Hypergraph polytopes and trialgebras

Bérénice Delcroix-Oger
(joint with Pierre-Louis Curien (IRIF) and Emily Burgunder (IMT))

IRIF, Université Paris Diderot

Wednesday, March 28th

Outline

(1) Motivation: Associahedron
(2) Constructs of a hypergraph polytope
(3) Tristructures on constructs

Motivation : Associahedron

Associahedron and associativity

Associahedron

with faces of dimension k indexed by parenthesised words (\leftrightarrow planar trees) with $n-k+1$ parentheses.

Tridendriform algebras

Example

Tridendriform algebras
Example

$$
צ \cdot v=\psi+\Psi+F
$$

Tridendriform algebras
Example

Tridendriform algebras

Example

Tridendriform algebras

Example

Tridendriform algebras

Example

\rightarrow Three types of trees (looking at the root)

Recursive definition of tridendriform products

$$
\text { If } T=^{t_{l}} \Downarrow^{t_{r}} \text { and } S={ }^{s_{l}} \Downarrow^{s_{r}}
$$

$$
T \prec S=\stackrel{t}{l}_{t_{1}}^{t_{r} * S}
$$

$$
T \cdot S=\underbrace{t_{l}} \underbrace{t_{r} * s_{l}} s_{r}
$$

$$
\text { and } T \succ S=\stackrel{T * s_{l}}{s_{r}}
$$

Example

Free tridendriform algebra

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with $\prec: A \otimes A \rightarrow A$, $\cdot: A \otimes A \rightarrow A$ and $\succ: A \otimes A \rightarrow A$, satisfying :
© $(a \prec b) \prec c=a \prec(b * c)$,
(3) $(a * b) \succ c=a \succ(b \succ c)$,
© $(a \succ b) \prec c=a \succ(b \prec c)$,
(0) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
(0) $(a \succ b) \cdot c=a \succ(b \cdot c)$,

- $(a \prec b) \cdot c=a \cdot(b \succ c)$,
- $(a \cdot b) \prec c=a \cdot(b \prec c)$,
with $*=\prec+\cdot+\succ$

Link between associahedron and tridendriform algebras

- Faces of the associahedron labelled by planar trees (basis of free tridend.alg.)
- Faces of dimension 0 from \prec and \succ. Each use of . increase the dimension of the associated face by one.

Questions

In literature,

- Labelling of polytopes faces by combinatorial structures
- Existence of polytopes on this structures
- Existence of algebras on this structures

Question

Is it possible starting from a family of polytopes to construct an algebra (operad in fact) associated to it?

Constructs of a hypergraph polytope

Hypergraphs

Definition

A hypergraph (with vertex set V) is a pair (V, E) where:

- V is a finite set, (set of vertices)
- E is a subset of $\mathcal{P}(V)$, the powerset of V (set of edges), with $|e| \geq 2$ for every edge $e \in E$.

Example of a hypergraph on $[1 ; 7]$

Hypergraph polytopes [Dosen, Petric] (=Nestohedra [Postnikov])

By default, an edge containing every vertices.

Hypergraph polytopes (=nestohedra)

Edges $\left\{a_{1}, \ldots, a_{n}\right\}$ corresponds to truncation of $a_{1} \cap \ldots \cap a_{n}$

Hypergraph polytopes

Edges $\left\{a_{1}, \ldots, a_{n}\right\}$ corresponds to truncation of $a_{1} \cap \ldots \cap a_{n}$

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Do you recognize it ?

Hypergraph polytope

Example of the truncature associated with a flag hypergraph :

Do you recognize it?
\rightarrow it is the cube!

Constructs (=tubings, spines)

Construct [Feichtner, Sturmfels ; Dosen, Metric ; Curien, Ivanovic, Obradovic]

A construct of a hypergraph H is defined recursively. For $E \in V(H)$ (set of vertices of H),

- If $E=V(H)$, the associated construct is a rooted tree with a single node labelled by E,
- Otherwise, considering (T_{1}, \ldots, T_{n}) constructs of the connected components of $H-E$, we get a construct by adding to this forest of trees a root labelled by E.

The set of constructs labels faces of the associated polytopes.
First example:
(2)

$1,2 \quad 1,3$

Constructs of the simplex

$4 \underset{\substack{1 \\ 3}}{21} 1$

Constructs of the simplex

Constructs of the simplex

$1,2,3$

Constructs of the simplex

Combinatorial interpretations of constructs

Simplex To a face $\left\{a_{1}, \ldots, a_{k}\right\}$ of dimension k is associated the multipointed set ($\left.V(H),\left\{a_{1}, \ldots, a_{k}\right\}\right)$, consisting of vertices of the associated hypergraph pointed in a_{1}, \ldots, a_{k}

Cube To a face of dimension k is associated a sequence of length $n-1$,+- and $k \bullet$ (or left-combshaped trees)
Associahedron To any face is associated a planar tree

Permutahedron To any face of dimension k is associated a surjection of highness k

Polytopes	Simplex	Hypercube	Associahedron	Permutohedron
Picture				
Associated Hypergraphs				
Combinatorial objects	Multipointed sets	Paths with steps E, NE + et NE-	Planar trees	Surjections
Cardinality	$\begin{gathered} 2^{n+1}-1 \\ (\mathrm{~A} 074909) \end{gathered}$	3^{n} (A013609)	Super-Catalan (A001003)	Fubini nbrs (A000670)

Tristructures on constructs

Families of hypergraphs (non symmetric case)

Definition

Let $G=\left\{G_{n}, n \geq 1\right\}$ be a family of hypergraphs. This family is compatible if

- G_{n} is a hypergraph on n vertices $\{1, \ldots, n\}$
- $\forall k, I \geq 1, k+I=n,\left.G_{n}\right|_{\{1, \ldots, k\}}=G_{k}$ and $\left.G_{n}\right|_{\{k+1, \ldots, n\}}=\tilde{G}_{l}$, where \tilde{G}_{I} is obtained from G_{l} by relabelling $(1, \ldots, l)$ to $(k+1, \ldots, n)$.

It implies if some vertices belong to the same edge in a hypergraph, they also belong to the same edge in higher hypergraph.

Cyclohedron

Tristructures

 G_{l}, we define:

- $T \prec S$ is the sum of constructs of $G_{k+\prime}$ with root T_{0}
- $T \succ S$ is the sum of constructs of G_{k+1} with root S_{0}
- $T \cdot S$ is the sum of constructs of G_{k+1} with root $T_{0} \cup S_{0}$, which preserve partial orders given by T and S.

Tristructures

Given two constructs $T=T_{0} \quad$ and $S=S_{0} \quad$ of hypergraphs G_{k} and G_{l}, we define:

- $T \prec S$ is the sum of constructs of $G_{k+\prime}$ with root T_{0}
- $T \succ S$ is the sum of constructs of $G_{k+\prime}$ with root S_{0}
- $T \cdot S$ is the sum of constructs of G_{k+1} with root $T_{0} \cup S_{0}$, which preserve partial orders given by T and S.

Conjecture

It endows the graded vector space of constructs of a compatible family of hypergraphs with a structure of free trialgebra over one generator (associated to an operad).

Example : Trialgebra of the simplex (=Trias)

Constructs of the simplicies are multipointed sets.
The previous operations are then given by:

$$
T \prec S=T \cup \bar{S}, T \succ S=\bar{T} \cup S, T \cdot S=T \cup S,
$$

where \bar{T} (resp. \bar{S}) is the underlying set of the multipointed set T (resp. S).
This algebra is algebra Trias introduced by Loday and Ronco.

Example: Trialgebra of the cube (=new !)

Constructs of the cube are sequences of $\{+,-, \bullet\}$ of length $n-1$. $=$ sequences of $\{+,-, \bullet\}$ of length n starting by +

The previous operations are then given by:

$$
\begin{aligned}
u \prec v & =u(-|v|), \\
u \succ\left(v_{1}+v_{2}\right) & =\left(u * v_{1}\right)+v_{2}, \\
u \cdot\left(v_{1}+v_{2}\right) & =u\left(-v_{1} \mid\right) \bullet v_{2},
\end{aligned}
$$

where v_{2} is a sequence of $\{-, \bullet\}, *=\prec+\succ+\cdot$ and $u * \epsilon=u$.
This algebra is called Tricube.

Tricube algebra

$$
\begin{aligned}
(u \prec v) \prec w & =u \succ(v \prec w) \\
u \prec(v \# w) & =(u \prec v) \prec w \\
(u * v) \succ w & =u \succ(v \succ w) \\
(u \succ v) \cdot w & =u \succ(v \cdot w) \\
(u \prec v) \cdot w & =u \cdot(v \succ w) \\
(u \cdot v) \cdot w & =u \cdot(v \cdot w) \\
(u \cdot v) \prec w & =u \cdot(v \prec w),
\end{aligned}
$$

where $\# \in\{\prec, \succ, \cdot\}$ and $*=\succ+\cdot+\prec$.

Polytopes	Simplex	Hypercube	Associahedron	Permutohedron
Picture				
Associated Hypergraphs				
Algèbres	Trias [Loday]	Tricube	Tridendriform [Loday-Ronco, Chapoton]	ST (graded version of [Chapoton])

Check list

Done

- Unified frame for tristructure on hypergraph polytopes
- New examples of operads
- Blue print method

To do

- Prove that the necessary condition on the hypergraph family is sufficient
- Endow the algebras with a Hopf algebra structure,
- Study quantified variants of these algebras with:

$$
a * b=a \prec b+q a \cdot b+a \succ b,
$$

- Look at link between algebras coming from truncations of polytopes (for instance tridendriform structure on surjections),
- Examine other examples, ...

Thank you for your attention!

Figure: Left-combshaped trees with every non-leftmost child being the root of only corollas

