Skew Hook Formula for *d***-Complete Posets**

Soichi OKADA (Nagoya University) joint work with Hiroshi NARUSE (University of Yamanashi) based on arXiv:1802.09748

> 80th Séminaire Lotharingien de Combinatoire Lyon, March 27, 2018

Young Diagrams and Standard Tableaux

For a partition λ of n, we define its diagram by

$$\mathbf{D}(\boldsymbol{\lambda}) = \{(i, j) \in \mathbb{Z}^2 : 1 \le j \le \lambda_i\}.$$

Let λ and μ be partitions such that $\lambda \supset \mu$ (i.e., $D(\lambda) \supset D(\mu)$). A standard tableau of skew shape λ/μ is a filling T of the cells of $D(\lambda)$ with numbers $1, 2, \ldots, n = |\lambda| - |\mu|$ satisfying

• each integer appears exactly once,

• the entries in each row and each column are increasing.

Example

are standard tableaux of shape (4,3,1) and skew shape (4,3,1)/(2) respectively.

Frame–Robinson–Thrall's Hook Formulas for Young Diagrams Theorem (Frame–Robinson–Thrall) The number f^{λ} of standard tableaux of shape λ is given by

$$f^{\lambda} = \frac{n!}{\prod_{v \in D(\lambda)} h_{\lambda}(v)}, \quad n = |\lambda|,$$

where $h_{\lambda}(i, j) = \lambda_i + \lambda'_j - i - j + 1$ is the hook length of (i, j) in $D(\lambda)$. Example The hook of (1, 2) in D(4, 3, 1) and the hook lengths are given by

Hence we have

$$f^{(4,3,1)} = \frac{8!}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1} = 70.$$

Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda/\mu}$ of standard tableaux of skew shape λ/μ is given by

$$f^{\lambda/\mu} = n! \sum_{D} \frac{1}{\prod_{v \in D(\lambda) \setminus D} h_{\lambda}(v)}, \quad n = |\lambda| - |\mu|,$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.

• If a subset $D \subset D(\lambda)$ and u = (i, j) satisfy (i, j + 1), (i + 1, j), $(i + 1, j + 1) \in D(\lambda) \setminus D$, then we define

 $\alpha_u(D) = D \setminus \{(i,j)\} \cup \{(i+1,j+1)\}.$

• We say that D is an excited diagram of $D(\mu)$ in $D(\lambda)$ if D is obtained from $D(\mu)$ after a sequence of elementary excitations $D \to \alpha_u(D)$.

Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda/\mu}$ of standard tableaux of skew shape λ/μ is given by

$$f^{\lambda/\mu} = n! \sum_{D} \frac{1}{\prod_{v \in D(\lambda) \setminus D} h_{\lambda}(v)}, \quad n = |\lambda| - |\mu|,$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.

Example If $\lambda = (4,3,1)$ and $\mu = (2)$, then there are three excited diagrams of $D(\mu)$ in $D(\lambda)$:

and we have

$$f^{(4,3,1)/(2)} = 6! \left(\frac{1}{3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1} + \frac{1}{4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1} + \frac{1}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 1} \right) = 40.$$

Reverse Plane Partitions

For a poset P, a P-partition is a map $\pi: P \to \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \quad \Longrightarrow \quad \pi(x) \geq \pi(y) \text{ in } \mathbb{N}.$$

Let $\mathcal{A}(P)$ be the set of *P*-partitions, and write $|\pi| = \sum_{x \in P} \pi(x)$ for $\pi \in \mathcal{A}(P)$.

The Young diagrams can be regarded as posets by defining

$$(i,j) \ge (i',j') \iff i \le i', \ j \le j'.$$

If $P = D(\lambda) \setminus D(\mu)$, then P-partitions are called reverse plane partitions of shape λ/μ .

Example

$$\pi = \begin{array}{c} 3 & 3 \\ 0 & 1 & 3 \\ 2 \end{array}$$

is a reverse plane partition of shape (4, 3, 1)/(2).

Univariate Generating Functions of Reverse Plane Partitions Theorem (Stanley) For a partition λ , the generating function of reverse plane partitions of shape λ is given by

$$\sum_{\pi \in \mathcal{A}(D(\lambda))} q^{|\pi|} = \frac{1}{\prod_{v \in P} (1 - q^{h_{\lambda}(v)})}$$

Theorem (Morales–Pak–Panova) For partitions $\lambda \supset \mu$, the generating function of reverse plane partition of skew shape λ/μ is given by

$$\sum_{\pi \in \mathcal{A}(D(\lambda) \setminus D(\mu))} q^{|\pi|} = \sum_{D} \frac{\prod_{v \in B(D)} q^{h_{\lambda}(v)}}{\prod_{v \in D(\lambda) \setminus D} (1 - q^{h_{\lambda}(v)})},$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda),$ and B(D) is the set of excited peaks of D.

Generalization of Hook Formulas

The Frame–Robinson–Thrall-type hook formula holds for shifted Young diagrams and rooted trees. Proctor introduced a wide class of posets, called d-complete posets.

Theorem (Peterson–Proctor) Let P be a d-complete poset. Then the univariate generating function of P-partitions is given by

$$\sum_{\pi \in \mathcal{A}(P)} q^{|\pi|} = \frac{1}{\prod_{v \in P} (1 - q^{h_P(v)})}$$

More generally, the multivariate generating function of P-partitions is given by

$$\sum_{\pi \in \mathcal{A}(P)} \boldsymbol{z}^{\pi} = \frac{1}{\prod_{v \in P} (1 - \boldsymbol{z}[H_P(v)])}.$$

Goal Generalize Naruse's and Morales–Pak–Panova's skew hook formulas to *d*-complete posets (in other words, generalize Peterson–Proctor's hook formula to skew setting).

Double-tailed Diamond

The double-tailed diamond poset d_k(1) (k ≥ 3) is the poset depicted below:

- A d_k -interval is an interval isomorphic to $d_k(1)$.
- A d_k^- -convex set is a convex subset isomorphic to $d_k(1) {top}$.

d-Complete Posets

Definition A finite poset P is *d*-complete if it satisfies the following three conditions for every $k \ge 3$:

(D1) If I is a d_k⁻-convex set, then there exists an element v such that v covers the maximal elements of I and I ∪ {u} is a d_k-interval.
(D2) If I = [v, u] is a d_k-interval and u covers w in P, then w ∈ I.
(D3) There are no d_k⁻-convex sets which differ only in the minimal elements.

Example Shapes (Young diagrams, left), shifted shapes (shifted Young diagrams, middle) and swivels (right) are *d*-complete posets.

Hook Lengths

Let P be a connected d-complete poset. For each $u \in P$, we define the hook length $h_P(u)$ inductively as follows:

(a) If u is not the top of any d_k -interval, then we define

 $h_P(u) = \#\{w \in P : w \le u\}.$

(b) If u is the top of a d_k -interval [v, u], then we define

 $h_P(u) = h_P(x) + h_P(y) - h_P(v),$

where x and y are the sides of [v, u].

Also we can define the hook monomials $\boldsymbol{z}[H_P(u)]$.

Excited Diagrams for *d***-Complete Posets**

Let P be a connected d-complete poset.

• We say that $u \in D$ is *D*-active if there is a d_k -interval [v, u] with $v \notin D$ such that

hat

$$z \in [v, u] \text{ and } \begin{cases} z \text{ is covered by } u \\ \text{or} \\ z \text{ covers } v \\ \implies z \notin D. \end{cases} \xrightarrow{\bullet} v \stackrel{\bullet}{\not} \notin D \\ v \stackrel{\bullet}{\not} \notin D \\ \bullet \in \alpha_u(D) \end{cases}$$

 $\begin{array}{c} u \bullet \in D \\ \bullet \not \in D \end{array}$

 \bullet If $u \in D$ is $D\text{-active, then we define$

$$\alpha_u(D) = D \setminus \{u\} \cup \{v\}.$$

Let F be an order filter of P.

• We say that D is an excited diagram of F in P if D is obtained from F after a sequence of elementary excitations $D \rightarrow \alpha_u(D)$.

Excited Peaks for *d***-Complete Posets**

Let P be a d-complete poset and F an order filter of P. To an excited diagram Dof F in P, we associate a subset $B(D) \subset$ P, called the subset of excited peaks of D, as follows:

(a) If D = F, then we define $B(F) = \emptyset$. (b) If $D' = \alpha_u(D)$ is obtained from Dby an elementary excitation at $u \in D$, then

$$B(\alpha_u(D)) = B(D) \setminus \left\{ z \in [v, u] : \begin{array}{l} z \text{ is covered by } u \\ \text{or } z \text{ covers } v \end{array} \right\} \cup \{v\}$$
 where $[v, u]$ is the d_k -interval with top u .

Example If P is the Swivel and an order filter F has two elements, then there are 4 excited diagrams of F in P.

Here the shaded cells form an exited diagram and a cell with \times is an excited peak.

Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset and F an order filter of P. Then the univariate generating function of $(P \setminus F)$ -partitions is given by

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} q^{|\pi|} = \sum_{D} \frac{\prod_{v \in B(D)} q^{h_P(v)}}{\prod_{v \in P \setminus D} (1 - q^{h_P(v)})},$$

where D runs over all excited diagrams of F in P. More generally, the multivariate generating function of $(P\setminus F)\text{-partitions}$ is given by

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} \prod_{v \in P} \left(z_{c(v)} \right)^{\pi(v)} = \sum_{D} \frac{\prod_{v \in B(D)} \mathbf{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \mathbf{z}[H_P(v)])},$$

where D runs over all excited diagrams of F in P.

Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset and F an order filter of P. Then the multivariate generating function of $(P \setminus F)$ -partitions is given by

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} \prod_{v \in P} \left(z_{c(v)} \right)^{\pi(v)} = \sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \boldsymbol{z}[H_P(v)])},$$

where D runs over all excited diagrams of F in P.

Remark

- If $F = \emptyset$, we recover Peterson–Proctor's hook formula, and our generalization provides an alternate proof.
- If $P = D(\lambda)$ and $F = D(\mu)$ are Young diagrams, then the above theorem reduces to Morales–Pak–Panova's skew hook formula after specializing $z_i = q$ ($i \in I$).

Example If P = S(3, 2, 1) and F = S(1) are the shifted Young diagrams corresponding to strict partitions (4, 3, 1) and (1) respectively, then we have

$$\begin{split} &\sum_{\pi \in \mathcal{A}(S(3,2,1) \setminus S(1))} \boldsymbol{z}^{\pi} \\ &= \frac{1}{(1 - z_0 z_{0'} z_1 z_2)(1 - z_0 z_1 z_2)(1 - z_0 z_{0'} z_1)(1 - z_0 z_1)(1 - z_0)} \\ &+ \frac{z_0 z_{0'} z_1^2 z_2}{(1 - z_0 z_{0'} z_1^2 z_2)(1 - z_0 z_{0'} z_1 z_2)(1 - z_0 z_1 z_2)(1 - z_0 z_{0'} z_1)(1 - z_0 z_1)} \\ &= \frac{1 - z_0^2 z_{0'} z_1^2 z_2}{(1 - z_0 z_{0'} z_1^2 z_2)(1 - z_0 z_0 z_1 z_2)(1 - z_0 z_0 z_1)(1 - z_0 z_1)(1 - z_0 z_0)}. \end{split}$$

Idea of Proof (1) — equivariant K-theory of partial flag variety

- Let P be a connected d-complete poset. Then we can associate
- the Dynkin diagram Γ (the top tree of P),
- \bullet the Weyl group W,
- \bullet the fundamental weight λ_P corresponding to the color i_P of the maximum element of P,
- the set W^{λ_P} of minimum length coset representatives of W/W_{λ_P} , where W_{λ_P} is the stabilizer of λ_P .
- \bullet the Kac–Moody group ${\cal G}$ and its maximal torus ${\cal T}$,
- the maximal parabolic subgroup \mathcal{P}_{-} corresponding to i_{P} ,
- \bullet the Kashiwara's thick partial flag variety $\mathcal{X}=``\mathcal{G}/\mathcal{P}_-"$,
- the \mathcal{T} -equivariant K-theory $K_{\mathcal{T}}(\mathcal{X})$.

Idea of Proof (2) — equivariant K-theory of partial flag variety Then we have

$$K_{\mathcal{T}}(\mathcal{X}) \cong \prod_{v \in W^{\lambda_P}} K_{\mathcal{T}}(\mathrm{pt}) \xi^v \quad \text{(as } K_{\mathcal{T}}(\mathrm{pt})\text{-modules}),$$

and the localization maps

$$\iota_w^* : K_{\mathcal{T}}(\mathcal{X}) \longrightarrow K_{\mathcal{T}}(\mathrm{pt}) \cong \mathbb{Z}[\Lambda]$$
$$\xi^v \longmapsto \xi^v|_w$$

where Λ is the weight lattice. Also we can associate to each order filter F of P an element $w_F \in W^{\lambda_P}$.

Main Theorem follows from

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} \boldsymbol{z}^{\pi} = \frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}} = \sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \boldsymbol{z}[H_P(v)])},$$

where $z_i = e^{\alpha_i} \ (i \in I).$

Idea of Proof (3) — equivariant K-theory of partial flag variety

We can prove the first equality

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} \boldsymbol{z}^{\pi} = \frac{\xi^{w_F} | w_P}{\xi^{w_P} | w_P}$$

. . . .

by showing the both sides satisfy the same recurrence

$$Z_{P/F}(\boldsymbol{z}) = \frac{1}{1 - \boldsymbol{z}[P \setminus F]} \sum_{F'} (-1)^{\#(F' \setminus F) - 1} Z_{P/F'}(\boldsymbol{z}),$$

where F' runs over all order filters such that $F \subsetneq F' \subset P$ and $F' \setminus F$ is an antichain.

The second equality

$$\frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}} = \sum_D \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \boldsymbol{z}[H_P(v)])}$$

can be deduced from the Billey-type formula for equivariant K-theory.