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Introduction CF on graphs

The chromatic symmetric function on graphs

A colouring on a graph G is a map f : V (G)→ N.
It is proper if f(v1) 6= f(v2) when {v1, v2} ∈ E(G).

Figure: Example of a proper colouring f of a graph

Set xf =
∏
v

xf(v). We have xf = x21x
2
2x4 in the figure.
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Introduction CF on graphs

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is ΨG(G) =
∑

f proper

xf .

Example:

Figure: The line graph P2 and the path P3

Their CSF are

ΨG(P2) = 2
∑

1≤i<j
xixj , ΨG(P3) = 6

 ∑
1≤i<j<k

xixjxk

+

∑
i 6=j

x2ixj

 .

Evaluating x1 = · · · = xt = 1 and xi = 0 for i > t we obtain the
chromatic polynomial χG(t).

Raúl Penaguião (University of Zurich) Kernel problems March 27th, 2018 3 / 25



Introduction CF on graphs

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is ΨG(G) =
∑

f proper

xf .

Example:

Figure: The line graph P2 and the path P3

Their CSF are

ΨG(P2) = 2
∑

1≤i<j
xixj , ΨG(P3) = 6

 ∑
1≤i<j<k

xixjxk

+

∑
i 6=j

x2ixj

 .

Evaluating x1 = · · · = xt = 1 and xi = 0 for i > t we obtain the
chromatic polynomial χG(t).
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Introduction CF on graphs

Tree conjecture on graphs

Given the CSF of a graph we can compute the amount of edges,
connected components, decide if it is a tree and compute the
degree sequence for trees, but

Figure: Non-isomorphic graphs with the same CSF1

Conjecture (Tree conjecture - Stanley and Stembridge)

Any two non-isomorphic trees T1, T2 have distinct CSF.
Think about the chromatic polynomial

1Rose Orelanna and Scott
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Introduction CF on graphs

CF on graphs - The kernel problem

Question (The kernel problem on graphs)
Describe all linear relations of the form∑

i

aiΨG(Gi) = 0 .

Theorem (RP-2017)
The space ker ΨG is spanned by the modular relations and
isomorphism relations.
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Kernel problem on graphs

Graphs terminology

The edge deletion of a graph: H \ {e}.

The edge addition of a graph: G+ {e}.
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Kernel problem on graphs

Modular relations

ΨG(G) =
∑

f proper on G

xf .

Proposition (Modular relations - Guay-Paquet, Orellana, Scott, 2013)
Let G be a graph that contains an edge e3 and does not contain e1, e2
such that the edges {e1, e2, e3} form a triangle. Then,

ΨG(G)−ΨG(G+ {e1})−ΨG(G+ {e2}) + ΨG(G+ {e1, e2}) = 0 .
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Kernel problem on graphs

The kernel problem

For G1, G2 isomorphic graphs, we have G1 −G2 ∈ ker ΨG. These are
called isomorphism relation.

Theorem (RP-2017)
The kernel of ΨG is generated by modular relations and isomorphism
relations.

LetM = 〈 modular relations, isomorphism relations 〉.
Goal: ker ΨG =M.
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Kernel problem on graphs

Idea of proof - Rewriting graph combinations

e3 ∈ G⇒ G− (G+ {e1})− (G+ {e2}) + (G+ {e1, e2}) ∈M .

Take z =
∑
i

Giai in the kernel of ΨG.

Goal: by working on ker ΨG/M, show that z ∈M.
Some of the Gi can be rewritten as graphs with more edges
(through modular relation). We call them extendible.
The non-extendible graphs {H1, H2, · · · } are not a lot, and
{ΨG(H1),ΨG(H2), · · · } is linearly independent.
Linear algebra magic. Cash in the theorem.
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Kernel problem on graphs

Idea of proof - Rewriting graph combinations

e3 ∈ G⇒ G− (G+ {e1})− (G+ {e2}) + (G+ {e1, e2}) ∈M .

Proposition (Non-extendible graphs)
A graph is non-extendible if and only if any connected component of
Gc, the complement graph of G, is a complete graph.
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Kernel problem on graphs

Idea of proof - Rewriting graph combinations

Note: Up to isomorphism, we can identify a partition λ with a
non-extendible graph Kc

λ in such a way λ = λ(Gc).

Consequence: Our original z can be rewritten, using modular relations
and isomorphic relations, as

z =
∑
λ

Kc
λaλ ∈ ker ΨG .

Raúl Penaguião (University of Zurich) Kernel problems March 27th, 2018 12 / 25



Kernel problem on graphs

Idea of proof - Rewriting graph combinations

Note: Up to isomorphism, we can identify a partition λ with a
non-extendible graph Kc

λ in such a way λ = λ(Gc).
Consequence: Our original z can be rewritten, using modular relations
and isomorphic relations, as

z =
∑
λ

Kc
λaλ ∈ ker ΨG .
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Kernel problem on graphs

Idea of proof - Rewriting graph combinations

So
z =

∑
λ

Kc
λaλ ∈ ker ΨG ,

Apply ΨG to get

0 =
∑
λ

ΨG(Kc
λ)aλ ⇒ aλ = 0 .

Possible to show: the set {ΨG(Kc
λ)}λ is linearly independent. So

z = 0, as desired.
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CF on polytopes Generalised permutahedra

Polytopes

Fix a dimension n. A polytope is a bounded set of the form
q = {x ∈ Rn|Ax ≤ b}.
Given a colouring f : [n]→ N of the coordinates, the face qf is

qf = arg min
x∈q

n∑
i=1

xif(i) .
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CF on polytopes Generalised permutahedra

Polytopes: Examples

Simplexes and its dilations: Consider J ⊆ [n] non empty.

λsJ = conv{λei|i ∈ J} .
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CF on polytopes Generalised permutahedra

The permutahedron and its generalisations

The n order permutahedron: per = conv{(σ(1), . . . , σ(n))|σ ∈ Sn}.
Is (n− 1)-dimensional.

Figure: The 4-permutahedron2

2
https://en.wikipedia.org/wiki/Permutohedron
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CF on polytopes Generalised permutahedra

Minkowsky sum

A+M B = {a+ b|a ∈ A, b ∈ B} .

C := A−M B if A = C +M B.

C may not exist but if exists it is unique (only for polytopes).
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CF on polytopes Generalised permutahedra

The permutahedron and its generalisations

A generalised permutahedron is a polytope q of the form

q =

 M∑
J 6=∅
aJ>0

aJsJ

−M
 M∑

J 6=∅
aJ<0

|aJ |sJ

 ,

A nestohedron is only the positive part:

q =
M∑
J 6=∅
aJ>0

aJsJ .
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CF on polytopes Generalised permutahedra

Generalised permutahedra - Examples

The J-simplex, for J ⊆ {1, · · · , n}: sJ = conv{ej |j ∈ J} and its
dilations.

The permutahedron

per = conv{(σ(1), . . . , σ(n))|σ ∈ Sn} .

is also given as

per =
M∑
i≤j

s{i,j} .

We define the chromatic quasisymmetric function (CF) as

ΨGP(q) =
∑
qf=pt

xf .

Raúl Penaguião (University of Zurich) Kernel problems March 27th, 2018 19 / 25



CF on polytopes Generalised permutahedra

Generalised permutahedra - Examples

The J-simplex, for J ⊆ {1, · · · , n}: sJ = conv{ej |j ∈ J} and its
dilations.
The permutahedron

per = conv{(σ(1), . . . , σ(n))|σ ∈ Sn} .

is also given as

per =
M∑
i≤j

s{i,j} .

We define the chromatic quasisymmetric function (CF) as

ΨGP(q) =
∑
qf=pt

xf .
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CF on polytopes Generalised permutahedra

Zonotopes and other embedings

Given a graph G, its zonotope is defined as

Z(G) =
M∑
e∈E(G)

se .

This is a Hopf algebra morphism, so

ΨG = ΨGP ◦ Z .
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CF on polytopes Generalised permutahedra

Faces of nestohedra

Proposition (Modular relations on nestohedra)

Consider a nestohedron q, {Bj |j ∈ T} a family of subsets on {1, · · ·n}
and {aj |j ∈ T} some positive scalars. Suppose “some magic”

happens. Then,
∑

T⊆J
(−1)#T ΨGP

q +M

M∑
j∈T

ajsBj

 = 0.
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CF on polytopes Kernel problem on nestohedra

Kc
π parallel and conclusion of proof

Theorem (RP 2017)
The modular relations, the isomorphism relations and the simple
relations span the kernel of the restriction of ΨGP to the nestohedra.
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Tree conjecture

Tree conjecture on graphs

This is a graph invariant:

χ′(G) =
∑
f

xf
∏
i

q
# monochromatic edges in f of colour i
i

where the sum runs over all colourings.

The modular relations and isomorphism relations are in kerχ′. So

ker ΨG = kerχ′ .

Conjecture (Tree conjecture)

Any two non-isomorphic trees T1, T2 have distinct χ′.
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Conclusion

Further questions

From nestohedra to generalised permutahedra?
The image of the CF on graphs ΨG is spanned by {ΨG(Kc

λ)}λ,
which forms a basis of im ΨG. Combinatorial meaning of the
coefficients?
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Conclusion

Thank you
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