Skew Hook Formula for d-Complete Posets

Soichi OKADA
(Nagoya University)
joint work with Hiroshi NARUSE (University of Yamanashi)
based on arXiv:1802.09748
80th Séminaire Lotharingien de Combinatoire
Lyon, March 27, 2018

Young Diagrams and Standard Tableaux

For a partition λ of n, we define its diagram by

$$
D(\lambda)=\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leq j \leq \lambda_{i}\right\}
$$

Let λ and μ be partitions such that $\lambda \supset \mu$ (i.e., $D(\lambda) \supset D(\mu)$). A standard tableau of skew shape λ / μ is a filling T of the cells of $D(\lambda)$ with numbers $1,2, \ldots, n=|\lambda|-|\mu|$ satisfying

- each integer appears exactly once,
- the entries in each row and each column are increasing.

Example

		2	3
1	5	6	
4			

are standard tableaux of shape $(4,3,1)$ and skew shape $(4,3,1) /(2)$ respectively.

Frame-Robinson-Thrall's Hook Formulas for Young Diagrams

Theorem (Frame-Robinson-Thrall) The number f^{λ} of standard tableaux of shape λ is given by

$$
f^{\lambda}=\frac{n!}{\prod_{v \in D(\lambda)} h_{\lambda}(v)}, \quad n=|\lambda|,
$$

where $h_{\lambda}(i, j)=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1$ is the hook length of (i, j) in $D(\lambda)$.
Example The hook of $(1,2)$ in $D(4,3,1)$ and the hook lengths are given by

Hence we have

$$
f^{(4,3,1)}=\frac{8!}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1}=70 .
$$

Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda / \mu}$ of standard tableaux of skew shape λ / μ is given by

$$
f^{\lambda / \mu}=n!\sum_{D} \frac{1}{\prod_{v \in D(\lambda) \backslash D} h_{\lambda}(v)}, \quad n=|\lambda|-|\mu|,
$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.

- If a subset $D \subset D(\lambda)$ and $u=(i, j)$ satisfy $(i, j+1),(i+1, j)$, $(i+1, j+1) \in D(\lambda) \backslash D$, then we define

$$
\alpha_{u}(D)=D \backslash\{(i, j)\} \cup\{(i+1, j+1)\} .
$$

- We say that D is an excited diagram of $D(\mu)$ in $D(\lambda)$ if D is obtained from $D(\mu)$ after a sequence of elementary excitations $D \rightarrow \alpha_{u}(D)$.

Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda / \mu}$ of standard tableaux of skew shape λ / μ is given by

$$
f^{\lambda / \mu}=n!\sum_{D} \frac{1}{\prod_{v \in D(\lambda) \backslash D} h_{\lambda}(v)}, \quad n=|\lambda|-|\mu|,
$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.
Example If $\lambda=(4,3,1)$ and $\mu=(2)$, then there are three excited diagrams of $D(\mu)$ in $D(\lambda)$:

6	4	3	1
4	2	1	
1			

6	4	3	1
4	2	1	
1			

and we have

$$
f^{(4,3,1) /(2)}=6!\left(\frac{1}{3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1}+\frac{1}{4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1}+\frac{1}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 1}\right)=40 .
$$

Reverse Plane Partitions

For a poset P, a P-partition is a map $\pi: P \rightarrow \mathbb{N}$ satisfying

$$
x \leq y \text { in } P \quad \Longrightarrow \quad \pi(x) \geq \pi(y) \text { in } \mathbb{N} .
$$

Let $\mathcal{A}(P)$ be the set of P-partitions, and write $|\pi|=\sum_{x \in P} \pi(x)$ for $\pi \in \mathcal{A}(P)$.
The Young diagrams can be regarded as posets by defining

$$
(i, j) \geq\left(i^{\prime}, j^{\prime}\right) \Longleftrightarrow i \leq i^{\prime}, j \leq j^{\prime}
$$

If $P=D(\lambda) \backslash D(\mu)$, then P-partitions are called reverse plane partitions of shape λ / μ.
Example

is a reverse plane partition of shape $(4,3,1) /(2)$.

Univariate Generating Functions of Reverse Plane Partitions

Theorem (Stanley) For a partition λ, the generating function of reverse plane partitions of shape λ is given by

$$
\sum_{\pi \in \mathcal{A}(D(\lambda))} q^{|\pi|}=\frac{1}{\prod_{v \in P}\left(1-q^{h_{\lambda}(v)}\right)} .
$$

Theorem (Morales-Pak-Panova) For partitions $\lambda \supset \mu$, the generating function of reverse plane partition of skew shape λ / μ is given by

$$
\sum_{\pi \in \mathcal{A}(D(\lambda) \backslash D(\mu))} q^{|\pi|}=\sum_{D} \frac{\prod_{v \in B(D)} q^{h_{\lambda}(v)}}{\prod_{v \in D(\lambda) \backslash D}\left(1-q^{h_{\lambda}(v)}\right)},
$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$, and $B(D)$ is the set of excited peaks of D.

Generalization of Hook Formulas

The Frame-Robinson-Thrall-type hook formula holds for shifted Young diagrams and rooted trees. Proctor introduced a wide class of posets, called d-complete posets.
Theorem (Peterson-Proctor) Let P be a d-complete poset. Then the univariate generating function of P-partitions is given by

$$
\sum_{\pi \in \mathcal{A}(P)} q^{|\pi|}=\frac{1}{\prod_{v \in P}\left(1-q^{h_{P}(v)}\right)}
$$

More generally, the multivariate generating function of P-partitions is given by

$$
\sum_{\pi \in \mathcal{A}(P)} \boldsymbol{z}^{\pi}=\frac{1}{\prod_{v \in P}\left(1-\boldsymbol{z}\left[H_{P}(v)\right]\right)}
$$

Goal Generalize Naruse's and Morales-Pak-Panova's skew hook formulas to d-complete posets (in other words, generalize Peterson-Proctor's hook formula to skew setting).

Double-tailed Diamond

- The double-tailed diamond poset $d_{k}(1)(k \geq 3)$ is the poset depicted below:

- A d_{k}-interval is an interval isomorphic to $d_{k}(1)$.
- A d_{k}^{-}-convex set is a convex subset isomorphic to $d_{k}(1)-\{$ top $\}$.

d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following three conditions for every $k \geq 3$:
(D1) If I is a d_{k}^{-}-convex set, then there exists an element v such that v covers the maximal elements of I and $I \cup\{u\}$ is a d_{k}-interval.
(D2) If $I=[v, u]$ is a d_{k}-interval and u covers w in P, then $w \in I$.
(D3) There are no d_{k}^{-}-convex sets which differ only in the minimal elements.

Example Shapes (Young diagrams, left), shifted shapes (shifted Young diagrams, middle) and swivels (right) are d-complete posets.

Hook Lengths

Let P be a connected d-complete poset. For each $u \in P$, we define the hook length $h_{P}(u)$ inductively as follows:
(a) If u is not the top of any d_{k}-interval, then we define

$$
h_{P}(u)=\#\{w \in P: w \leq u\} .
$$

(b) If u is the top of a d_{k}-interval $[v, u]$, then we define

$$
h_{P}(u)=h_{P}(x)+h_{P}(y)-h_{P}(v),
$$

where x and y are the sides of $[v, u]$.
Also we can define the hook monomials $z\left[H_{P}(u)\right]$.

Excited Diagrams for d-Complete Posets

Let P be a connected d-complete poset.

- We say that $u \in D$ is D-active if there is a d_{k}-interval $[v, u]$ with $v \notin D$ such that

$$
z \in[v, u] \text { and }\left\{\begin{array}{l}
z \text { is covered by } u \\
\text { or } \\
z \text { covers } v
\end{array} \quad \Longrightarrow z \notin D .\right.
$$

- If $u \in D$ is D-active, then we define

$$
\alpha_{u}(D)=D \backslash\{u\} \cup\{v\} .
$$

Let F be an order filter of P.

- We say that D is an excited diagram of F in P if D is obtained from F after a sequence of elementary excitations $D \rightarrow \alpha_{u}(D)$.

Excited Peaks for d-Complete Posets

Let P be a d-complete poset and F an order filter of P. To an excited diagram D of F in P, we associate a subset $B(D) \subset$ P, called the subset of excited peaks of D, as follows:
(a) If $D=F$, then we define $B(F)=\emptyset$.
(b) If $D^{\prime}=\alpha_{u}(D)$ is obtained from D by an elementary excitation at $u \in D$,
 then

$$
B\left(\alpha_{u}(D)\right)=B(D) \backslash\left\{z \in[v, u]: \begin{array}{l}
z \text { is covered by } u \\
\text { or } z \text { covers } v
\end{array}\right\} \cup\{v\}
$$

where $[v, u]$ is the d_{k}-interval with top u.

Example If P is the Swivel and an order filter F has two elements, then there are 4 excited diagrams of F in P.

Here the shaded cells form an exited diagram and a cell with \times is an excited peak.

Main Theorem

Theorem (Naruse-Okada) Let P be a connected d-complete poset and F an order filter of P. Then the univariate generating function of ($P \backslash F$)-partitions is given by

$$
\sum_{\pi \in \mathcal{A}(P \backslash F)} q^{|\pi|}=\sum_{D} \frac{\prod_{v \in B(D)} q^{h_{P}(v)}}{\prod_{v \in P \backslash D}\left(1-q^{h_{P}(v)}\right)},
$$

where D runs over all excited diagrams of F in P. More generally, the multivariate generating function of $(P \backslash F)$-partitions is given by

$$
\sum_{\pi \in \mathcal{A}(P \backslash F)} \prod_{v \in P}\left(z_{c(v)}\right)^{\pi(v)}=\sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}\left[H_{P}(v)\right]}{\prod_{v \in P \backslash D}\left(1-\boldsymbol{z}\left[H_{P}(v)\right]\right)},
$$

where D runs over all excited diagrams of F in P.

Main Theorem

Theorem (Naruse-Okada) Let P be a connected d-complete poset and F an order filter of P. Then the multivariate generating function of ($P \backslash F$)-partitions is given by

$$
\sum_{\pi \in \mathcal{A}(P \backslash F)} \prod_{v \in P}\left(z_{c(v)}\right)^{\pi(v)}=\sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}\left[H_{P}(v)\right]}{\prod_{v \in P \backslash D}\left(1-\boldsymbol{z}\left[H_{P}(v)\right]\right)},
$$

where D runs over all excited diagrams of F in P.

Remark

- If $F=\emptyset$, we recover Peterson-Proctor's hook formula, and our generalization provides an alternate proof.
- If $P=D(\lambda)$ and $F=D(\mu)$ are Young diagrams, then the above theorem reduces to Morales-Pak-Panova's skew hook formula after specializing $z_{i}=q(i \in I)$.

Example If $P=S(3,2,1)$ and $F=S(1)$ are the shifted Young diagrams corresponding to strict partitions $(4,3,1)$ and (1) respectively, then we have

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{A}(S(3,2,1) \backslash S(1))} \boldsymbol{z}^{\pi} \\
= & \frac{1}{\left(1-z_{0} z_{0^{\prime}} z_{1} z_{2}\right)\left(1-z_{0} z_{1} z_{2}\right)\left(1-z_{0} z_{0^{\prime}} z_{1}\right)\left(1-z_{0} z_{1}\right)\left(1-z_{0}\right)} \\
& +\frac{z_{0} z_{0^{\prime}} z_{1}^{2} z_{2}}{\left(1-z_{0} z_{0^{\prime}} z_{1}^{2} z_{2}\right)\left(1-z_{0} z_{0^{\prime}} z_{1} z_{2}\right)\left(1-z_{0} z_{1} z_{2}\right)\left(1-z_{0} z_{0^{\prime}} z_{1}\right)\left(1-z_{0} z_{1}\right)} \\
= & \frac{1-z_{0}^{2} z_{0^{\prime}} z_{1}^{2} z_{2}}{\left(1-z_{0} z_{0^{\prime}} z_{1}^{2} z_{2}\right)\left(1-z_{0} z_{0^{\prime}} z_{1} z_{2}\right)\left(1-z_{0} z_{1} z_{2}\right)\left(1-z_{0} z_{0^{\prime}} z_{1}\right)\left(1-z_{0} z_{1}\right)\left(1-z_{0}\right)}
\end{aligned}
$$

Idea of Proof (1) - equivariant K-theory of partial flag variety Let P be a connected d-complete poset. Then we can associate

- the Dynkin diagram Γ (the top tree of P),
- the Weyl group W,
- the fundamental weight λ_{P} corresponding to the color i_{P} of the maximum element of P,
- the set $W^{\lambda_{P}}$ of minimum length coset representatives of $W / W_{\lambda_{P}}$, where $W_{\lambda_{P}}$ is the stabilizer of λ_{P}.
- the Kac-Moody group \mathcal{G} and its maximal torus \mathcal{T},
- the maximal parabolic subgroup \mathcal{P}_{-}corresponding to i_{P},
- the Kashiwara's thick partial flag variety $\mathcal{X}=$ " $\mathcal{G} / \mathcal{P}_{-}$",
- the \mathcal{T}-equivariant K-theory $K_{\mathcal{T}}(\mathcal{X})$.

Idea of Proof (2) - equivariant \boldsymbol{K}-theory of partial flag variety
Then we have

$$
\left.K_{\mathcal{T}}(\mathcal{X}) \cong \prod_{v \in W^{\lambda} P} K_{\mathcal{T}}(\mathrm{pt}) \xi^{v} \quad \text { (as } K_{\mathcal{T}}(\mathrm{pt}) \text {-modules }\right)
$$

and the localization maps

$$
\begin{aligned}
\iota_{w}^{*}: K_{\mathcal{T}}(\mathcal{X}) & \longrightarrow K_{\mathcal{T}}(\mathrm{pt}) \cong \mathbb{Z}[\Lambda] \\
\xi^{v} & \left.\longmapsto \xi^{v}\right|_{w}
\end{aligned}
$$

where Λ is the weight lattice. Also we can associate to each order filter F of P an element $w_{F} \in W^{\lambda_{P}}$.
Main Theorem follows from

$$
\sum_{\pi \in \mathcal{A}(P \backslash F)} \boldsymbol{z}^{\pi}=\frac{\left.\xi^{w_{F}}\right|_{w_{P}}}{\left.\xi^{w_{P}}\right|_{w_{P}}}=\sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}\left[H_{P}(v)\right]}{\prod_{v \in P \backslash D}\left(1-\boldsymbol{z}\left[H_{P}(v)\right]\right)}
$$

where $z_{i}=e^{\alpha_{i}}(i \in I)$.

Idea of Proof (3) - equivariant K-theory of partial flag variety We can prove the first equality

$$
\sum_{\pi \in \mathcal{A}(P \backslash F)} \boldsymbol{z}^{\pi}=\frac{\left.\xi^{w_{F}}\right|_{w_{P}}}{\left.\xi^{w_{P}}\right|_{w_{P}}}
$$

by showing the both sides satisfy the same recurrence

$$
Z_{P / F}(\boldsymbol{z})=\frac{1}{1-\boldsymbol{z}[P \backslash F]} \sum_{F^{\prime}}(-1)^{\#\left(F^{\prime} \backslash F\right)-1} Z_{P / F^{\prime}}(\boldsymbol{z})
$$

where F^{\prime} runs over all order filters such that $F \subsetneq F^{\prime} \subset P$ and $F^{\prime} \backslash F$ is an antichain.
The second equality

$$
\frac{\left.\xi^{w_{F}}\right|_{w_{P}}}{\left.\xi^{w_{P}}\right|_{w_{P}}}=\sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}\left[H_{P}(v)\right]}{\prod_{v \in P \backslash D}\left(1-\boldsymbol{z}\left[H_{P}(v)\right]\right)}
$$

can be deduced from the Billey-type formula for equivariant K-theory.

