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Young Diagrams and Standard Tableaux

For a partition λ of n, we define its diagram by

D(λ) = {(i, j) ∈ Z2 : 1 ≤ j ≤ λi}.
Let λ and µ be partitions such that λ ⊃ µ (i.e., D(λ) ⊃ D(µ)). A

standard tableau of skew shape λ/µ is a filling T of the cells of D(λ)
with numbers 1, 2, . . . , n = |λ| − |µ| satisfying
• each integer appears exactly once,

• the entries in each row and each column are increasing.

Example
1 2 4 6
3 5 8
7

2 3
1 5 6
4

are standard tableaux of shape (4, 3, 1) and skew shape (4, 3, 1)/(2) re-
spectively.



Frame–Robinson–Thrall’s Hook Formulas for Young Diagrams

Theorem (Frame–Robinson–Thrall) The number fλ of standard tableaux
of shape λ is given by

fλ =
n!∏

v∈D(λ) hλ(v)
, n = |λ|,

where hλ(i, j) = λi+λ′j− i− j+1 is the hook length of (i, j) in D(λ).

Example The hook of (1, 2) in D(4, 3, 1) and the hook lengths are given
by

6 4 3 1
4 2 1
1

Hence we have

f (4,3,1) =
8!

6 · 4 · 3 · 1 · 4 · 2 · 1 · 1
= 70.



Naruse’s Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number fλ/µ of standard tableaux of skew
shape λ/µ is given by

fλ/µ = n!
∑
D

1∏
v∈D(λ)\D hλ(v)

, n = |λ| − |µ|,

where D runs over all excited diagrams of D(µ) in D(λ).

• If a subset D ⊂ D(λ) and u = (i, j) satisfy (i, j + 1), (i + 1, j),
(i + 1, j + 1) ∈ D(λ) \D, then we define

αu(D) = D \ {(i, j)} ∪ {(i + 1, j + 1)}.

•We say thatD is an excited diagram ofD(µ) inD(λ) ifD is obtained
from D(µ) after a sequence of elementary excitations D → αu(D).

−→



Naruse’s Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number fλ/µ of standard tableaux of skew
shape λ/µ is given by

fλ/µ = n!
∑
D

1∏
v∈D(λ)\D hλ(v)

, n = |λ| − |µ|,

where D runs over all excited diagrams of D(µ) in D(λ).

Example If λ = (4, 3, 1) and µ = (2), then there are three excited
diagrams of D(µ) in D(λ):

6 4 3 1
4 2 1
1

6 4 3 1
4 2 1
1

6 4 3 1
4 2 1
1

and we have

f (4,3,1)/(2) = 6!

(
1

3 · 1 · 4 · 2 · 1 · 1
+

1

4 · 3 · 1 · 4 · 2 · 1
+

1

6 · 4 · 3 · 1 · 4 · 1

)
= 40.



Reverse Plane Partitions

For a poset P , a P -partition is a map π : P → N satisfying

x ≤ y in P =⇒ π(x) ≥ π(y) in N.
Let A(P ) be the set of P -partitions, and write |π| =

∑
x∈P π(x) for

π ∈ A(P ).
The Young diagrams can be regarded as posets by defining

(i, j) ≥ (i′, j′) ⇐⇒ i ≤ i′, j ≤ j′.

If P = D(λ)\D(µ), then P -partitions are called reverse plane partitions
of shape λ/µ.

Example

π =
3 3

0 1 3
2

is a reverse plane partition of shape (4, 3, 1)/(2).



Univariate Generating Functions of Reverse Plane Partitions

Theorem (Stanley) For a partition λ, the generating function of reverse
plane partitions of shape λ is given by∑

π∈A(D(λ))

q|π| =
1∏

v∈P (1− qhλ(v))
.

Theorem (Morales–Pak–Panova) For partitions λ ⊃ µ, the generating
function of reverse plane partition of skew shape λ/µ is given by∑

π∈A(D(λ)\D(µ))

q|π| =
∑
D

∏
v∈B(D) q

hλ(v)∏
v∈D(λ)\D(1− qhλ(v))

,

where D runs over all excited diagrams of D(µ) in D(λ), and B(D) is
the set of excited peaks of D.



Generalization of Hook Formulas

The Frame–Robinson–Thrall-type hook formula holds for shifted Young
diagrams and rooted trees. Proctor introduced a wide class of posets,
called d-complete posets.

Theorem (Peterson–Proctor) Let P be a d-complete poset. Then the
univariate generating function of P -partitions is given by∑

π∈A(P )

q|π| =
1∏

v∈P (1− qhP (v))
.

More generally, the multivariate generating function of P -partitions is
given by ∑

π∈A(P )

zπ =
1∏

v∈P (1− z[HP (v)])
.

Goal Generalize Naruse’s and Morales–Pak–Panova’s skew hook formu-
las to d-complete posets (in other words, generalize Peterson–Proctor’s
hook formula to skew setting).



Double-tailed Diamond

• The double-tailed diamond poset dk(1) (k ≥ 3) is the poset depicted
below:

k − 2

k − 2

top

side side

bottom

• A dk-interval is an interval isomorphic to dk(1).

• A d−k -convex set is a convex subset isomorphic to dk(1)− {top}.



d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following
three conditions for every k ≥ 3:
(D1) If I is a d−k -convex set, then there exists an element v such that

v covers the maximal elements of I and I ∪ {u} is a dk-interval.
(D2) If I = [v, u] is a dk-interval and u covers w in P , then w ∈ I .
(D3) There are no d−k -convex sets which differ only in the minimal

elements.

∃
∄

∄

∃
∄

∄



Example Shapes (Young diagrams, left), shifted shapes (shifted Young
diagrams, middle) and swivels (right) are d-complete posets.



Hook Lengths
Let P be a connected d-complete poset. For each u ∈ P , we define

the hook length hP (u) inductively as follows:

u

x y

v

(a) If u is not the top of any dk-interval, then we define

hP (u) = #{w ∈ P : w ≤ u}.
(b) If u is the top of a dk-interval [v, u], then we define

hP (u) = hP (x) + hP (y)− hP (v),

where x and y are the sides of [v, u].
Also we can define the hook monomials z[HP (u)].



Excited Diagrams for d-Complete Posets

u ∈ D
̸∈ D

̸∈ D
v ̸∈ D

−→

̸∈ αu(D)
̸∈ αu(D)

̸∈ αu(D)
∈ αu(D)

Let P be a connected d-complete poset.

•We say that u ∈ D is D-active if there
is a dk-interval [v, u] with v ̸∈ D such
that

z ∈ [v, u] and

 z is covered by u
or
z covers v

=⇒ z ̸∈ D.

• If u ∈ D is D-active, then we define

αu(D) = D \ {u} ∪ {v}.
Let F be an order filter of P .

•We say that D is an excited diagram of F in P if D is obtained from
F after a sequence of elementary excitations D → αu(D).



Excited Peaks for d-Complete Posets

u ∈ D
̸∈ D

̸∈ D
v ̸∈ D

−→

∈ B(D′)
̸∈ B(D′)

̸∈ B(D′)

Let P be a d-complete poset and F an
order filter of P . To an excited diagramD
of F in P , we associate a subset B(D) ⊂
P , called the subset of excited peaks of
D, as follows:

(a) IfD = F , then we defineB(F ) = ∅.
(b) If D′ = αu(D) is obtained from D

by an elementary excitation at u ∈ D,
then

B(αu(D)) = B(D) \
{
z ∈ [v, u] :

z is covered by u
or z covers v

}
∪ {v},

where [v, u] is the dk-interval with top u.



Example If P is the Swivel and an order filter F has two elements, then
there are 4 excited diagrams of F in P .

-

×

?

×

×
-

×

Here the shaded cells form an exited diagram and a cell with × is an
excited peak.



Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset
and F an order filter of P . Then the univariate generating function of
(P \ F )-partitions is given by∑

π∈A(P\F )

q|π| =
∑
D

∏
v∈B(D) q

hP (v)∏
v∈P\D(1− qhP (v))

,

where D runs over all excited diagrams of F in P . More generally, the
multivariate generating function of (P \ F )-partitions is given by∑

π∈A(P\F )

∏
v∈P

(
zc(v)

)π(v)
=
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])
,

where D runs over all excited diagrams of F in P .



Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset
and F an order filter of P . Then the multivariate generating function of
(P \ F )-partitions is given by∑

π∈A(P\F )

∏
v∈P

(
zc(v)

)π(v)
=
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])
,

where D runs over all excited diagrams of F in P .

Remark

• If F = ∅, we recover Peterson–Proctor’s hook formula, and our gen-
eralization provides an alternate proof.

• If P = D(λ) and F = D(µ) are Young diagrams, then the above
theorem reduces to Morales–Pak–Panova’s skew hook formula after
specializing zi = q (i ∈ I).



Example If P = S(3, 2, 1) and F = S(1) are the shifted Young
diagrams corresponding to strict partitions (4, 3, 1) and (1) respectively,
then we have∑

π∈A(S(3,2,1)\S(1))

zπ

=
1

(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)(1− z0)

+
z0z0′z

2
1z2

(1− z0z0′z
2
1z2)(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)

=
1− z20z0′z

2
1z2

(1− z0z0′z
2
1z2)(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)(1− z0)

.

×



Idea of Proof (1) — equivariant K-theory of partial flag variety
Let P be a connected d-complete poset. Then we can associate

• the Dynkin diagram Γ (the top tree of P ),

• the Weyl group W ,

• the fundamental weight λP corresponding to the color iP of the max-
imum element of P ,

• the set WλP of minimum length coset representatives of W/WλP
,

where WλP
is the stabilizer of λP .

• the Kac–Moody group G and its maximal torus T ,

• the maximal parabolic subgroup P− corresponding to iP ,

• the Kashiwara’s thick partial flag variety X = “G/P−”,

• the T -equivariant K-theory KT (X ).



Idea of Proof (2) — equivariant K-theory of partial flag variety
Then we have

KT (X ) ∼=
∏

v∈WλP

KT (pt) ξ
v (as KT (pt)-modules),

and the localization maps

ι∗w : KT (X ) −→ KT (pt) ∼= Z[Λ]
ξv 7−→ ξv|w

where Λ is the weight lattice. Also we can associate to each order filter
F of P an element wF ∈ WλP .
Main Theorem follows from∑

π∈A(P\F )

zπ =
ξwF |wP

ξwP |wP

=
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])
,

where zi = eαi (i ∈ I).



Idea of Proof (3) — equivariant K-theory of partial flag variety
We can prove the first equality∑

π∈A(P\F )

zπ =
ξwF |wP

ξwP |wP

by showing the both sides satisfy the same recurrence

ZP/F (z) =
1

1− z[P \ F ]

∑
F ′

(−1)#(F ′\F )−1ZP/F ′(z),

where F ′ runs over all order filters such that F ⊊ F ′ ⊂ P and F ′ \ F
is an antichain.
The second equality

ξwF |wP

ξwP |wP

=
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])

can be deduced from the Billey-type formula for equivariant K-theory.


