First-order logic for permutations

Mathilde Bouvel (Institut für Mathematik, Universität Zürich)

talk based on joint work with M. Albert and V. Féray

Universität
 Zürich ${ }^{\text {V2H }}$

80th Séminaire Lotharingien de Combinatoire, Lyon, March 2018

What is a permutation (of size n)?

- A bijection from $\{1,2, \ldots, n\}$ to itself,
- or more generally from X to X, for $|X|=n$.

$$
E_{x .:} \sigma=(1,3,5,2)(4,7)(6)
$$

What is a permutation (of size n)?

- A bijection from $\{1,2, \ldots, n\}$ to itself,
- or more generally from X to X, for $|X|=n$.
- A word containing exactly once each letter from $\{1,2, \ldots, n\}$, - or more visually a diagram.

$$
\text { Ex.: } \sigma=(1,3,5,2)(4,7)(6)=3157264=
$$

3157264

What is a permutation (of size n)?

- A bijection from $\{1,2, \ldots, n\}$ to itself,
- or more generally from X to X, for $|X|=n$.
- A word containing exactly once each letter from $\{1,2, \ldots, n\}$,
- or more visually a diagram.

$$
\mathrm{Ex}_{.}: \sigma=(1,3,5,2)(4,7)(6)=3157264=
$$

3157264

- The questions addressed are different, depending on the point of view.
- Very few results consider both points of view simultaneously.
- The two points of view are believed to be rather orthogonal.

What is a permutation (of size n)?

- A bijection from $\{1,2, \ldots, n\}$ to itself,
- or more generally from X to X, for $|X|=n$.
- A word containing exactly once each letter from $\{1,2, \ldots, n\}$,
- or more visually a diagram.

Ex.: $\sigma=(1,3,5,2)(4,7)(6)=3157264=$

3157264

- The questions addressed are different, depending on the point of view.
- Very few results consider both points of view simultaneously.
- The two points of view are believed to be rather orthogonal.

Goal: Give a "proof" that the two points of view are hardly reconciled.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations. More precisely, we consider two first-order (logical) theories.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations. More precisely, we consider two first-order (logical) theories.

For each theory,

- permutations are models of our theory,
- (logical) formulas express properties of the permutations.

How? Logic to the rescue!

Formalize each point of view as a logic for permutations.
More precisely, we consider two first-order (logical) theories.
For each theory,

- permutations are models of our theory,
- (logical) formulas express properties of the permutations.

To prove that the two points of view are essentially different, we study the expressivity of the theories:

- describe properties expressible in each theory,
- show that the properties expressible in both theories are trivial.

Two logics for permutations

TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)

TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
Two components of a logical theory:

- its formulas $=$ what the theory can say about its models syntax
- its models $=$ the objects the theory talks about interpretation

TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
Two components of a logical theory:

- its formulas $=$ what the theory can say about its models syntax
- its models $=$ the obje

Pairs $\left(X, R_{X}\right)$ where X is a finite set and R_{X} a binary relation on X.

TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
Two components of a logical theory:

- its formulas $=$ what the theory can say about its models syntax
- its models $=$ the objects the theory talks about interpretation
(Finite) models of TOOB:
Pairs $\left(X, R_{X}\right)$ where X is a finite set and R_{X} a binary relation on X. Axioms of TOOB: ensure that R_{X} is a bijection from X to X.

TOOB: models

TOOB: the Theory Of One Bijection (already appeared in the literature)
Two components of a logical theory:

- its formulas $=$ what the theory can say about its models syntax
- its models $=$ the objects the theory talks about interpretation
(Finite) models of TOOB:
Pairs $\left(X, R_{X}\right)$ where X is a finite set and R_{X} a binary relation on X.
Axioms of TOOB: ensure that R_{X} is a bijection from X to X.
Permutations are models, and every model is a permutation. (Possibly, up to a conjugating by a bijection between X and $\{1,2, \ldots, n\}$.)

The relation R_{σ} associated to σ of size n is given by:

$$
i R_{\sigma} \sigma(i) \text { for all } i \leq n
$$

TOOB: formulas

- Atomic formulas of TOOB are $x=y$ and $x R y$, for any variables x and y.
\rightsquigarrow A variable is intended as representing an element of the permutation.

TOOB: formulas

- Atomic formulas of TOOB are $x=y$ and $x R y$, for any variables x and y.
\rightsquigarrow A variable is intended as representing an element of the permutation.
- Formulas $(\phi$, or $\phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.

$$
\rightsquigarrow \wedge, \vee, \neg, \rightarrow, \leftrightarrow .
$$

\rightsquigarrow We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi, \forall x \phi$.

TOOB: formulas

- Atomic formulas of TOOB are $x=y$ and $x R y$, for any variables x and y.
\rightsquigarrow A variable is intended as representing an element of the permutation.
- Formulas $(\phi$, or $\phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.

$$
\rightsquigarrow \wedge, \vee, \neg, \rightarrow, \leftrightarrow .
$$

\rightsquigarrow We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi, \forall x \phi$.

- Sentences (ψ) are formulas where all variables are quantified (no free variable).

Ex.: $\phi(x):=x R x$ and $\psi:=\exists x x R x$.

TOOB: formulas

- Atomic formulas of TOOB are $x=y$ and $x R y$, for any variables x and y.
\rightsquigarrow A variable is intended as representing an element of the permutation.
- Formulas $(\phi$, or $\phi(\mathbf{x}))$ are obtained inductively from the atomic ones using the connectives and quantifiers.

$$
\rightsquigarrow \wedge, \vee, \neg, \rightarrow, \leftrightarrow .
$$

\rightsquigarrow We restrict ourselves to first-order logic, so we consider only quantification on variables: $\exists x \phi, \forall x \phi$.

- Sentences (ψ) are formulas where all variables are quantified (no free variable).

Ex.: $\phi(x):=x R x$ and $\psi:=\exists x x R x$.
A model of a sentence ψ is a model which in addition satisfies ψ.
Ex.: The models of $\exists x x R x$ are the permutations having a fixed point.

TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, i.e., there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi:=\exists x x R x$ expresses the property of having a fixed point.

TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, i.e., there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi:=\exists x x R x$ expresses the property of having a fixed point. Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, i.e., there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi:=\exists x \times R x$ expresses the property of having a fixed point. Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

In TOOB, properties about the cycle decomposition of a permutation are expressible.

TOOB: expressivity

A property of permutations is expressible in a theory (here, TOOB) if it can be described by a sentence, i.e., there is a sentence whose models are exactly the permutations for which this property holds.

Ex.: $\psi:=\exists x \times R x$ expresses the property of having a fixed point. Definition-by-example of \models : we write $\sigma \models \psi$ when σ has a fixed point.

In TOOB, properties about the cycle decomposition of a permutation are expressible.

Thm.: If $\sigma \models \psi$, then for any τ in the conjugacy class of $\sigma, \tau \models \psi$. In other words, TOOB does not distinguish between conjugate permutations.

TOTO: syntax and models

TOTO: the Theory Of Two Orders

(new as a logic for permutations)

TOTO: syntax and models

TOTO: the Theory Of Two Orders
(new as a logic for permutations)

- Symbols available: same logical symbols (including $=$), no relation symbol R, but instead, two binary relation symbols $<_{p}$ and $<v$

TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including $=$), no relation symbol R, but instead, two binary relation symbols $<_{P}$ and $<_{V}$
- Axioms: ensure that $<_{p}$ and $<_{V}$ represent total orders.

TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including $=$), no relation symbol R, but instead, two binary relation symbols $<_{P}$ and $<_{V}$
- Axioms: ensure that $<_{p}$ and $<_{v}$ represent total orders.
- Models: permutations as pairs of total orders on a finite set:
- $<_{p}$ represents the position order between the elements;
- $<v$ represents their value order.
- Ex.: $\sigma=\underset{25143}{\text { ! }}$
is represented for instance by $(\{a, b, c, d, e\}, \triangleleft, \mathbb{4})$
where $a \triangleleft b \triangleleft c \triangleleft d \triangleleft e$ and $c \triangleleft a \triangleleft e \triangleleft d \triangleleft b$.

TOTO: syntax and models

TOTO: the Theory Of Two Orders (new as a logic for permutations)

- Symbols available: same logical symbols (including $=$), no relation symbol R, but instead, two binary relation symbols $<_{P}$ and $<_{V}$
- Axioms: ensure that $<_{p}$ and $<_{V}$ represent total orders.
- Models: permutations as pairs of total orders on a finite set:
- $<_{p}$ represents the position order between the elements;
- $<_{V}$ represents their value order.
- Ex.: $\sigma=\underset{25143}{\bullet . .}$ is represented for instance by $(\{a, b, c, d, e\}, \triangleleft, \mathbb{4})$ where $a \triangleleft b \triangleleft c \triangleleft d \triangleleft e$ and $c \triangleleft a \triangleleft e \triangleleft d \triangleleft b$.

Summary of differences:

- TOOB speaks about the cycle structure but the total order on $\{1,2, \ldots, n\}$ is lost.
- TOTO speaks about the relative order of the elements, but the cycle structure is lost.

TOTO: expressivity

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ, there exists a sentence whose only model is σ (up to isomorphism on the ground set).

TOTO: expressivity

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ, there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;

Ex.: Containment of 231 is expressed by the sentence

$$
\exists x \exists y \exists z \quad(x<p y<p z) \quad \wedge \quad(z<v x<v y)
$$

TOTO: expressivity

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ, there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);

TOTO: expressivity

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ, there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);
- \oplus - (resp. \ominus-)decomposability;
- Generalization to being an inflation of π for any π;
- Being simple;

TOTO: expressivity

- Unlike TOOB, TOTO does distinguish between any two different permutations.
- In other words, for any permutation σ, there exists a sentence whose only model is σ (up to isomorphism on the ground set).

Some concepts expressible in TOTO:

- Containment/avoidance of a classical pattern;
- Extension to consecutive/vincular/mesh patterns (and further);
- \oplus - (resp. \ominus-)decomposability;
- Generalization to being an inflation of π for any π;
- Being simple;
- Being West-k-stack sortable, for any k (+ construction of the corresponding sentences)

Inexpressibility results in TOTO

Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Proof strategy:

- Assume such a sentence ψ exists.

Call k its quantifier depth (=max. number of nested quantifiers in ψ).

- Exhibit two permutations σ and σ^{\prime} such that
- σ has a fixed point but σ^{\prime} does not; and
- $\sigma \models \psi$ if and only if $\sigma^{\prime} \models \psi$.
(Actually, σ and σ^{\prime} satisfy the same sentences of quantifier depth at most k)

Inexpressibility of fixed points

Thm.: There is no sentence ψ in TOTO such that $\sigma \models \psi$ if and only if σ has a fixed point.

Proof strategy:

- Assume such a sentence ψ exists.

Call k its quantifier depth (=max. number of nested quantifiers in ψ).

- Exhibit two permutations σ and σ^{\prime} such that
- σ has a fixed point but σ^{\prime} does not; and
- $\sigma \models \psi$ if and only if $\sigma^{\prime} \models \psi$.
(Actually, σ and σ^{\prime} satisfy the same sentences of quantifier depth at most k)
To show that two permutations satisfy the same sentences, use the Ehrenfeucht-Fraïssé Theorem:

Two permutations σ and σ^{\prime} satisfy the same sentences of quantifier depth at most k if and only if Duplicator wins the EF-game with k rounds on σ and σ^{\prime}.

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ^{\prime}.
- Goal of D : show that σ and σ^{\prime} cannot be distinguish in k rounds.
- Goal of S: show that σ and σ^{\prime} are different.

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ^{\prime}.
- Goal of D : show that σ and σ^{\prime} cannot be distinguish in k rounds.
- Goal of S: show that σ and σ^{\prime} are different.

At each round i :

- S picks an element s_{i} in σ or s_{i}^{\prime} in σ^{\prime};
- D replicates with an element s_{i}^{\prime} or s_{i} in the other permutation.

EF-games (a.k.a. Duplicator-Spoiler games)

The setting:

- Two players: Duplicator (D) and Spoiler (S).
- They play on a pair of permutations σ and σ^{\prime}.
- Goal of D : show that σ and σ^{\prime} cannot be distinguish in k rounds.
- Goal of S: show that σ and σ^{\prime} are different.

At each round i :

- S picks an element s_{i} in σ or s_{i}^{\prime} in σ^{\prime};
- D replicates with an element s_{i}^{\prime} or s_{i} in the other permutation.

Winner of the EF-game with k rounds:

- D if $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right)$ and $\mathbf{s}^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right)$ are isomorphic, i.e., if the position- and value-orders on \mathbf{s} and \mathbf{s}^{\prime} are identical;
- S otherwise.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$
S and D alternate turns.

Inexpressibility of fixed points: Proof

Goal: For each k, exhibit σ and σ^{\prime} such that

- σ has a fixed point but σ^{\prime} does not;
- D wins the EF-game with k rounds on σ and σ^{\prime}.

Answer: σ and σ^{\prime} are decreasing permutations of sizes $2^{k}-1$ and 2^{k}. For $k=3$:

$\begin{array}{lllllll}7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

$$
\begin{array}{llllllll}
8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

S and D alternate turns. After 3 rounds, D wins!

Intersection of TOTO and TOOB

Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Containing a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between $231=(1,2,3)$ and $312=(1,3,2)$)

Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Containing a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between $231=(1,2,3)$ and $312=(1,3,2)$)

Which properties are expressible in both TOOB and TOTO?

Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Containing a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between $231=(1,2,3)$ and $312=(1,3,2)$)

Which properties are expressible in both TOOB and TOTO?
Thm.: Such properties are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support". Dfn.: The support of a permutation is the set of the non-fixed points.
A possible proof uses EF-games.

Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Containing a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between $231=(1,2,3)$ and $312=(1,3,2)$)

Which properties are expressible in both TOOB and TOTO?
Thm.: Such properties are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support". Dfn.: The support of a permutation is the set of the non-fixed points.
A possible proof uses EF-games.
\Rightarrow The intersection of TOOB and TOTO is trivial, so, as claimed, permutations-as-elts-of-the-symmetric-group \neq permutations-as-words.

Properties expressible in one/both theories

Examples of properties expressible in one of TOOB and TOTO only:

- Having a fixed point: expressible in TOOB but not in TOTO;
- Containing a 231-pattern: expressible in TOTO but not in TOOB. (TOOB does not distinguish between $231=(1,2,3)$ and $312=(1,3,2)$)

Which properties are expressible in both TOOB and TOTO?
Thm.: Such properties are eventually true or eventually false, where eventually means "for all permutations of sufficiently large support". Dfn.: The support of a permutation is the set of the non-fixed points.
A possible proof uses EF-games.
\Rightarrow The intersection of TOOB and TOTO is trivial, so, as claimed, permutations-as-elts-of-the-symmetric-group \neq permutations-as-words.

Rk.: In addition, we have a complete characterization of the properties expressible in both theories.

Some other things we know (or not)

- Characterization of the permutation classes \mathcal{C} such that "having a fixed point" is expressible in the restriction of TOTO to \mathcal{C}.

Some other things we know (or not)

- Characterization of the permutation classes \mathcal{C} such that "having a fixed point" is expressible in the restriction of TOTO to \mathcal{C}.

The condition is: there exist k, n, m such that \mathcal{C} does not contain

nor

Some other things we know (or not)

- Characterization of the permutation classes \mathcal{C} such that "having a fixed point" is expressible in the restriction of TOTO to \mathcal{C}.

The condition is: there exist k, n, m such that \mathcal{C} does not contain

- Formula-variant: Describe classes TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!

Some other things we know (or not)

- Characterization of the permutation classes \mathcal{C} such that "having a fixed point" is expressible in the restriction of TOTO to \mathcal{C}.

The condition is: there exist k, n, m such that \mathcal{C} does not contain

- Formula-variant: Describe classes TOTO can express (by $\phi(x)$) the property that a given element is a fixed point. The same as above!
- Extension to description of classes where TOTO can express that two (resp. more) given elements form a transposition (resp. cycle)
- But we don't know in which classes the existence of a transposition (resp. cycle of a given size) is expressible in TOTO.

Some other things we know (or not)

- Characterization of the permutation classes \mathcal{C} such that "having a fixed point" is expressible in the restriction of TOTO to \mathcal{C}.

The condition is: there exist k, n, m such that \mathcal{C} does not contain

- Formula-variant: Describe classes TOTO can express (by $\phi(x))$ the property that a given element is a fixed point. The same as above!
- Extension to description of classes where TOTO can express that two (resp. more) given elements form a transposition (resp. cycle)
- But we don't know in which classes the existence of a transposition (resp. cycle of a given size) is expressible in TOTO.
- Further project with M. Noy: Prove convergence laws in permutation classes (for properties expressible in TOTO).

