Branched continued fractions

Mathias Pétréolle, Alan Sokal, Baoxuan Zhu

Séminaire Lotharingien de Combinatoire

M. Pétréolle, A. Sokal, B. Zhu

Branched continued fractions

SLC 80 1 / 17

2 Application to ratios of generalized hypergeometric functions

M. Pétréolle, A. Sokal, B. Zhu

Branched continued fractions

SLC 80 2 / 1

2 Application to ratios of generalized hypergeometric functions

M. Pétréolle, A. Sokal, B. Zhu

Branched continued fractions

SLC 80 3 / 17

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty} = (a_{i+j})_{i,j \ge 0}$ is totally positive.

ヨト イヨト

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty} = (a_{i+j})_{i,j \ge 0}$ is totally positive.

Previous work:

• Gauss (1813): continued fraction for ratios of $_2F_1$

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty} = (a_{i+j})_{i,j \ge 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of $_2F_1$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty} = (a_{i+j})_{i,j \ge 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of $_2F_1$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials
- Flajolet (1980): interpretation of continued fractions in terms of Dyck paths

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence. It is Hankel totally positive if its Hankel matrix $H_{\infty} = (a_{i+j})_{i,j \ge 0}$ is totally positive.

Previous work:

- Gauss (1813): continued fraction for ratios of $_2F_1$
- Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials
- Flajolet (1980): interpretation of continued fractions in terms of Dyck paths
- Viennot (1983): consequence for total positivity

Definition

A Dyck path of length n is a path starting a (0,0) and ending at (2n,0), staying above the x-axis, with steps (1,1) or (1,-1)

Definition

A m-Dyck path of length n is a path starting a (0,0) and ending at ((m+1)n, 0), staying above the x-axis, with steps (1,1) or (1,-m)

Definition

A *m*-Dyck path of length *n* is a path starting a (0,0) and ending at ((m+1)n, 0), staying above the *x*-axis, with steps (1,1) or (1,-m)

Theorem (Fuss, 1795)

There are
$$\frac{1}{(m+1)n+1}\binom{(m+1)n}{n}$$
 m-Dyck paths of length m

M. Pétréolle, A. Sokal, B. Zhu

SLC 80 5 / 17

< 17 b

Define $f_k(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

Define $f_k(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$f_k(t) = 1 + \qquad f_k(t) \qquad f_{k+1}(t) \qquad t$$

Define $f_k(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$f_k(t) = 1 + \frac{f_k(t)}{f_{k+1}(t)} + \frac{f_{k+1}(t)}{1 - f_{k+1}(t)t}$$

Define $f_k(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$

$$f_k(t) = 1 + \frac{f_k(t)}{f_{k+1}(t)} + \frac{f_{k+1}(t)}{f_{k+1}(t)} + \frac{1}{1 - f_{k+1}(t)t}$$

Theorem (Flajolet, 1980)

M. Pétréolle, A. Sokal, B. Zhu

.

Define $f_k(t)$ as the generating function for Dyck path starting and ending at height k, staying at height $\geq k$ with weight α_i for a fall from height i

$$f_k(t) = 1 + \frac{f_k(t)}{f_{k+1}(t)\alpha_k t}$$

$$f_k(t) = \frac{1}{1 - f_{k+1}(t)t\alpha_k}$$

Theorem (Flajolet, 1980)

We have:
$$f_0(t) = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \frac{$$

M. Pétréolle, A. Sokal, B. Zhu

.

Define $f_{m,k}(t)$ as the generating function for *m*-Dyck path starting and ending at height *k* and staying at height $\geq k$ with weight α_i for a fall from height *i*

Define $f_{m,k}(t)$ as the generating function for *m*-Dyck path starting and ending at height *k* and staying at height $\geq k$ with weight α_i for a fall from height *i*

$$f_{i}(t) = 1 + f_{i}(t) f_{i}(t) \cdots f_{i}(t) \cdots f_{i}(t)$$

 $f_{m,k}(t) = 1 + f_{m,k}(t) f_{m,k+1}(t) \cdots f_{m,k+m} \alpha_{k+m} t$

Define $f_{m,k}(t)$ as the generating function for *m*-Dyck path starting and ending at height *k* and staying at height $\geq k$ with weight α_i for a fall from height *i*

$$f_{m,k}(t) = 1 + f_{m,k}(t) f_{m,k+1}(t) \cdots f_{m,k+m} \alpha_{k+m} t$$

$$f_{m,k}(t) = \frac{1}{1 - f_{m,k+1}(t) \cdots f_{m,k+m} \alpha_{k+m} t}$$

Define $f_{m,k}(t)$ as the generating function for *m*-Dyck path starting and ending at height *k* and staying at height $\geq k$ with weight α_i for a fall from height *i*

$$f_{m,k}(t) = 1 + f_{m,k}(t) f_{m,k+1}(t) \cdots f_{m,k+m} \alpha_{k+m} t$$
$$f_{m,k}(t) = \frac{1}{1 - f_{m,k+1}(t) \cdots f_{m,k+m} \alpha_{k+m} t}$$

Theorem (P.–Sokal–Zhu, 2018)

We have: $f_{m,0}(t) =$

$$\frac{1}{1-\frac{\alpha_m t}{\left(1-\frac{\alpha_{m+2}t}{(1-\frac{\alpha_{2m+2}t}{\cdot})\cdots(1-\frac{\alpha_{2m+2}t}{\cdot})}\right)\cdots\left(1-\frac{\alpha_{2m}t}{(1-\frac{\alpha_{2m+1}t}{(1-\frac{\alpha_{3m}t}{\cdot})\cdots(1-\frac{\alpha_{3m}t}{\cdot})}\right)}}\right)}$$

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^2 . This sub-graph is planar

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^2 . This sub-graph is planar

Theorem (P.–Sokal–Zhu, 2018)

Let $(a_n)_{n\geq 0}$ be a sequence. If the generating function of $(a_n)_{n\geq 0}$ has a *m*-branched continued fraction with non-negative coefficients, then $(a_n)_{n\geq 0}$ is Hankel totally positive.

Total positivity

m-Dyck paths live in a proper sub-graph of \mathbb{Z}^2 . This sub-graph is planar

Theorem (P.–Sokal–Zhu, 2018)

Let $(a_n)_{n\geq 0}$ be a sequence. If the generating function of $(a_n)_{n\geq 0}$ has a *m*-branched continued fraction with non-negative coefficients, then $(a_n)_{n\geq 0}$ is Hankel totally positive.

The proof relies on Lindstrom-Gessel-Viennot theorem

M. Pétréolle, A. Sokal, B. Zhu

• Fuss-Catalan numbers $\left(\frac{1}{(m+1)n+1}\binom{(m+1)n}{n}\right)_{n\geq 0}$

- Fuss-Catalan numbers $\left(\frac{1}{(m+1)n+1}\binom{(m+1)n}{n}\right)_{n\geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(mk+1)\right)_{n\geq 0}$

- Fuss-Catalan numbers $\left(\frac{1}{(m+1)n+1}\binom{(m+1)n}{n}\right)_{n\geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(mk+1)\right)_{n\geq 0}$
- powers of factorial numbers $(n!^m)_{n>0}$

- Fuss-Catalan numbers $\left(\frac{1}{(m+1)n+1}\binom{(m+1)n}{n}\right)_{n\geq 0}$
- m-factorial numbers $\left(\prod_{k=0}^{n-1}(mk+1)\right)_{n\geq 0}$
- powers of factorial numbers $(n!^m)_{n>0}$
- (P_n(x))_{n≥0}, where P_n(x) is the number of non crossing tree counted with respect to the outer degree of the root, has a 2-branched continued fraction

2 Application to ratios of generalized hypergeometric functions

M. Pétréolle, A. Sokal, B. Zhu

Branched continued fractions

SLC 80 11 / 1

Another point of view: a recurrence relation

Starting from $f_k(t) = 1 + f_k(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$g_k(t) = \prod_{i=0}^n f_i(t)$$

Another point of view: a recurrence relation

Starting from $f_k(t) = 1 + f_k(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$g_k(t) = \prod_{i=0}^n f_i(t)$$

We get:

$$g_k(t) - g_{k-1}(t) = \alpha_{k+m} t g_{k+m}(t) \quad (*)$$

Another point of view: a recurrence relation

Starting from $f_k(t) = 1 + f_k(t) \cdots f_{k+m} \alpha_{k+2} t$, define

$$g_k(t) = \prod_{i=0}^n f_i(t)$$

We get:

$$g_k(t) - g_{k-1}(t) = \alpha_{k+m} t g_{k+m}(t) \quad (*)$$

Principle (Euler, 1746; P.–Sokal–Zhu, 2018)

A pair of sequences $(g_i(t))_{n\geq -1}$ and $(\alpha_i)_{i\geq m}$ satisfying (*) gives a *m* branched continued fraction for $g_0(t)/g_{-1}(t)$

M. Pétréolle, A. Sokal, B. Zhu

SLC 80 12 / 17

Define $g_{-1}(t) = 1$ and

$$g_{(m+1)i+k}(t) = \sum_{n\geq 0} (n!)^m \frac{(n+1)^{m+1} \dots (n+i)^{m+1} (n+i+1)^k}{i!^{m+1-k} (i+1)^k} t^n$$

and

$$\alpha_{(m+1)i+k+m} = (i+1)^{m+1-k}(i+2)^{k-1}$$

M. Pétréolle, A. Sokal, B. Zhu

Branched continued fractions

≣ । ≣ •ी २० SLC 80 13 / 1

イロト イヨト イヨト イヨト

Define $g_{-1}(t) = 1$ and

$$g_{(m+1)i+k}(t) = \sum_{n\geq 0} (n!)^m \frac{(n+1)^{m+1} \dots (n+i)^{m+1} (n+i+1)^k}{i!^{m+1-k} (i+1)^k} t^n$$

and

$$\alpha_{(m+1)i+k+m} = (i+1)^{m+1-k}(i+2)^{k-1}$$

Checking (*) is purely computational.

Image: A Image: A

Define the generalized hypergeometric function

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};t\right):=\sum_{n\geq0}\frac{(a_{1})_{n}\cdots(a_{p})_{n}t^{n}}{(b_{1})_{n}\cdots(b_{q})_{n}n!}$$

SLC 80 14 / 17

Define the generalized hypergeometric function

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};t\right):=\sum_{n\geq0}\frac{(a_{1})_{n}\cdots(a_{p})_{n}t^{n}}{(b_{1})_{n}\cdots(b_{q})_{n}n!}$$

Theorem (P.–Sokal–Zhu, 2018)

Any ratio

$$_{p}F_{q}\left(a_{1}+1, a_{2}, \dots, a_{p}; t\right) / _{p}F_{q}\left(a_{1}, \dots, a_{p}; t\right)$$

has a $\max(p-1,q)$ -branched continued fraction.

Define the generalized hypergeometric function

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};t\right):=\sum_{n\geq0}\frac{(a_{1})_{n}\cdots(a_{p})_{n}t^{n}}{(b_{1})_{n}\cdots(b_{q})_{n}n!}$$

Theorem (P.–Sokal–Zhu, 2018)

Any ratio

$$_{p}F_{q}\left(a_{1}+1, a_{2}, \dots, a_{p}; t\right) / _{p}F_{q}\left(a_{1}, \dots, a_{p}; t\right)$$

has a $\max(p-1,q)$ -branched continued fraction.

Ideas of the proof:

Define the generalized hypergeometric function

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};t\right):=\sum_{n\geq0}\frac{(a_{1})_{n}\cdots(a_{p})_{n}t^{n}}{(b_{1})_{n}\cdots(b_{q})_{n}n!}$$

Theorem (P.–Sokal–Zhu, 2018)

Any ratio

$$_{p}F_{q}\left(a_{1}+1, a_{2}, \dots, a_{p}; t\right)/_{p}F_{q}\left(a_{1}, \dots, a_{p}; t\right)$$

has a $\max(p-1, q)$ -branched continued fraction.

Ideas of the proof:

• define an (explicit) sequence of functions $(g_i(t))_{i\geq 0}$

Define the generalized hypergeometric function

$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};t\right):=\sum_{n\geq0}\frac{(a_{1})_{n}\cdots(a_{p})_{n}t^{n}}{(b_{1})_{n}\cdots(b_{q})_{n}n!}$$

Theorem (P.–Sokal–Zhu, 2018)

Any ratio

$$_{p}F_{q}\left(a_{1}+1, a_{2}, \dots, a_{p}; t\right)/_{p}F_{q}\left(a_{1}, \dots, a_{p}; t\right)$$

has a $\max(p-1,q)$ -branched continued fraction.

Ideas of the proof:

- define an (explicit) sequence of functions $(g_i(t))_{i\geq 0}$
- prove that (*) holds for this sequence, by (proving and) using new contiguous relations for ${}_{p}F_{q}$

M. Pétréolle, A. Sokal, B. Zhu

Total positivity for ratios of $_mF_0$

Let $(A_n(a_1,\ldots,a_p))_{n\geq 0}$ be the sequence with generating function

$$_{p}F_{0}\left(\begin{array}{c}a_{1}+1,a_{2},\ldots,a_{p}\\-\end{array};t\right)/_{p}F_{0}\left(\begin{array}{c}a_{1}\ldots,a_{p}\\-\end{array};t\right)$$

Total positivity for ratios of $_mF_0$

Let $(A_n(a_1,\ldots,a_p))_{n\geq 0}$ be the sequence with generating function

$$_{\rho}F_0\left(\begin{array}{c}a_1+1,a_2,\ldots,a_{\rho}\\-\end{array};t\right)/_{\rho}F_0\left(\begin{array}{c}a_1\ldots,a_{\rho}\\-\end{array};t\right)$$

Theorem (P.–Sokal–Zhu, 2018)

The sequence $(A_n(a_1,...,a_p))_{n\geq 0}$ is Hankel totally positive (coefficientwise in all the variables a_i 's)

Total positivity for ratios of $_mF_0$

Let $(A_n(a_1,\ldots,a_p))_{n\geq 0}$ be the sequence with generating function

$$_{\rho}F_0\left(\begin{array}{c}a_1+1,a_2,\ldots,a_{\rho}\\-\end{array};t\right)/_{\rho}F_0\left(\begin{array}{c}a_1\ldots,a_{\rho}\\-\end{array};t\right)$$

Theorem (P.–Sokal–Zhu, 2018)

The sequence $(A_n(a_1,...,a_p))_{n\geq 0}$ is Hankel totally positive (coefficientwise in all the variables a_i 's)

Applications:

- n!^m
- (*mn*)!
- $(2n-1)!!^m$

• Generalized Genocchi numbers

- Generalized Genocchi numbers
- find all contiguous relations for ${}_{p}F_{q}$

- Generalized Genocchi numbers
- find all contiguous relations for ${}_{p}F_{q}$
- find a combinatorial interpretation of ratios of ${}_{p}F_{0}$ in terms of permutations

Thank you for your attention!

E ► E つへの SLC 80 17 / 1

< 個 ▶ < Ξ