Chromatic symmetric functions on graphs and polytopes

80th Séminaire Lotharingien de Combinatoire, Lyon

Raúl Penaguião
University of Zurich

March 27th, 2018

The chromatic symmetric function on graphs

A colouring on a graph G is a map $f: V(G) \rightarrow \mathbb{N}$. It is proper if $f\left(v_{1}\right) \neq f\left(v_{2}\right)$ when $\left\{v_{1}, v_{2}\right\} \in E(G)$.

The chromatic symmetric function on graphs

A colouring on a graph G is a map $f: V(G) \rightarrow \mathbb{N}$. It is proper if $f\left(v_{1}\right) \neq f\left(v_{2}\right)$ when $\left\{v_{1}, v_{2}\right\} \in E(G)$.

Figure: Example of a proper colouring f of a graph

The chromatic symmetric function on graphs

A colouring on a graph G is a map $f: V(G) \rightarrow \mathbb{N}$. It is proper if $f\left(v_{1}\right) \neq f\left(v_{2}\right)$ when $\left\{v_{1}, v_{2}\right\} \in E(G)$.

Figure: Example of a proper colouring f of a graph

Set $x_{f}=\prod_{v} x_{f(v)}$. We have $x_{f}=x_{1}^{2} x_{2}^{2} x_{4}$ in the figure.

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is $\Psi_{\mathbf{G}}(G)=\sum_{f \text { proper }} x_{f}$.

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is $\Psi_{\mathbf{G}}(G)=\sum_{f \text { proper }} x_{f}$.

Example:

Figure: The line graph P_{2} and the path P_{3}

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is $\Psi_{\mathbf{G}}(G)=\sum_{f \text { proper }} x_{f}$.

Example:

Figure: The line graph P_{2} and the path P_{3}

Their CSF are
$\Psi_{\mathbf{G}}\left(P_{2}\right)=2 \sum_{1 \leq i<j} x_{i} x_{j}, \quad \Psi_{\mathbf{G}}\left(P_{3}\right)=6\left(\sum_{1 \leq i<j<k} x_{i} x_{j} x_{k}\right)+\left(\sum_{i \neq j} x_{i}^{2} x_{j}\right)$.
Evaluating $x_{1}=\cdots=x_{t}=1$ and $x_{i}=0$ for $i>t$ we obtain the chromatic polynomial $\chi_{G}(t)$.

Tree conjecture on graphs

Given the CSF of a graph we can compute the amount of edges, connected components, decide if it is a tree and compute the degree sequence for trees, but

[^0]
Tree conjecture on graphs

Given the CSF of a graph we can compute the amount of edges, connected components, decide if it is a tree and compute the degree sequence for trees, but

Figure: Non-isomorphic graphs with the same CSF ${ }^{1}$

Conjecture (Tree conjecture - Stanley and Stembridge)
Any two non-isomorphic trees T_{1}, T_{2} have distinct CSF.
${ }^{1}$ Rose Orelanna and Scott

Tree conjecture on graphs

Given the CSF of a graph we can compute the amount of edges, connected components, decide if it is a tree and compute the degree sequence for trees, but

Figure: Non-isomorphic graphs with the same CSF ${ }^{1}$

Conjecture (Tree conjecture - Stanley and Stembridge)
Any two non-isomorphic trees T_{1}, T_{2} have distinct CSF.
Think about the chromatic polynomial
${ }^{1}$ Rose Orelanna and Scott

CF on graphs - The kernel problem

Question (The kernel problem on graphs)
Describe all linear relations of the form

$$
\sum_{i} a_{i} \Psi_{\mathbf{G}}\left(G_{i}\right)=0
$$

Theorem (RP-2017)
The space ker Ψ_{G} is spanned by the modular relations and isomorphism relations.

Outline

(1) Introduction

- CF on graphs
(2) Kernel problem on graphs
(3) CF on polytopes
- Generalised permutahedra
- Kernel problem on nestohedra

4 Tree conjecture

Graphs terminology

The edge deletion of a graph: $H \backslash\{e\}$.

Graphs terminology

The edge deletion of a graph: $H \backslash\{e\}$.

The edge addition of a graph: $G+\{e\}$.

G

Modular relations

$$
\Psi_{\mathbf{G}}(G)=\sum_{f \text { proper on } G} x_{f}
$$

Proposition (Modular relations - Guay-Paquet, Orellana, Scott, 2013) Let G be a graph that contains an edge e_{3} and does not contain e_{1}, e_{2} such that the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ form a triangle. Then,

$$
\Psi_{\mathbf{G}}(G)-\Psi_{\mathbf{G}}\left(G+\left\{e_{1}\right\}\right)-\Psi_{\mathbf{G}}\left(G+\left\{e_{2}\right\}\right)+\Psi_{\mathbf{G}}\left(G+\left\{e_{1}, e_{2}\right\}\right)=0 .
$$

Modular relations

$$
\Psi_{\mathbf{G}}(G)=\sum_{f \text { proper on } G} x_{f} .
$$

Proposition (Modular relations - Guay-Paquet, Orellana, Scott, 2013) Let G be a graph that contains an edge e_{3} and does not contain e_{1}, e_{2} such that the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ form a triangle. Then,

$$
\Psi_{\mathbf{G}}(G)-\Psi_{\mathbf{G}}\left(G+\left\{e_{1}\right\}\right)-\Psi_{\mathbf{G}}\left(G+\left\{e_{2}\right\}\right)+\Psi_{\mathbf{G}}\left(G+\left\{e_{1}, e_{2}\right\}\right)=0 .
$$

e_{2}

$$
G+\left\{e_{1}, e_{2}\right\}
$$

$G+\left\{e_{2}\right\}$
$G+\left\{e_{1}\right\}$

The kernel problem

For G_{1}, G_{2} isomorphic graphs, we have $G_{1}-G_{2} \in \operatorname{ker} \Psi_{\mathbf{G}}$. These are called isomorphism relation.

Theorem (RP-2017)
The kernel of $\Psi_{\mathbf{G}}$ is generated by modular relations and isomorphism relations.

The kernel problem

For G_{1}, G_{2} isomorphic graphs, we have $G_{1}-G_{2} \in \operatorname{ker} \Psi_{G}$. These are called isomorphism relation.

Theorem (RP-2017)
The kernel of $\Psi_{\mathbf{G}}$ is generated by modular relations and isomorphism relations.

Let $\mathcal{M}=\langle$ modular relations, isomorphism relations \rangle.
Goal: $\operatorname{ker} \Psi_{\mathbf{G}}=\mathcal{M}$.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M}
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M}
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Goal: by working on $\operatorname{ker} \Psi_{\mathbf{G}} / \mathcal{M}$, show that $z \in \mathcal{M}$.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M}
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Goal: by working on $\operatorname{ker} \Psi_{\mathbf{G}} / \mathcal{M}$, show that $z \in \mathcal{M}$.

- Some of the G_{i} can be rewritten as graphs with more edges (through modular relation).

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M}
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Goal: by working on $\operatorname{ker} \Psi_{\mathbf{G}} / \mathcal{M}$, show that $z \in \mathcal{M}$.

- Some of the G_{i} can be rewritten as graphs with more edges (through modular relation). We call them extendible.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M}
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Goal: by working on $\operatorname{ker} \Psi_{\mathbf{G}} / \mathcal{M}$, show that $z \in \mathcal{M}$.

- Some of the G_{i} can be rewritten as graphs with more edges (through modular relation). We call them extendible.
- The non-extendible graphs $\left\{H_{1}, H_{2}, \cdots\right\}$ are not a lot, and $\left\{\Psi_{\mathbf{G}}\left(H_{1}\right), \Psi_{\mathbf{G}}\left(H_{2}\right), \cdots\right\}$ is linearly independent.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M} .
$$

- Take $z=\sum_{i} G_{i} a_{i}$ in the kernel of $\Psi_{\mathbf{G}}$.

Goal: by working on $\operatorname{ker} \Psi_{\mathbf{G}} / \mathcal{M}$, show that $z \in \mathcal{M}$.

- Some of the G_{i} can be rewritten as graphs with more edges (through modular relation). We call them extendible.
- The non-extendible graphs $\left\{H_{1}, H_{2}, \cdots\right\}$ are not a lot, and $\left\{\Psi_{\mathbf{G}}\left(H_{1}\right), \Psi_{\mathbf{G}}\left(H_{2}\right), \cdots\right\}$ is linearly independent.
- Linear algebra magic. Cash in the theorem.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M} .
$$

Proposition (Non-extendible graphs)
A graph is non-extendible if and only if any connected component of G^{c}, the complement graph of G, is a complete graph.

Idea of proof - Rewriting graph combinations

$$
e_{3} \in G \Rightarrow G-\left(G+\left\{e_{1}\right\}\right)-\left(G+\left\{e_{2}\right\}\right)+\left(G+\left\{e_{1}, e_{2}\right\}\right) \in \mathcal{M} .
$$

Proposition (Non-extendible graphs)
A graph is non-extendible if and only if any connected component of G^{c}, the complement graph of G, is a complete graph.

Idea of proof - Rewriting graph combinations

Note: Up to isomorphism, we can identify a partition λ with a non-extendible graph K_{λ}^{c} in such a way $\lambda=\lambda\left(G^{c}\right)$.

Idea of proof - Rewriting graph combinations

Note: Up to isomorphism, we can identify a partition λ with a non-extendible graph K_{λ}^{c} in such a way $\lambda=\lambda\left(G^{c}\right)$.
Consequence: Our original z can be rewritten, using modular relations and isomorphic relations, as

$$
z=\sum_{\lambda} K_{\lambda}^{c} a_{\lambda} \in \operatorname{ker} \Psi_{\mathbf{G}}
$$

Idea of proof - Rewriting graph combinations

So

$$
z=\sum_{\lambda} K_{\lambda}^{c} a_{\lambda} \in \operatorname{ker} \Psi_{\mathbf{G}}
$$

Apply Ψ_{G} to get

$$
0=\sum_{\lambda} \Psi_{\mathbf{G}}\left(K_{\lambda}^{c}\right) a_{\lambda} \Rightarrow a_{\lambda}=0
$$

Possible to show: the set $\left\{\Psi_{\mathbf{G}}\left(K_{\lambda}^{c}\right)\right\}_{\lambda}$ is linearly independent. So $z=0$, as desired.

Polytopes

Fix a dimension n. A polytope is a bounded set of the form
$\mathfrak{q}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$.
Given a colouring $f:[n] \rightarrow \mathbb{N}$ of the coordinates, the face \mathfrak{q}_{f} is

$$
\mathfrak{q}_{f}=\arg \min _{x \in \mathfrak{q}} \sum_{i=1}^{n} x_{i} f(i)
$$

Polytopes: Examples

Simplexes and its dilations: Consider $J \subseteq[n]$ non empty.

$$
\lambda \mathfrak{s}_{J}=\operatorname{conv}\left\{\lambda e_{i} \mid i \in J\right\} .
$$

The permutahedron and its generalisations

The n order permutahedron: $\mathfrak{p e r}=\operatorname{conv}\left\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in S_{n}\right\}$. Is $(n-1)$-dimensional.

Figure: The 4-permutahedron ${ }^{2}$

[^1]
Minkowsky sum

$$
A+{ }_{M} B=\{a+b \mid a \in A, b \in B\} .
$$

$$
C:=A-_{M} B \text { if } A=C+_{M} B .
$$

Minkowsky sum

$$
A+{ }_{M} B=\{a+b \mid a \in A, b \in B\} .
$$

$C:=A-{ }_{M} B$ if $A=C+{ }_{M} B$.
C may not exist

Minkowsky sum

$$
A+_{M} B=\{a+b \mid a \in A, b \in B\} .
$$

$C:=A-{ }_{M} B$ if $A=C+{ }_{M} B$.
C may not exist but if exists it is unique (only for polytopes).

The permutahedron and its generalisations

A generalised permutahedron is a polytope \mathfrak{q} of the form

$$
\mathfrak{q}=\left(\sum_{\substack{J \neq \neq 0 \\ a_{J}>0}} a_{J} \mathfrak{s}_{J}\right)-{ }_{M}\left({ }_{\substack{J \neq \emptyset \\ a_{J}<0}}\left|a_{J}\right| \mathfrak{s}_{J}\right),
$$

A nestohedron is only the positive part:

$$
\mathfrak{q}={ }_{\substack{J \neq \emptyset \\ a_{J}>0}} a_{J \mathfrak{s}_{J}}
$$

Generalised permutahedra - Examples

The J-simplex, for $J \subseteq\{1, \cdots, n\}: \mathfrak{s}_{J}=\operatorname{conv}\left\{e_{j} \mid j \in J\right\}$ and its dilations.

Generalised permutahedra - Examples

The J-simplex, for $J \subseteq\{1, \cdots, n\}: \mathfrak{s}_{J}=\operatorname{conv}\left\{e_{j} \mid j \in J\right\}$ and its dilations.
The permutahedron

$$
\mathfrak{p e r}=\operatorname{conv}\left\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in S_{n}\right\}
$$

is also given as

$$
\mathfrak{p e r}={ }^{M} \sum_{i \leq j} \mathfrak{s}_{\{i, j\}}
$$

Generalised permutahedra - Examples

The J-simplex, for $J \subseteq\{1, \cdots, n\}: \mathfrak{s}_{J}=\operatorname{conv}\left\{e_{j} \mid j \in J\right\}$ and its dilations.
The permutahedron

$$
\mathfrak{p e r}=\operatorname{conv}\left\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in S_{n}\right\}
$$

is also given as

$$
\mathfrak{p e r}={ }^{M} \sum_{i \leq j} \mathfrak{s}_{\{i, j\}}
$$

We define the chromatic quasisymmetric function (CF) as

$$
\Psi_{\mathbf{G P}}(\mathfrak{q})=\sum_{\mathfrak{q}_{f}=\mathrm{pt}} x_{f}
$$

Zonotopes and other embedings

Given a graph G, its zonotope is defined as

$$
Z(G)={ }^{M} \sum_{e \in E(G)} \mathfrak{s}_{e} .
$$

Zonotopes and other embedings

Given a graph G, its zonotope is defined as

$$
Z(G)={ }^{M} \sum_{e \in E(G)} \mathfrak{s}_{e} .
$$

This is a Hopf algebra morphism, so

$$
\Psi_{\mathbf{G}}=\Psi_{\mathbf{G P}} \circ Z
$$

Zonotopes and other embedings

Given a graph G, its zonotope is defined as

$$
Z(G)={ }^{M} \sum_{e \in E(G)} \mathfrak{s}_{e} .
$$

This is a Hopf algebra morphism, so

$$
\Psi_{\mathbf{G}}=\Psi_{\mathbf{G P}} \circ Z
$$

Faces of nestohedra

Proposition (Modular relations on nestohedra)
Consider a nestohedron $\mathfrak{q},\left\{B_{j} \mid j \in T\right\}$ a family of subsets on $\{1, \cdots n\}$ and $\left\{a_{j} \mid j \in T\right\}$ some positive scalars. Suppose "some magic"
happens. Then, $\sum_{T \subseteq J}(-1)^{\# T} \Psi_{\mathbf{G P}}\left[\mathfrak{q}+{ }_{M}{ }^{M} \sum_{j \in T} a_{j} \mathfrak{s}_{B_{j}}\right]=0$.

K_{π}^{c} parallel and conclusion of proof

Theorem (RP 2017)
The modular relations, the isomorphism relations and the simple relations span the kernel of the restriction of $\Psi_{\mathbf{G P}}$ to the nestohedra.

Tree conjecture on graphs

This is a graph invariant:

$$
\chi^{\prime}(G)=\sum_{f} x_{f} \prod_{i} q_{i}^{\# \text { monochromatic edges in } f \text { of colour } i}
$$

where the sum runs over all colourings.

Tree conjecture on graphs

This is a graph invariant:

$$
\chi^{\prime}(G)=\sum_{f} x_{f} \prod_{i} q_{i}^{\# \text { monochromatic edges in } f \text { of colour } i}
$$

where the sum runs over all colourings.
The modular relations and isomorphism relations are in ker χ^{\prime}. So

$$
\operatorname{ker} \Psi_{\mathbf{G}}=\operatorname{ker} \chi^{\prime}
$$

Tree conjecture on graphs

This is a graph invariant:

$$
\chi^{\prime}(G)=\sum_{f} x_{f} \prod_{i} q_{i}^{\# \text { monochromatic edges in } f \text { of colour } i}
$$

where the sum runs over all colourings.
The modular relations and isomorphism relations are in ker χ^{\prime}. So

$$
\operatorname{ker} \Psi_{\mathbf{G}}=\operatorname{ker} \chi^{\prime}
$$

Conjecture (Tree conjecture)
Any two non-isomorphic trees T_{1}, T_{2} have distinct χ^{\prime}.

Further questions

- From nestohedra to generalised permutahedra?
- The image of the CF on graphs $\Psi_{\mathbf{G}}$ is spanned by $\left\{\Psi_{\mathbf{G}}\left(K_{\lambda}^{c}\right)\right\}_{\lambda}$, which forms a basis of im Ψ_{G}. Combinatorial meaning of the coefficients?

Thank you

[^0]: ${ }^{1}$ Rose Orelanna and Scott

[^1]: ${ }^{2}$ https://en.wikipedia.org/wiki/Permutohedron

