[t, y],
$$

we have for $n \geq 1$:

$$
f_{n}=\sum_{i+j=n-1} f_{i} f_{j}+\sum_{i+j+k=n-1} f_{i} f_{j} f_{k}+\sum_{i+j+k+\ell=n-1} f_{i} f_{j} f_{k} f_{\ell} .
$$

$\triangleright f_{N}$ can be computed in $O\left(N^{4}\right)$ ops. in \mathbb{F}_{p}, i.e., in $\tilde{O}\left(N^{4} \cdot \log p\right)$ bit ops.

Method 2: fixed-point theorem

- Starting point: f is the limit of the sequence $\left(F_{k}\right)_{k}$ of power series in $\mathbb{F}_{p}[[t]]$ defined by $F_{0}=a$, and $F_{k+1}(t)=F_{k}(t)-E\left(t, F_{k}(t)\right)$ for $k \geq 0$.
- This yields an algorithm for f_{N} using N products of power series $\bmod t^{N}$
- Each such product can be performed in $\tilde{O}(N)$ ops. in \mathbb{F}_{p} via FFT
- E.g., for 2-3-4 trees, with

$$
E(t, y)=y-1-t\left(y^{2}+y^{3}+y^{4}\right) \in \mathbb{F}_{p}[t, y],
$$

compute:

$$
F_{0}=1, \quad F_{k+1}=1+t F_{k}^{2}+t F_{k}^{3}+t F_{k}^{4} \quad \bmod t^{N+1} \quad \text { for } \quad 0 \leq k \leq N .
$$

$\triangleright f_{N}$ can be computed in $\tilde{O}\left(N^{2}\right)$ ops. in \mathbb{F}_{p}, i.e., in $\tilde{O}\left(N^{2} \cdot \log p\right)$ bit ops.

Method 3: Newton iteration

- Starting point: f is the limit of the sequence $\left(G_{k}\right)_{k}$ of power series in $\mathbb{F}_{p}[[t]]$ defined by $G_{0}=a$, and $G_{k+1}(t)=G_{k}(t)-\frac{E\left(t, G_{k}(t)\right)}{\frac{\partial E}{\partial y}\left(t, G_{k}(t)\right)}$ for $k \geq 0$.
- This yields an algorithm for f_{N} using products of power series $\bmod t^{2^{k}}$, for $k=1, \ldots, \log N$
- Each such product can be done in $\tilde{O}\left(2^{k}\right)$ ops. in \mathbb{F}_{p}, for a total of $\tilde{O}(N)$
- E.g., for 2-3-4 trees, with

$$
E(t, y)=y-1-t\left(y^{2}+y^{3}+y^{4}\right) \in \mathbb{F}_{p}[t, y],
$$

compute:
$G_{0}=1, \quad G_{k+1}=G_{k}-\frac{G_{k}-\left(1+t G_{k}^{2}+t G_{k}^{3}+t G_{k}^{4}\right)}{1-2 t G_{k}-3 t G_{k}^{2}-4 t G_{k}^{3}} \quad \bmod 2^{2^{k+1}} \quad$ for $k \geq 0$.
$\triangleright f_{N}$ can be computed in $\tilde{O}(N)$ ops. in \mathbb{F}_{p}, i.e., in $\tilde{O}(N \cdot \log p)$ bit ops.
[Lipson, 1976; Kung, Traub, 1978]

Method 4: linear recurrences

- Starting point:

Abel's theorem (1827)

The sequence $\left(f_{i}\right)_{i}$ satisfies a linear recurrence with polynomial coefficients

$$
p_{r}(n) f_{n+r}+\cdots+p_{0}(n) f_{n}=0, \quad(n \in \mathbb{N})
$$

- This yields an algorithm for f_{N} using $O(N)$ operations in $\mathbb{F}_{p}{ }^{(+)}$
- E.g., for 2-3-4 trees, with

$$
E(t, y)=y-1-t\left(y^{2}+y^{3}+y^{4}\right) \in \mathbb{F}_{p}[t, y],
$$

determine, then unroll, the recurrence:

$$
\begin{array}{r}
162 n(n+1)(2 n+1) f_{n}+108(n+1)\left(26 n^{2}+77 n+63\right) f_{n+1}+ \\
\cdots+75(3 n+17)(3 n+19)(n+6) f_{n+6}=0 .
\end{array}
$$

$\triangleright f_{N}$ can be computed in $O(N)$ ops. in \mathbb{F}_{p}, i.e., in $\tilde{O}(N \cdot \log p)$ bit ops. ${ }^{(+)}$
${ }^{(+)}$Under the additional assumption that $p_{r}(n) \neq 0$ for $n=0, \ldots, N$.

Method 5: linear recurrences, and baby-steps / giant-steps

- Starting point: Abel's theorem, combined with the following strategy
- $U_{n}=\left(f_{n}, \ldots, f_{n+r-1}\right)^{T}$ satisfies the 1 st order matrix recurrence

$$
U_{n+1}=\frac{1}{p_{r}(n)} A(n) U_{n} \quad \text { with } \quad A(n)=\left[\begin{array}{cccc}
& p_{r}(n) & & \\
& & \ddots & \\
& & & p_{r}(n) \\
-p_{0}(n) & -p_{1}(n) & \ldots & -p_{r-1}(n)
\end{array}\right] .
$$

$\Longrightarrow f_{N}$ reads off the matrix factorial $A(N-1) \cdots A(0)^{(+)}$

- [Chudnovsky-Chudnovsky, 1987]: (BS)-(GS) strategy
(BS) Compute $P=A(x+\sqrt{N}-1) \cdots A(x+1) A(x)$
(GS) Evaluate P at $0, \sqrt{N}, 2 \sqrt{N}, \ldots,(\sqrt{N}-1) \sqrt{N}$
Return $P((\sqrt{N}-1) \sqrt{N}) \cdots P(\sqrt{N}) \cdot P(0)$
$O(\sqrt{N})$
$\triangleright f_{N}$ can be computed in $\tilde{O}(\sqrt{N})$ ops. in \mathbb{F}_{p}, i.e., in $\tilde{O}(\sqrt{N} \cdot \log p)$ bit ops. ${ }^{(+)}$
${ }^{(\dagger)}$ Under the additional assumption that $p_{r}(n) \neq 0$ for $n=0, \ldots, N$.

Recap: $(\log p)$-algorithms

Method	arithmetic complexity	bit complexity
1. non-linear recurrences	$\tilde{O}\left(N^{d}\right)$	$\tilde{O}\left(N^{d} \cdot \log p\right)$
2. fixed-point theorem	$\tilde{O}\left(N^{2}\right)$	$\tilde{O}\left(N^{2} \cdot \log p\right)$
3. Newton iteration	$\tilde{O}(N)$	$\tilde{O}(N \cdot \log p)$
4. linear recurrences	$\tilde{O}(N)$	$\tilde{O}(N \cdot \log p)$
5. baby-steps / giant-steps	$\tilde{O}(\sqrt{N})$	$\tilde{O}(\sqrt{N} \cdot \log p)$

$(\log N)$-algorithms

General strategy

- Starting point:

Christol's theorem (1979)

If $f \in \mathbb{F}_{p}[[t]]$ is algebraic, then there exists an \mathbb{F}_{p}-vector space V such that:

- $\operatorname{dim}_{\mathbb{F}_{p}} V<+\infty$,
- V contains f,
- V is left stable by the section (Cartier) operators $S_{r}(0 \leq r<p)$

$$
S_{r}\left(c_{0}+c_{1} t+c_{2} t^{2}+\cdots\right)=c_{r}+c_{r+p} t+c_{r+2 p} t^{2}+\cdots
$$

- Each choice of V yields an algorithm for f_{N} using $\log _{p} N$ applications of the section operators on elements in V :

$$
\text { if } N={\overline{\left(r_{\ell} \cdots r_{1} r_{0}\right)}}_{p} \text { then } f_{N}=\left(S_{r_{\ell}} \cdots S_{r_{1}} S_{r_{0}} f\right)(0)
$$

\triangleright The choice of V has an impact on the complexity!
\triangleright Different proofs of Christol's theorem lead to different $(\log N)$-algorithms.

Method 6: Mahler equations

- Starting point: If $f \in \mathbb{F}_{p}[[t]]$ is algebraic, then it satisfies a Mahler equation

$$
a_{0}(t) f(t)+a_{1}(t) f\left(t^{p}\right)+\cdots+a_{r}(t) f\left(t^{p^{r}}\right)=0,
$$

with coefficients a_{j} in $\mathbb{F}_{p}[t]$ with $\operatorname{deg}\left(a_{j}\right) \leq \operatorname{Poly}\left(p^{d}\right)$, and $a_{0} \neq 0$.

- Then for some $N \leq \operatorname{Poly}\left(p^{d}\right)$, one may take in Christol's theorem

$$
V=\operatorname{Vect}_{\mathbb{F}_{p}}\left\langle\sum_{i=0}^{r} c_{i}\left(f / a_{0}\right)^{p^{i}}, c_{i} \in \mathbb{F}_{p}[t]_{\leq N}\right\rangle
$$

[Christol, Kamae, Mendès France, Rauzy, 1980]

- This yields an algorithm for f_{N} using $O(\log N)$ sections in V.
$\triangleright f_{N}$ can be computed using $\tilde{O}\left(\operatorname{Poly}\left(p^{d}\right) \cdot \log N\right)$ bit ops.

Example: counting 2-3-4 trees modulo 2

Problem: count 2-3-4 trees $\quad \longrightarrow \quad f_{n}=$ nb. of trees with n internal nodes \square

$f=\sum_{n} f_{n} t^{n}=1+3 t+27 t^{2}+333 t^{3}+\cdots$, root of $E=y-1-t\left(y^{2}+y^{3}+y^{4}\right)$
\triangleright Mahler equation $t+f(t)+\left(t^{2}+t+1\right) f\left(t^{2}\right)+t f\left(t^{4}\right)+t^{2} f\left(t^{8}\right)=0 \bmod 2$
$\triangleright f_{n} \bmod 2= \begin{cases}f_{(n-1) / 2} \bmod 2, & \text { if } n \equiv 3 \bmod 4 . \\ f_{(n-1) / 2}+f_{(n-1) / 4} \bmod 2, & \text { if } n \equiv 1 \bmod 4, \\ f_{n / 2}+f_{n / 2-1}+f_{(n-2) / 8} \bmod 2, & \text { if } n \equiv 2 \bmod 8, \\ f_{n / 2}+f_{n / 2-1} \bmod 2, & \text { else. }\end{cases}$
\triangleright Computation of f_{N} modulo 2 in $O(\log N)$ bit operations.

Method 7: diagonals

- Starting point:

Furstenberg's theorem (1967)
If $E(0,0)=0$ and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then

$$
f(t)=\operatorname{Diag}(g) \quad \text { where } \quad g(x, y)=\frac{y \cdot \frac{\partial E}{\partial y}(x y, y)}{y^{-1} \cdot E(x y, y)}
$$

- Christol's argument (1979): Since $f(t)=\operatorname{Diag} \frac{a(x, y)}{b(x, y)}$, we have
$S_{r} f(t)$

Method 7: diagonals

- Starting point:

Furstenberg's theorem (1967)
If $E(0,0)=0$ and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then

$$
f(t)=\operatorname{Diag}(g) \quad \text { where } \quad g(x, y)=\frac{y \cdot \frac{\partial E}{\partial y}(x y, y)}{y^{-1} \cdot E(x y, y)}
$$

- Christol's argument (1979): Since $f(t)=\operatorname{Diag} \frac{a(x, y)}{b(x, y)}$, we have $S_{r} f(t)=S_{r}\left(\operatorname{Diag} \frac{a(x, y)}{b(x, y)}\right)$

Method 7: diagonals

- Starting point:

Furstenberg's theorem (1967)
If $E(0,0)=0$ and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then

$$
f(t)=\operatorname{Diag}(g) \quad \text { where } \quad g(x, y)=\frac{y \cdot \frac{\partial E}{\partial y}(x y, y)}{y^{-1} \cdot E(x y, y)}
$$

- Christol's argument (1979): Since $f(t)=\operatorname{Diag} \frac{a(x, y)}{b(x, y)}$, we have $S_{r} f(t)=S_{r}\left(\operatorname{Diag} \frac{a(x, y)}{b(x, y)}\right)=\operatorname{Diag} S_{r}\left(\frac{a(x, y)}{b(x, y)}\right)$

Method 7: diagonals

- Starting point:

Furstenberg's theorem (1967)
If $E(0,0)=0$ and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then

$$
f(t)=\operatorname{Diag}(g) \quad \text { where } \quad g(x, y)=\frac{y \cdot \frac{\partial E}{\partial y}(x y, y)}{y^{-1} \cdot E(x y, y)}
$$

- Christol's argument (1979): Since $f(t)=\operatorname{Diag} \frac{a(x, y)}{b(x, y)}$, we have
$S_{r} f(t)=S_{r}\left(\operatorname{Diag} \frac{a(x, y)}{b(x, y)}\right)=\operatorname{Diag} S_{r}\left(\frac{a(x, y)}{b(x, y)}\right)=\operatorname{Diag} \frac{S_{r}\left(a(x, y) b(x, y)^{p-1}\right)}{b(x, y)}$,

Method 7: diagonals

- Starting point:

Furstenberg's theorem (1967)

If $E(0,0)=0$ and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then

$$
f(t)=\operatorname{Diag}(g) \quad \text { where } \quad g(x, y)=\frac{y \cdot \frac{\partial E}{\partial y}(x y, y)}{y^{-1} \cdot E(x y, y)}
$$

- Christol's argument (1979): Since $f(t)=\operatorname{Diag} \frac{a(x, y)}{b(x, y)}$, we have $S_{r} f(t)=S_{r}\left(\operatorname{Diag} \frac{a(x, y)}{b(x, y)}\right)=\operatorname{Diag} S_{r}\left(\frac{a(x, y)}{b(x, y)}\right)=\operatorname{Diag} \frac{S_{r}\left(a(x, y) b(x, y)^{p-1}\right)}{b(x, y)}$,
so one may take in Christol's thm $V=\operatorname{Diag}\left(\frac{1}{b(x, y)} \cdot \mathbb{F}_{p}[x, y]_{\leq\left(\operatorname{deg}_{x} b, \operatorname{deg}_{y} b\right)}\right)$
- This yields an algorithm for f_{N} using $O(\log N)$ sections in V.
$\triangleright f_{N}$ can be computed using $\tilde{O}\left(p^{2} \cdot \log N\right)$ bit ops.

Method 8: Partial diagonals

- Starting point: Only a small part of $b(x, y)^{p-1}$ is enough to compute a section in method 7: $O(1)$ strips of width $O(1)$ and length $O(p)$
- Example: $p=109, E=(1+t)(t-y)+t^{2} y^{2}+(1+t) y^{3}+y^{4}$

$\triangleright f_{N}$ can be computed using $\tilde{O}(p \cdot \log N)$ bit ops. [B., Christol, Dumas, 2016]

Method 9: Furstenberg-like and Hermite-Padé approximation

- Starting point:

Theorem [B., Caruso, Christol, Dumas, 2018]
One may take in Christol's theorem

$$
V=\left\{\left.\frac{P(t, f(t))}{\frac{\partial E}{\partial y}(t, f(t))} \right\rvert\, \quad P \in \mathbb{F}_{p}[t, y], \quad \operatorname{deg}_{y} P<d \text { and } \operatorname{deg}_{t} P<h\right\} .
$$

- This yields an algorithm for f_{N} using $O(\log N)$ sections in V.
\triangleright Applying a section to $g=\frac{P(t, f(t))}{\partial \overline{\partial y}(t, f(t))}$ amounts to:
- expanding $g \bmod t^{2 d h} p$
$\tilde{O}(p)$ by Newton iterations
- solving a Hermite-Padé approximation problem at order $2 d h=O(1)$.
$\triangleright f_{N}$ can be computed using $\tilde{O}(p \cdot \log N)$ bit ops.

Method 10: Hermite-Padé and baby-steps / giant-steps

- Starting point: Only $O(1)$ coefficients (of index from p to p) of $g=\frac{P(t, f)}{\partial E}(t, f)$ are needed in Method 9! (since we are only interested in one of its sections)
- Idea: g is algebraic, hence D-finite, so use baby-steps / giant-steps to compute those coefficients in $\tilde{O}(\sqrt{p})$ ops.
- Main difficulty to overcome: divisions by p (as in Method 5)
- Solution: lift to p-adics, control precision loss
$\triangleright f_{N}$ can be computed using $\tilde{O}(\sqrt{p} \cdot \log N)$ bit ops.
[B., Caruso, Christol, Dumas, 2018]

Overview: Ten methods to compute $f_{N} \bmod p$

Method	bit complexity
1. non-linear recurrences	Poly $\left(N^{d} \cdot \log p\right)$
2. fixed-point theorem	$\left.\tilde{O} \tilde{N} N^{2} \cdot \log p\right)$
3. Newton iteration	$\tilde{O}(N \cdot \log p)$
4. linear recurrences	$\tilde{O}(N \cdot \log p)$
5. baby-steps / giant-steps	$\tilde{O}(\sqrt{N} \cdot \log p)$
6. Mahler equations	Poly $\left(p^{d} \cdot \log N\right)$
7. diagonals	$\tilde{O}\left(p^{2} \cdot \log N\right)$
8. partial diagonals	$\tilde{O}(p \cdot \log N)$
9. Furstenberg + Hermite-Padé	$\tilde{O}(p \cdot \log N)$
10. Hermite-Padé + BS-GS	$\tilde{O}(\sqrt{p} \cdot \log N)$

Bonus

Timings (method 8)

$O(\log N)$

$\tilde{O}(p)$

A difficult but nice case

For

$$
f=\frac{1}{\sqrt{(1-a t)^{2}-4 t^{2}}}
$$

and

$$
N=\frac{p-1}{2},
$$

computing $f_{N} \bmod p$ reduces to computing the number of points $(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}$ on the elliptic curve

$$
y^{2}=x\left(1+a x+x^{2}\right) .
$$

This can be done in polynomial time in $\log p$ by Schoof's algorithm (1985).

An amusing conjecture

Let

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

be the nth Catalan number. Then:

- The last digit (in base 10) of C_{n} is never 3;
- For $n \gg 0$, the last digit of any odd C_{n} is always 5 .

Thanks for your attention!

Fast multiplication and division of power series

[Schönhage-Strassen, 1971]: FFT-multiplication in $\mathbb{F}_{p}[x]_{<N}$ using $\tilde{O}(N)$ ops.
[Sieveking-Kung, 1972]: Newton iteration for the reciprocal of $f \in \mathbb{F}_{p}[[x]]$:

$$
\begin{gathered}
g_{0}=\frac{1}{f_{0}} \text { and } g_{\kappa+1}=g_{\kappa}+g_{\kappa}\left(1-f g_{\kappa}\right) \quad \bmod x^{2^{\kappa+1}} \quad \text { for } \kappa \geq 0 \\
\mathrm{R}(N)=\mathrm{R}(N / 2)+\tilde{O}(N) \Longrightarrow \quad \mathrm{R}(N)=\tilde{O}(N)
\end{gathered}
$$

Corollary: Division of power series at precision N in $\tilde{O}(N)$

Application: fast polynomial Euclidean division

Given $F, G \in \mathbb{F}_{p}[x]_{\leq N}$, compute (Q, R) in Euclidean division $F=Q G+R$ Schoolbook algorithm:

Better idea: look at $F=Q G+R$ from the infinity: $Q \sim_{+\infty} F / G$
Formally: Let $N=\operatorname{deg}(F), n=\operatorname{deg}(G)$, then $\operatorname{deg}(Q)=N-n, \operatorname{deg}(R)<n$ and

$$
\underbrace{F(1 / x) x^{N}}_{\operatorname{rev}(F)}=\underbrace{G(1 / x) x^{n}}_{\operatorname{rev}(G)} \cdot \underbrace{Q(1 / x) x^{N-n}}_{\operatorname{rev}(Q)}+\underbrace{R(1 / x) x^{\operatorname{deg}(R)}}_{\operatorname{rev}(R)} \cdot x^{N-\operatorname{deg}(R)}
$$

Strassen's algorithm [1973]:
$\tilde{O}(N)$

- Compute $\operatorname{rev}(Q)=\operatorname{rev}(F) / \operatorname{rev}(G) \bmod x^{N-n+1}$
- Recover Q
- Deduce $R=F-Q G$

Subproduct tree

Problem: Given $a_{0}, \ldots, a_{n-1} \in \mathbb{F}_{p}$, compute $A=\prod_{i=0}^{n-1}\left(x-a_{i}\right)$

Fast multipoint evaluation [Borodin-Moenck, 1974]

Given $a_{0}, \ldots, a_{n-1} \in \mathbb{F}_{p}, P \in \mathbb{F}_{p}[x]_{<n}$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

Naive algorithm: Compute the $P\left(a_{i}\right)$ independently

Idea: Use recursively Bézout's identity $P(a)=P(x) \bmod (x-a)$

Divide and conquer: FFT-type idea, evaluation by repeated division

- $\quad P_{0}=P \bmod \left(x-a_{0}\right) \cdots\left(x-a_{n / 2-1}\right)$
- $\quad P_{1}=P \bmod \left(x-a_{n / 2}\right) \cdots\left(x-a_{n-1}\right)$
$\Longrightarrow \quad\left\{\begin{array}{lll}P_{0}\left(a_{0}\right)=P\left(a_{0}\right), \ldots, & P_{0}\left(a_{n / 2-1}\right)=P\left(a_{n / 2-1}\right) \\ P_{1}\left(a_{n / 2}\right)=P\left(a_{n / 2}\right), & \ldots, & P_{1}\left(a_{n-1}\right)=P\left(a_{n-1}\right)\end{array}\right.$

Fast multipoint evaluation [Borodin-Moenck, 1974]

Given $a_{0}, \ldots, a_{n-1} \in \mathbb{F}_{p}, P \in \mathbb{F}_{p}[x]<n$, compute $P\left(a_{0}\right), \ldots, P\left(a_{n-1}\right)$

