Hypergraph polytopes and trialgebras

Bérénice Delcroix-Oger (joint with Pierre-Louis Curien (IRIF) and Emily Burgunder (IMT))

IRIF, Université Paris Diderot

Wednesday, March 28th

Outline

1 Motivation : Associahedron

2 Constructs of a hypergraph polytope

Tristructures on constructs

Motivation : Associahedron

Associahedron and associativity

🛠 o o

Associahedron

with faces of dimension k indexed by parenthesised words (\leftrightarrow planar trees) with n - k + 1 parentheses.

🛠 o o

Tridendriform algebras

 \rightarrow Three types of trees (looking at the root)

Recursive definition of tridendriform products

Free tridendriform algebra

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with $\prec: A \otimes A \rightarrow A$, $\cdot : A \otimes A \rightarrow A \text{ and } \succ : A \otimes A \rightarrow A, \text{ satisfying } :$ $(a \prec b) \prec c = a \prec (b * c),$ $(a * b) \succ c = a \succ (b \succ c),$ $(a \succ b) \prec c = a \succ (b \prec c),$ $(a \cdot b) \cdot c = a \cdot (b \cdot c),$ $(a \succ b) \cdot c = a \succ (b \cdot c),$ $(a \prec b) \cdot c = a \cdot (b \succ c),$ $\bigcirc (a \cdot b) \prec c = a \cdot (b \prec c),$ with $* = \prec + \cdot + \succ$

Link between associahedron and tridendriform algebras

- Faces of the associahedron labelled by planar trees (basis of free tridend.alg.)
- Faces of dimension 0 from ≺ and ≻. Each use of · increase the dimension of the associated face by one.

Questions

In literature,

- Labelling of polytopes faces by combinatorial structures
- Existence of polytopes on this structures
- Existence of algebras on this structures

Question :

Is it possible starting from a family of polytopes to construct an algebra (operad in fact) associated to it?

Constructs of a hypergraph polytope

Hypergraphs

Definition

A hypergraph (with vertex set V) is a pair (V, E) where:

- V is a finite set, (set of vertices)
- E is a subset of P(V), the powerset of V (set of edges), with |e| ≥ 2 for every edge e ∈ E.

Example of a hypergraph on [1; 7]

Hypergraph polytopes [Dosen, Petric] (=Nestohedra [Postnikov])

By default, an edge containing every vertices.

Hypergraph polytopes (=nestohedra)

Edges $\{a_1, \ldots, a_n\}$ corresponds to truncation of $a_1 \cap \ldots \cap a_n$

Hypergraph polytopes

Edges $\{a_1, \ldots, a_n\}$ corresponds to truncation of $a_1 \cap \ldots \cap a_n$

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Do you recognize it ?

• 🛠 •

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Do you recognize it ?

 \rightarrow it is the cube !

Constructs (=tubings, spines)

Construct [Feichtner, Sturmfels ; Dosen, Petric ; Curien, Ivanovic, Obradovic]

A construct of a hypergraph H is defined recursively. For $E \in V(H)$ (set of vertices of H),

- If E = V(H), the associated construct is a rooted tree with a single node labelled by E,
- Otherwise, considering (T_1, \ldots, T_n) constructs of the connected components of H E, we get a construct by adding to this forest of trees a root labelled by E.

The set of constructs labels faces of the associated polytopes.

First example:

Combinatorial interpretations of constructs

Simplex To a face $\{a_1, \ldots, a_k\}$ of dimension k is associated the multipointed set $(V(H), \{a_1, \ldots, a_k\})$, consisting of vertices of the associated hypergraph pointed in a_1, \ldots, a_k

Cube To a face of dimension k is associated a sequence of length n-1+, - and $k \bullet$ (or left-combshaped trees)

Associahedron To any face is associated a planar tree

Permutahedron To any face of dimension k is associated a surjection of highness k

Polytopes	Simplex	Hypercube	Associahedron	Permutohedron
Picture				
Associated Hypergraphs	4 31 2	4 3 1 2	4-3 1-2	
Combinatorial objects	Multipointed sets	Paths with steps E, NE+ et NE-	Planar trees	Surjections
Cardinality	$2^{n+1} - 1$ (A074909)	3 ⁿ (A013609)	Super-Catalan (A001003)	Fubini nbrs (A000670)

Tristructures on constructs

Families of hypergraphs (non symmetric case)

Definition

Let $G = \{G_n, n \geq 1\}$ be a family of hypergraphs. This family is compatible if

- G_n is a hypergraph on n vertices $\{1, \ldots, n\}$
- $\forall k, l \geq 1$, k + l = n, $G_n|_{\{1,\ldots,k\}} = G_k$ and $G_n|_{\{k+1,\ldots,n\}} = \tilde{G}_l$, where \tilde{G}_l is obtained from G_l by relabelling $(1,\ldots,l)$ to $(k + 1,\ldots,n)$.

0 0 🐳

It implies if some vertices belong to the same edge in a hypergraph, they also belong to the same edge in higher hypergraph.

Cyclohedron

Tristructures

Given two constructs $T = \begin{array}{ccc} T_1 \cdots T_n & S_1 \cdots S_m \\ & & & \\ T_0 & \text{and } S = \begin{array}{c} S_1 \cdots S_m \\ & & \\ S_0 & \\ & & \\$

- $T \prec S$ is the sum of constructs of G_{k+1} with root T_0
- $T \succ S$ is the sum of constructs of G_{k+l} with root S_0
- $T \cdot S$ is the sum of constructs of G_{k+l} with root $T_0 \cup S_0$,

which preserve partial orders given by T and S.

Tristructures

Given two constructs $T = \begin{array}{ccc} T_1 \cdots T_n & S_1 \cdots S_m \\ & & & \\ T_0 & \text{and } S = \begin{array}{c} S_0 & \text{of hypergraphs } G_k \text{ and} \\ G_l, \text{ we define:} \end{array}$

- $T \prec S$ is the sum of constructs of G_{k+1} with root T_0
- $T \succ S$ is the sum of constructs of G_{k+l} with root S_0
- $T \cdot S$ is the sum of constructs of G_{k+1} with root $T_0 \cup S_0$,

which preserve partial orders given by T and S.

Conjecture

It endows the graded vector space of constructs of a compatible family of hypergraphs with a structure of free trialgebra over one generator (associated to an operad).

Example : Trialgebra of the simplex (=Trias)

Constructs of the simplicies are multipointed sets.

The previous operations are then given by:

$$T \prec S = T \cup \overline{S}, \ T \succ S = \overline{T} \cup S, \ T \cdot S = T \cup S,$$

where \overline{T} (resp. \overline{S}) is the underlying set of the multipointed set T (resp. S).

This algebra is algebra Trias introduced by Loday and Ronco.

• • 🛠

Example : Trialgebra of the cube (=new !)

Constructs of the cube are sequences of $\{+, -, \bullet\}$ of length n - 1. = sequences of $\{+, -, \bullet\}$ of length n starting by +

The previous operations are then given by:

$$u \prec v = u(-^{|v|}),$$

$$u \succ (v_1 + v_2) = (u * v_1) + v_2,$$

$$u \cdot (v_1 + v_2) = u(-^{|v_1|}) \bullet v_2,$$

where v_2 is a sequence of $\{-, \bullet\}$, $* = \prec + \succ + \cdot$ and $u * \epsilon = u$.

This algebra is called Tricube.

Tricube algebra

$$(u \prec v) \prec w = u \succ (v \prec w)$$
$$u \prec (v \# w) = (u \prec v) \prec w$$
$$(u * v) \succ w = u \succ (v \succ w)$$
$$(u \succ v) \cdot w = u \succ (v \lor w)$$
$$(u \prec v) \cdot w = u \cdot (v \succ w)$$
$$(u \lor v) \cdot w = u \cdot (v \lor w)$$
$$(u \cdot v) \prec w = u \cdot (v \prec w),$$

 \circ \circ

where $\# \in \{\prec,\succ,\cdot\}$ and $*=\succ + \cdot + \prec.$

•• 🛠

Polytopes	Simplex	Hypercube	Associahedron	Permutohedron
Picture				
Associated Hypergraphs	4 3 1 2	4 3 1 2	4-3 1-2	
Algèbres	Trias [Loday]	Tricube	Tridendriform [Loday-Ronco, Chapoton]	ST (graded version of [Chapoton])

Check list

Done

- Unified frame for tristructure on hypergraph polytopes
- New examples of operads
- Blue print method

To do

- Prove that the necessary condition on the hypergraph family is sufficient
- Endow the algebras with a Hopf algebra structure,
- Study quantified variants of these algebras with:

$$a * b = a \prec b + q \ a \cdot b + a \succ b$$
,

- Look at link between algebras coming from truncations of polytopes (for instance tridendriform structure on surjections),
- Examine other examples, ...

Thank you for your attention !

 $\ensuremath{\mathsf{Figure:}}$ Left-combshaped trees with every non-leftmost child being the root of only corollas

