

One of the most difficult questions in modular computations is the complexity of computations mod p for a large prime p of coefficients in the expansion of an algebraic function.

[D. Chudnovsky & G. Chudnovsky, 1990] Computer Algebra in the Service of Mathematical Physics and Number Theory

- *p*, a prime number
- N, a positive integer
- \mathbb{F}_p , the finite field with *p* elements
- $a \in \mathbb{F}_p$
- $E(t,y) \in \mathbb{F}_p[t,y]$, irreducible with E(0,a) = 0 and $\frac{\partial E}{\partial y}(0,a) \neq 0$
- $f(t) = \sum_n f_n t^n$, the unique root in $\mathbb{F}_p[[t]]$ of E(t, f(t)) = 0 with f(0) = a

- *p*, a prime number
- N, a positive integer
- \mathbb{F}_p , the finite field with *p* elements
- $a \in \mathbb{F}_p$
- $E(t,y) \in \mathbb{F}_p[t,y]$, irreducible with E(0,a) = 0 and $\frac{\partial E}{\partial y}(0,a) \neq 0$
- $f(t) = \sum_n f_n t^n$, the unique root in $\mathbb{F}_p[[t]]$ of E(t, f(t)) = 0 with f(0) = a

Goal: design efficient algorithms for computing f_N

- *p*, a prime number
- N, a positive integer
- \mathbb{F}_p , the finite field with *p* elements
- $a \in \mathbb{F}_p$
- $E(t,y) \in \mathbb{F}_p[t,y]$, irreducible with E(0,a) = 0 and $\frac{\partial E}{\partial y}(0,a) \neq 0$
- $f(t) = \sum_n f_n t^n$, the unique root in $\mathbb{F}_p[[t]]$ of E(t, f(t)) = 0 with f(0) = a

Goal: design efficient algorithms for computing f_N

▷ Efficiency: measured in terms of bit operations (Turing machine model) ▷ Assume: input *E* has degree $d = \deg_{V} E$ and height $h = \deg_{t} E$, both O(1) • $f(t) = \sum_n f_n t^n \in \mathbb{F}_p[[t]] \cap \mathbb{F}_p(t) \iff (f_n)_n$ satisfies a recurrence $f_{n+h} = c_{h-1}f_{n+h-1} + \dots + c_0f_n, \qquad n \ge 0.$

• This recurrence rewrites in matrix form

$$\underbrace{\begin{bmatrix} f_{N} \\ f_{N+1} \\ \vdots \\ f_{N+h-1} \end{bmatrix}}_{V_{N}} = \underbrace{\begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \\ c_{0} & c_{1} & \cdots & c_{h-1} \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} f_{N-1} \\ f_{N} \\ \vdots \\ f_{N+h-2} \end{bmatrix}}_{V_{N-1}} = C^{N} \underbrace{\begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{h-1} \end{bmatrix}}_{V_{0}}, \qquad N \ge 1.$$

• Binary powering: compute C^N recursively, using

$$C^{N} = \begin{cases} (C^{N/2})^{2}, & \text{if } N \text{ is even,} \\ C \cdot (C^{\frac{N-1}{2}})^{2}, & \text{else.} \end{cases}$$

• Cost: $O(\log N)$ ops. in \mathbb{F}_p , thus $\tilde{O}(\log N \cdot \log p)$ bit ops.

- ▷ This is an ideal complexity result!
- ▷ Open question: \exists ? algorithm of complexity $Poly(\log N, \log p)$ for $d \geq 2$?
- ▷ Concrete challenge: for $f = \frac{1}{\sqrt{1-4t}}$, compute $f_N \mod p = \binom{2N}{N} \mod p$.

Ten methods to compute f_N

Problem: count 2-3-4 trees \longrightarrow $f_n =$ nb. of trees with *n* internal nodes

▶ Generating function:

$$f = \sum_{n} f_{n}t^{n} = 1 + 3t + 27t^{2} + 333t^{3} + 4752t^{4} + 73764t^{5} + \cdots,$$

root of

$$E(t,y) = y - 1 - t(y^2 + y^3 + y^4).$$

$(\log p)$ -algorithms

• Starting point: the sequence $(f_n)_{n\geq 0}$ satisfies a *non-linear recurrence*.

• This yields an algorithm for f_N using $\mathsf{Poly}(N^d)$ operations in \mathbb{F}_p , thus of bit complexity $\tilde{O}(\log p \cdot \mathsf{Poly}(N^d))$.

• E.g., for 2-3-4 trees, with

$$E(t,y) = y - 1 - t(y^2 + y^3 + y^4) \in \mathbb{F}_p[t,y],$$

we have for $n \ge 1$:

$$f_n = \sum_{i+j=n-1} f_i f_j + \sum_{i+j+k=n-1} f_i f_j f_k + \sum_{i+j+k+\ell=n-1} f_i f_j f_k f_\ell.$$

▷ f_N can be computed in $O(N^4)$ ops. in \mathbb{F}_p , i.e., in $\tilde{O}(N^4 \cdot \log p)$ bit ops.

• Starting point: *f* is the limit of the sequence $(F_k)_k$ of power series in $\mathbb{F}_p[[t]]$ defined by $F_0 = a$, and $F_{k+1}(t) = F_k(t) - E(t, F_k(t))$ for $k \ge 0$.

- This yields an algorithm for f_N using N products of power series mod t^N
- Each such product can be performed in $\tilde{O}(N)$ ops. in \mathbb{F}_p via FFT
- E.g., for 2-3-4 trees, with

$$E(t,y) = y - 1 - t(y^2 + y^3 + y^4) \in \mathbb{F}_p[t,y],$$

compute:

 $F_0 = 1$, $F_{k+1} = 1 + tF_k^2 + tF_k^3 + tF_k^4 \mod t^{N+1}$ for $0 \le k \le N$.

▷ f_N can be computed in $\tilde{O}(N^2)$ ops. in \mathbb{F}_p , i.e., in $\tilde{O}(N^2 \cdot \log p)$ bit ops.

Method 3: Newton iteration

• Starting point: *f* is the limit of the sequence $(G_k)_k$ of power series in $\mathbb{F}_p[[t]]$ defined by $G_0 = a$, and $G_{k+1}(t) = G_k(t) - \frac{E(t, G_k(t))}{\frac{\partial E}{\partial t}(t, G_k(t))}$ for $k \ge 0$.

• This yields an algorithm for f_N using products of power series mod t^{2^k} , for $k = 1, ..., \log N$

- Each such product can be done in $\tilde{O}(2^k)$ ops. in \mathbb{F}_p , for a total of $\tilde{O}(N)$
- E.g., for 2-3-4 trees, with

$$E(t,y) = y - 1 - t(y^2 + y^3 + y^4) \in \mathbb{F}_p[t,y],$$

compute:

$$G_0 = 1, \qquad G_{k+1} = G_k - \frac{G_k - (1 + tG_k^2 + tG_k^3 + tG_k^4)}{1 - 2tG_k - 3tG_k^2 - 4tG_k^3} \mod t^{2^{k+1}} \quad \text{for} \quad k \ge 0.$$

▷ f_N can be computed in $\tilde{O}(N)$ ops. in \mathbb{F}_p , i.e., in $\tilde{O}(N \cdot \log p)$ bit ops. [Lipson, 1976; Kung, Traub, 1978]

Abel's theorem (1827)

The sequence $(f_i)_i$ satisfies a linear recurrence with *polynomial coefficients*

$$p_r(n)f_{n+r} + \dots + p_0(n)f_n = 0, \qquad (n \in \mathbb{N})$$

This yields an algorithm for *f_N* using *O*(*N*) operations in **F**_p^(†)
E.g., for 2-3-4 trees, with

$$E(t,y)=y-1-t(y^2+y^3+y^4)\in \mathbb{F}_p[t,y],$$

determine, then unroll, the recurrence:

 $162 n (n + 1) (2 n + 1) f_n + 108 (n + 1) (26 n^2 + 77 n + 63) f_{n+1} + \dots + 75 (3 n + 17) (3 n + 19) (n + 6) f_{n+6} = 0.$

▷ f_N can be computed in O(N) ops. in \mathbb{F}_p , i.e., in $\tilde{O}(N \cdot \log p)$ bit ops.^(†)

^(†) Under the additional assumption that $p_r(n) \neq 0$ for n = 0, ..., N.

Method 5: linear recurrences, and baby-steps / giant-steps

• Starting point: Abel's theorem, combined with the following strategy • $U_n = (f_n, \dots, f_{n+r-1})^T$ satisfies the 1st order matrix recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & & \\ & \ddots & \\ & & p_r(n) \\ -p_0(n) & -p_1(n) & \dots & -p_{r-1}(n) \end{bmatrix}$$

 \implies f_N reads off the matrix factorial $A(N-1)\cdots A(0)^{(\dagger)}$

• [Chudnovsky-Chudnovsky, 1987]: (BS)–(GS) strategy

(BS) Compute
$$P = A(x + \sqrt{N} - 1) \cdots A(x + 1)A(x)$$
 $\tilde{O}(\sqrt{N})$

(GS) Evaluate P at 0, \sqrt{N} , $2\sqrt{N}$, ..., $(\sqrt{N}-1)\sqrt{N}$ $\tilde{O}(\sqrt{N})$ Return $P((\sqrt{N}-1)\sqrt{N})\cdots P(\sqrt{N})\cdot P(0)$ $O(\sqrt{N})$

▷ f_N can be computed in $\tilde{O}(\sqrt{N})$ ops. in \mathbb{F}_p , i.e., in $\tilde{O}(\sqrt{N} \cdot \log p)$ bit ops.^(†)

^(†) Under the additional assumption that $p_r(n) \neq 0$ for n = 0, ..., N.

Method	arithmetic complexity	bit complexity
1. non-linear recurrences	$ ilde{O}(N^d)$	$\tilde{O}(N^d \cdot \log p)$
2. fixed-point theorem	$ ilde{O}(N^2)$	$\tilde{O}(N^2 \cdot \log p)$
3. Newton iteration	$ ilde{O}(N)$	$\tilde{O}(N \cdot \log p)$
4. linear recurrences	O(N)	$\tilde{O}(N \cdot \log p)$
5. baby-steps / giant-steps	$ ilde{O}(\sqrt{N})$	$\tilde{O}(\sqrt{N} \cdot \log p)$

$(\log N)$ -algorithms

Christol's theorem (1979)

If $f \in \mathbb{F}_p[[t]]$ is algebraic, then there exists an \mathbb{F}_p -vector space V such that:

- $\dim_{\mathbb{F}_p} V < +\infty$,
- V contains f,

• *V* is left stable by the section (Cartier) operators S_r ($0 \le r < p$)

$$S_r(c_0 + c_1t + c_2t^2 + \cdots) = c_r + c_{r+p}t + c_{r+2p}t^2 + \cdots$$

• Each choice of *V* yields an algorithm for f_N using $\log_p N$ applications of the section operators on elements in *V*:

if
$$N = \overline{(r_{\ell} \cdots r_1 r_0)}_p$$
 then $f_N = (S_{r_{\ell}} \cdots S_{r_1} S_{r_0} f)(0)$

▷ The choice of *V* has an impact on the complexity!

 \triangleright Different proofs of Christol's theorem lead to different (log *N*)-algorithms.

• Starting point: If $f \in \mathbb{F}_p[[t]]$ is algebraic, then it satisfies a Mahler equation

 $a_0(t)f(t) + a_1(t)f(t^p) + \dots + a_r(t)f(t^{p^r}) = 0,$

with coefficients a_j in $\mathbb{F}_p[t]$ with $\deg(a_j) \leq \operatorname{Poly}(p^d)$, and $a_0 \neq 0$.

• Then for some $N \leq \mathsf{Poly}(p^d)$, one may take in Christol's theorem

$$V = \operatorname{Vect}_{\mathbb{F}_p} \left\langle \sum_{i=0}^r c_i (f/a_0)^{p^i}, \ c_i \in \mathbb{F}_p[t]_{\leq N} \right\rangle$$

[Christol, Kamae, Mendès France, Rauzy, 1980]

- This yields an algorithm for f_N using $O(\log N)$ sections in *V*.
- ▷ f_N can be computed using $\tilde{O}(\text{Poly}(p^d) \cdot \log N)$ bit ops.

Problem: count 2-3-4 trees \longrightarrow $f_n =$ nb. of trees with *n* internal nodes

▷ Mahler equation $t + f(t) + (t^2 + t + 1)f(t^2) + tf(t^4) + t^2f(t^8) = 0 \mod 2$

$$\triangleright f_n \mod 2 = \begin{cases} f_{(n-1)/2} \mod 2, & \text{if } n \equiv 3 \mod 4, \\ f_{(n-1)/2} + f_{(n-1)/4} \mod 2, & \text{if } n \equiv 1 \mod 4, \\ f_{n/2} + f_{n/2-1} + f_{(n-2)/8} \mod 2, & \text{if } n \equiv 2 \mod 8, \\ f_{n/2} + f_{n/2-1} \mod 2, & \text{else.} \end{cases}$$

▷ Computation of f_N modulo 2 in $O(\log N)$ bit operations.

Furstenberg's theorem (1967)
If
$$E(0,0) = 0$$
 and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then
 $f(t) = \text{Diag}(g)$ where $g(x,y) = \frac{y \cdot \frac{\partial E}{\partial y}(xy,y)}{y^{-1} \cdot E(xy,y)}$.

• Christol's argument (1979): Since $f(t) = \text{Diag } \frac{a(x, y)}{b(x, y)}$, we have

 $S_r f(t)$

Furstenberg's theorem (1967)
If
$$E(0,0) = 0$$
 and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then
 $f(t) = \text{Diag}(g)$ where $g(x,y) = \frac{y \cdot \frac{\partial E}{\partial y}(xy,y)}{y^{-1} \cdot E(xy,y)}$.

• Christol's argument (1979): Since $f(t) = \text{Diag } \frac{a(x, y)}{b(x, y)}$, we have

$$S_r f(t) = S_r \left(\text{Diag } \frac{a(x,y)}{b(x,y)} \right)$$

Furstenberg's theorem (1967)
If
$$E(0,0) = 0$$
 and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then
 $f(t) = \text{Diag}(g)$ where $g(x,y) = \frac{y \cdot \frac{\partial E}{\partial y}(xy,y)}{y^{-1} \cdot E(xy,y)}$.

• Christol's argument (1979): Since $f(t) = \text{Diag } \frac{a(x, y)}{b(x, y)}$, we have

$$S_r f(t) = S_r \left(\text{Diag } \frac{a(x,y)}{b(x,y)} \right) = \text{Diag } S_r \left(\frac{a(x,y)}{b(x,y)} \right)$$

Furstenberg's theorem (1967)
If
$$E(0,0) = 0$$
 and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then
 $f(t) = \text{Diag}(g)$ where $g(x,y) = \frac{y \cdot \frac{\partial E}{\partial y}(xy,y)}{y^{-1} \cdot E(xy,y)}$.

• Christol's argument (1979): Since $f(t) = \text{Diag } \frac{a(x, y)}{b(x, y)}$, we have

$$S_r f(t) = S_r \left(\text{Diag } \frac{a(x,y)}{b(x,y)} \right) = \text{Diag } S_r \left(\frac{a(x,y)}{b(x,y)} \right) = \text{Diag } \frac{S_r \left(a(x,y)b(x,y)^{p-1} \right)}{b(x,y)},$$

Furstenberg's theorem (1967)
If
$$E(0,0) = 0$$
 and $\frac{\partial E}{\partial y}(0,0) \neq 0$, then
 $f(t) = \text{Diag}(g)$ where $g(x,y) = \frac{y \cdot \frac{\partial E}{\partial y}(xy,y)}{y^{-1} \cdot E(xy,y)}$.

• Christol's argument (1979): Since
$$f(t) = \text{Diag } \frac{a(x, y)}{b(x, y)}$$
, we have

$$S_rf(t) = S_r\left(\text{Diag } \frac{a(x,y)}{b(x,y)}\right) = \text{Diag } S_r\left(\frac{a(x,y)}{b(x,y)}\right) = \text{Diag } \frac{S_r\left(a(x,y)b(x,y)^{p-1}\right)}{b(x,y)},$$

so one may take in Christol's thm $V = \text{Diag}\left(\frac{1}{b(x,y)} \cdot \mathbb{F}_p[x,y]_{\leq (\deg_x b, \deg_y b)}\right)$

- This yields an algorithm for f_N using $O(\log N)$ sections in *V*.
- ▷ f_N can be computed using $\tilde{O}(p^2 \cdot \log N)$ bit ops.

Method 8: Partial diagonals

Starting point: Only a small part of b(x, y)^{p-1} is enough to compute a section in method 7: O(1) strips of width O(1) and length O(p)
Example: p = 109, E = (1 + t)(t - y) + t²y² + (1 + t)y³ + y⁴

▷ f_N can be computed using $\tilde{O}(p \cdot \log N)$ bit ops. [B., Christol, Dumas, 2016]

Method 9: Furstenberg-like and Hermite-Padé approximation

• Starting point:

Theorem [B., Caruso, Christol, Dumas, 2018]

One may take in Christol's theorem

$$V = \left\{ \begin{array}{l} \frac{P(t,f(t))}{\frac{\partial E}{\partial y}(t,f(t))} & \middle| \quad P \in \mathbb{F}_p[t,y], \quad \deg_y P < d \text{ and } \deg_t P < h \right\}.$$

- This yields an algorithm for f_N using $O(\log N)$ sections in *V*.
- ▷ Applying a section to $g = \frac{P(t,f(t))}{\frac{\partial E}{\partial y}(t,f(t))}$ amounts to:
 - expanding $g \mod t^{2dh p}$ $\tilde{O}(p)$ by Newton iterations
 - solving a Hermite-Padé approximation problem at order 2dh = O(1).
- ▷ f_N can be computed using $\tilde{O}(p \cdot \log N)$ bit ops.

• Starting point: Only O(1) coefficients (of index from p to p) of $g = \frac{P(t,f)}{\frac{dE}{dy}(t,f)}$ are needed in Method 9! (since we are only interested in one of its sections)

• Idea: *g* is algebraic, hence *D*-finite, so use baby-steps / giant-steps to compute those coefficients in $\tilde{O}(\sqrt{p})$ ops.

- Main difficulty to overcome: divisions by *p* (as in Method 5)
- Solution: lift to *p*-adics, control precision loss
- ▷ f_N can be computed using $\tilde{O}(\sqrt{p} \cdot \log N)$ bit ops. [B., Caruso, Christol, Dumas, 2018]

Overview: Ten methods to compute $f_N \mod p$

Method	bit complexity
1. non-linear recurrences	$Poly(N^d \cdot \log p)$
2. fixed-point theorem	$\tilde{O}(N^2 \cdot \log p)$
3. Newton iteration	$\tilde{O}(N \cdot \log p)$
4. linear recurrences	$\tilde{O}(N \cdot \log p)$
5. baby-steps / giant-steps	$\tilde{O}(\sqrt{N} \cdot \log p)$
6. Mahler equations	$Poly(p^d \cdot \log N)$
7. diagonals	$\tilde{O}(p^2 \cdot \log N)$
8. partial diagonals	$\tilde{O}(p \cdot \log N)$
9. Furstenberg + Hermite-Padé	$\tilde{O}(p \cdot \log N)$
10. Hermite-Padé + BS–GS	$\tilde{O}(\sqrt{p} \cdot \log N)$

Bonus

Timings (method 8)

A difficult but nice case

For

$$f = \frac{1}{\sqrt{(1 - at)^2 - 4t^2}}$$

and

$$N=\frac{p-1}{2},$$

computing $f_N \mod p$ reduces to computing the number of points $(x, y) \in \mathbb{F}_p \times \mathbb{F}_p$ on the elliptic curve

$$y^2 = x(1 + ax + x^2).$$

This can be done in polynomial time in $\log p$ by Schoof's algorithm (1985).

Let

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

be the *n*th Catalan number. Then:

- The last digit (in base 10) of *C_n* is never 3;
- For $n \gg 0$, the last digit of any odd C_n is always 5.

Thanks for your attention!

[Schönhage-Strassen, 1971]: FFT-multiplication in $\mathbb{F}_p[x]_{<N}$ using $\tilde{O}(N)$ ops.

[Sieveking-Kung, 1972]: Newton iteration for the reciprocal of $f \in \mathbb{F}_p[[x]]$:

$$g_0 = \frac{1}{f_0} \quad \text{and} \quad g_{\kappa+1} = g_{\kappa} + g_{\kappa}(1 - fg_{\kappa}) \mod x^{2^{\kappa+1}} \quad \text{for } \kappa \ge 0$$
$$\mathsf{R}(N) = \mathsf{R}(N/2) + \tilde{O}(N) \implies \mathsf{R}(N) = \tilde{O}(N)$$

Corollary: Division of power series at precision N in $\tilde{O}(N)$

Application: fast polynomial Euclidean division

Given $F, G \in \mathbb{F}_p[x]_{\leq N}$, compute (Q, R) in Euclidean division F = QG + RSchoolbook algorithm: $O(N^2)$

Better idea: look at F = QG + R from the infinity: $Q \sim_{+\infty} F/G$

Formally: Let $N = \deg(F)$, $n = \deg(G)$, then $\deg(Q) = N - n$, $\deg(R) < n$ and

$$\underbrace{F(1/x)x^{N}}_{\operatorname{rev}(F)} = \underbrace{G(1/x)x^{n}}_{\operatorname{rev}(G)} \cdot \underbrace{Q(1/x)x^{N-n}}_{\operatorname{rev}(Q)} + \underbrace{R(1/x)x^{\operatorname{deg}(R)}}_{\operatorname{rev}(R)} \cdot x^{N-\operatorname{deg}(R)}$$

Strassen's algorithm [1973]: $\tilde{O}(N)$ • Compute rev $(Q) = rev(F)/rev(G) \mod x^{N-n+1}$ $\tilde{O}(N)$ • Recover QO(N)• Deduce R = F - QG $\tilde{O}(N)$

Subproduct tree

Problem: Given $a_0, \ldots, a_{n-1} \in \mathbb{F}_p$, compute $A = \prod_{i=0}^{n-1} (x - a_i)$

Cost: $S(n) = 2 \cdot S(n/2) + \tilde{O}(n) \implies S(n) = \tilde{O}(n).$

Given $a_0, \ldots, a_{n-1} \in \mathbb{F}_p$, $P \in \mathbb{F}_p[x]_{< n}$, compute $P(a_0), \ldots, P(a_{n-1})$

Naive algorithm: Compute the $P(a_i)$ independently

 $O(n^2)$

Idea: Use recursively Bézout's identity $P(a) = P(x) \mod (x - a)$

Divide and conquer: FFT-type idea, evaluation by repeated division

•
$$P_0 = P \mod (x - a_0) \cdots (x - a_{n/2-1})$$

• $P_1 = P \mod (x - a_{n/2}) \cdots (x - a_{n-1})$
 $\implies \begin{cases} P_0(a_0) = P(a_0), \dots, P_0(a_{n/2-1}) = P(a_{n/2-1}) \\ P_1(a_{n/2}) = P(a_{n/2}), \dots, P_1(a_{n-1}) = P(a_{n-1}) \end{cases}$

Fast multipoint evaluation [Borodin-Moenck, 1974]

Given $a_0, \ldots, a_{n-1} \in \mathbb{F}_p$, $P \in \mathbb{F}_p[x]_{< n}$, compute $P(a_0), \ldots, P(a_{n-1})$

