Branched continued fractions

Mathias Pétréolle, Alan Sokal, Baoxuan Zhu

Séminaire Lotharingien de Combinatoire

Plan

(1) General theory
(2) Application to ratios of generalized hypergeometric functions

Plan

(1) General theory

(2) Application to ratios of generalized hypergeometric functions

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty}=\left(a_{i+j}\right)_{i, j \geq 0}$ is totally positive.

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty}=\left(a_{i+j}\right)_{i, j \geq 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of ${ }_{2} F_{1}$

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty}=\left(a_{i+j}\right)_{i, j \geq 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of ${ }_{2} F_{1}$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty}=\left(a_{i+j}\right)_{i, j \geq 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of ${ }_{2} F_{1}$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials
- Flajolet (1980): interpretation of continued fractions in terms of Dyck paths

Introduction

A finite or infinite matrix M is totally positive if every minor of M is non-negative.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty}=\left(a_{i+j}\right)_{i, j \geq 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of ${ }_{2} F_{1}$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials
- Flajolet (1980): interpretation of continued fractions in terms of Dyck paths
- Viennot (1983): consequence for total positivity

m-Dyck paths

Definition

A Dyck path of length n is a path starting a $(0,0)$ and ending at $(2 n, 0)$, staying above the x-axis, with steps $(1,1)$ or $(1,-1)$

m-Dyck paths

Definition

A m-Dyck path of length n is a path starting a $(0,0)$ and ending at $((m+1) n, 0)$, staying above the x-axis, with steps $(1,1)$ or $(1,-m)$

m-Dyck paths

Definition

A m-Dyck path of length n is a path starting a $(0,0)$ and ending at $((m+1) n, 0)$, staying above the x-axis, with steps $(1,1)$ or $(1,-m)$

Theorem (Fuss, 1795)

There are $\frac{1}{(m+1) n+1}\binom{(m+1) n}{n} m$-Dyck paths of length n

Stieltjes continued fractions

Define $f_{k}(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

Stieltjes continued fractions

Define $f_{k}(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$
f_{k}(t)=1+\quad f_{k}(t) \quad f_{k+1}(t) \quad t
$$

Stieltjes continued fractions

Define $f_{k}(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$
f_{k}(t)=1+\quad f_{k}(t) \quad f_{k+1}(t) \quad t
$$

$$
f_{k}(t)=\frac{1}{1-f_{k+1}(t) t}
$$

Stieltjes continued fractions

Define $f_{k}(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$
f_{k}(t)=1+\quad f_{k}(t) \quad f_{k+1}(t) \quad t
$$

$$
f_{k}(t)=\frac{1}{1-f_{k+1}(t) t}
$$

Theorem (Flajolet, 1980)
We have: $f_{0}(t)=\frac{1}{1-\frac{t}{1-\frac{t}{\ddots}}}$

Stieltjes continued fractions

Define $f_{k}(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$ with weight α_{i} for a fall from height i

$$
\begin{aligned}
f_{k}(t) & =1+\quad f_{k}(t) \quad f_{k+1}(t) \alpha_{k} t \\
f_{k}(t) & =\frac{1}{1-f_{k+1}(t) t \alpha_{k}}
\end{aligned}
$$

Theorem (Flajolet, 1980)
We have: $f_{0}(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{\ddots \ddots}}}$

From m-Dyck Paths to m-branched continued fractions

Define $f_{m, k}(t)$ as the generating function for m-Dyck path starting and ending at height k and staying at height $\geq k$ with weight α_{i} for a fall from height i

From m-Dyck Paths to m-branched continued fractions

Define $f_{m, k}(t)$ as the generating function for m-Dyck path starting and ending at height k and staying at height $\geq k$ with weight α_{i} for a fall from height i

$$
f_{m, k}(t)=1+\quad f_{m, k}(t) f_{m, k+1}(t) \cdots f_{m, k+m} \alpha_{k+m} t
$$

From m-Dyck Paths to m-branched continued fractions

Define $f_{m, k}(t)$ as the generating function for m-Dyck path starting and ending at height k and staying at height $\geq k$ with weight α_{i} for a fall from height i

$$
\begin{aligned}
f_{m, k}(t) & =1+\quad f_{m, k}(t) f_{m, k+1}(t) \cdots f_{m, k+m} \alpha_{k+m} t \\
f_{m, k}(t) & =\frac{1}{1-f_{m, k+1}(t) \cdots f_{m, k+m} \alpha_{k+m} t}
\end{aligned}
$$

From m-Dyck Paths to m-branched continued fractions

Define $f_{m, k}(t)$ as the generating function for m-Dyck path starting and ending at height k and staying at height $\geq k$ with weight α_{i} for a fall from height i

$$
\begin{aligned}
& f_{m, k}(t)=1+\quad f_{m, k}(t) f_{m, k+1}(t) \cdots f_{m, k+m} \alpha_{k+m} t \\
& f_{m, k}(t)=\frac{1}{1-f_{m, k+1}(t) \cdots f_{m, k+m} \alpha_{k+m} t}
\end{aligned}
$$

Theorem (P.-Sokal-Zhu, 2018)

We have: $f_{m, 0}(t)=$
$\frac{1}{\left.1-\frac{\alpha_{m} t}{\left(1-\frac{\alpha_{m+1} t}{\left(1-\frac{\alpha_{m+2}}{\cdot}\right) \cdots\left(1-\frac{\alpha_{2 m+2^{t}}}{\cdot}\right)}\right) \cdots\left(1-\frac{\alpha_{2 m} t}{\left(1-\frac{\alpha_{2 m+1}}{\cdot}\right) \cdots\left(1-\frac{\alpha_{3 m} t}{}\right.}\right)}\right)}$

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^{2}. This sub-graph is planar

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^{2}. This sub-graph is planar

Theorem (P.-Sokal-Zhu, 2018)

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence. If the generating function of $\left(a_{n}\right)_{n \geq 0}$ has a m-branched continued fraction with non-negative coefficients, then $\left(a_{n}\right)_{n \geq 0}$ is Hankel totally positive.

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^{2}. This sub-graph is planar

Theorem (P.-Sokal-Zhu, 2018)

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence. If the generating function of $\left(a_{n}\right)_{n \geq 0}$ has a m-branched continued fraction with non-negative coefficients, then $\left(a_{n}\right)_{n \geq 0}$ is Hankel totally positive.

The proof relies on Lindstrom-Gessel-Viennot theorem

Some (proved) examples

The following sequences are Hankel totally positive as they have a nonnegative branched continued fractions:

- Fuss-Catalan numbers $\left(\frac{1}{(m+1) n+1}\binom{(m+1) n}{n}\right)_{n \geq 0}$

Some (proved) examples

The following sequences are Hankel totally positive as they have a nonnegative branched continued fractions:

- Fuss-Catalan numbers $\left(\frac{1}{(m+1) n+1}\binom{(m+1) n}{n}\right)_{n \geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(m k+1)\right)_{n \geq 0}$

Some (proved) examples

The following sequences are Hankel totally positive as they have a nonnegative branched continued fractions:

- Fuss-Catalan numbers $\left(\frac{1}{(m+1) n+1}\binom{(m+1) n}{n}\right)_{n \geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(m k+1)\right)_{n \geq 0}$
- powers of factorial numbers $\left(n!^{m}\right)_{n \geq 0}$

Some (proved) examples

The following sequences are Hankel totally positive as they have a nonnegative branched continued fractions:

- Fuss-Catalan numbers $\left(\frac{1}{(m+1) n+1}\binom{(m+1) n}{n}\right)_{n \geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(m k+1)\right)_{n \geq 0}$
- powers of factorial numbers $\left(n!^{m}\right)_{n \geq 0}$
- $\left(P_{n}(x)\right)_{n \geq 0}$, where $P_{n}(x)$ is the number of non crossing tree counted with respect to the outer degree of the root, has a 2-branched continued fraction

Plan

(1) General theory

(2) Application to ratios of generalized hypergeometric functions

Another point of view: a recurrence relation

Starting from $f_{k}(t)=1+f_{k}(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$
g_{k}(t)=\prod_{i=0}^{k} f_{i}(t)
$$

Another point of view: a recurrence relation

Starting from $f_{k}(t)=1+f_{k}(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$
g_{k}(t)=\prod_{i=0}^{k} f_{i}(t)
$$

We get:

$$
g_{k}(t)-g_{k-1}(t)=\alpha_{k+m} t g_{k+m}(t)
$$

Another point of view: a recurrence relation

Starting from $f_{k}(t)=1+f_{k}(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$
g_{k}(t)=\prod_{i=0}^{k} f_{i}(t)
$$

We get:

$$
g_{k}(t)-g_{k-1}(t)=\alpha_{k+m} t g_{k+m}(t)
$$

Principle (Euler, 1746; P.-Sokal-Zhu, 2018)

A pair of sequences $\left(g_{i}(t)\right)_{n \geq-1}$ and $\left(\alpha_{i}\right)_{i \geq m}$ satisfying $(*)$ gives a m branched continued fraction for $g_{0}(t) / g_{-1}(t)$

Example of $n!^{m}$

Define $g_{-1}(t)=1$ and

$$
g_{(m+1) i+k}(t)=\sum_{n \geq 0}(n!)^{m} \frac{(n+1)^{m+1} \ldots(n+i)^{m+1}(n+i+1)^{k}}{i!^{m+1-k}(i+1)^{k}} t^{n}
$$

and

$$
\alpha_{(m+1) i+k+m}=(i+1)^{m+1-k}(i+2)^{k-1}
$$

Example of $n!^{m}$

Define $g_{-1}(t)=1$ and

$$
g_{(m+1) i+k}(t)=\sum_{n \geq 0}(n!)^{m} \frac{(n+1)^{m+1} \ldots(n+i)^{m+1}(n+i+1)^{k}}{i!^{m+1-k}(i+1)^{k}} t^{n}
$$

and

$$
\alpha_{(m+1) i+k+m}=(i+1)^{m+1-k}(i+2)^{k-1}
$$

Checking $(*)$ is purely computational.

Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right):=\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} t^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right):=\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} t^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

Theorem (P.-Sokal-Zhu, 2018)

Any ratio

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}+1, a_{2}, \ldots, a_{p} \\
b_{1}+1, b_{2}, \ldots, b_{q}
\end{array} ; t\right) /{ }_{p} F_{q}\left(\begin{array}{c}
a_{1} \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right)
$$

has a max $(p-1, q)$-branched continued fraction.

Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right):=\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} t^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

Theorem (P.-Sokal-Zhu, 2018)

Any ratio

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}+1, a_{2}, \ldots, a_{p} \\
b_{1}+1, b_{2}, \ldots, b_{q}
\end{array} ; t\right) /{ }_{p} F_{q}\left(\begin{array}{c}
a_{1} \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right)
$$

has a max $(p-1, q)$-branched continued fraction.
Ideas of the proof:

Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right):=\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} t^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

Theorem (P.-Sokal-Zhu, 2018)

Any ratio

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}+1, a_{2}, \ldots, a_{p} \\
b_{1}+1, b_{2}, \ldots, b_{q}
\end{array} ; t\right) /{ }_{p} F_{q}\left(\begin{array}{l}
a_{1} \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right)
$$

has a max $(p-1, q)$-branched continued fraction.
Ideas of the proof:

- define an (explicit) sequence of functions $\left(g_{i}(t)\right)_{i \geq 0}$

Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right):=\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} t^{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!}
$$

Theorem (P.-Sokal-Zhu, 2018)

Any ratio

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}+1, a_{2}, \ldots, a_{p} \\
b_{1}+1, b_{2}, \ldots, b_{q}
\end{array} ; t\right) /{ }_{p} F_{q}\left(\begin{array}{l}
a_{1} \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} ; t\right)
$$

has a max $(p-1, q)$-branched continued fraction.
Ideas of the proof:

- define an (explicit) sequence of functions $\left(g_{i}(t)\right)_{i \geq 0}$
- prove that $\left({ }^{*}\right)$ holds for this sequence, by (proving and) using new contiguous relations for ${ }_{p} F_{q}$

Total positivity for ratios of ${ }_{m} F_{0}$

Let $\left(A_{n}\left(a_{1}, \ldots, a_{p}\right)\right)_{n \geq 0}$ be the sequence with generating function

$$
{ }_{p} F_{0}\binom{a_{1}+1, a_{2}, \ldots, a_{p}}{-} /{ }_{p} F_{0}\binom{a_{1} \ldots, a_{p}}{-t}
$$

Total positivity for ratios of ${ }_{m} F_{0}$

Let $\left(A_{n}\left(a_{1}, \ldots, a_{p}\right)\right)_{n \geq 0}$ be the sequence with generating function

$$
{ }_{p} F_{0}\binom{a_{1}+1, a_{2}, \ldots, a_{p}}{-} /{ }_{p} F_{0}\binom{a_{1} \ldots, a_{p}}{-t}
$$

Theorem (P.-Sokal-Zhu, 2018)

The sequence $\left(A_{n}\left(a_{1}, \ldots, a_{p}\right)\right)_{n \geq 0}$ is Hankel totally positive (coefficientwise in all the variables a_{i} 's)

Total positivity for ratios of ${ }_{m} F_{0}$

Let $\left(A_{n}\left(a_{1}, \ldots, a_{p}\right)\right)_{n \geq 0}$ be the sequence with generating function

$$
{ }_{p} F_{0}\binom{a_{1}+1, a_{2}, \ldots, a_{p}}{-} /{ }_{p} F_{0}\left(\begin{array}{c}
a_{1} \ldots, a_{p} \\
-
\end{array} t\right)
$$

Theorem (P.-Sokal-Zhu, 2018)

The sequence $\left(A_{n}\left(a_{1}, \ldots, a_{p}\right)\right)_{n \geq 0}$ is Hankel totally positive (coefficientwise in all the variables a_{i} 's)

Applications:

- $n!^{m}$
- (mn)!
- $(2 n-1)!!^{m}$

Some conjectures and open questions

- Generalized Genocchi numbers

Some conjectures and open questions

- Generalized Genocchi numbers
- find all contiguous relations for ${ }_{p} F_{q}$

Some conjectures and open questions

- Generalized Genocchi numbers
- find all contiguous relations for ${ }_{p} F_{q}$
- find a combinatorial interpretation of ratios of ${ }_{p} F_{0}$ in terms of permutations

Thank you for your attention!

