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Let (an)nen be a sequence. It is Hankel totally positive if its Hankel matrix
Hoo = (ai4j)ij>0 is totally positive.

Previous work:
@ Gauss (1813): continued fraction for ratios of F;
o Stieltjes (1890's): introduction of Stieltjes-Rogers polynomials

o Flajolet (1980): interpretation of continued fractions in terms of Dyck
paths

@ Viennot (1983): consequence for total positivity
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Definition

A Dyck path of length n is a path starting a (0,0) and ending at (2n,0),
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Definition

A m—Dyck path of length n is a path starting a (0,0) and ending at
((m+1)n,0), staying above the x-axis, with steps (1,1) or (1,—m)

m=2

(0,0) (12,0)
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Definition

A m—Dyck path of length n is a path starting a (0,0) and ending at
((m+1)n,0), staying above the x-axis, with steps (1,1) or (1,—m)

m=2

(0,0) (12,0)

Theorem (Fuss, 1795)

(m+1)n

1
There are CESVES ( N

) m-Dyck paths of length n
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Stieltjes continued fractions

Define f(t) as the generating function for Dyck path starting and ending
at height k, staying at height > k
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Stieltjes continued fractions

Define f(t) as the generating function for Dyck path starting and ending
at height k, staying at height > k with weight «; for a fall from height i

fi(t) =1+ fi(t) fea(t)ouct
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From m-Dyck Paths to m-branched continued fractions

Define fp, «(t) as the generating function for m-Dyck path starting and

ending at height k and staying at height > k with weight «; for a fall from
height 7
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ending at height k and staying at height > k with weight «; for a fall from
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fm,k(t) fm7k+1(t) t fm,k—i—mak-i-mt

e .
k p—
i 1-— fm,k—f—l(t) te fm,k+mak+mt
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From m-Dyck Paths to m-branched continued fractions

Define fp, «(t) as the generating function for m-Dyck path starting and

ending at height k and staying at height > k with weight «; for a fall from
height i

fm,k(t) =1+ fm,k(t) fm7k+1(t) e fm,k+m(¥k+mt
1
fmk(t) =
’k( ) 1- fm,k—f—l(t) tee fm,k+mak+mt
Theorem (P.—Sokal-Zhu, 2018)
We have: fo(t) =

1
1 amt
o 1t mt
(a- i Jeeff= z )

(17 amyot ),,_(17a2m+2f ) . (170‘2m+1t )”_(17 agmt )
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Total positivity

m-Dyck paths live in a proper sub-graph of Z2. This sub-graph is planar

m=2
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Total positivity

m-Dyck paths live in a proper sub-graph of Z2. This sub-graph is planar

m=2

Theorem (P.—Sokal-Zhu, 2018)

Let (an)n>0 be a sequence. If the generating function of (a,)n>0 has a
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Total positivity

m-Dyck paths live in a proper sub-graph of Z2. This sub-graph is planar

m=2

Theorem (P.—Sokal-Zhu, 2018)

Let (an)n>0 be a sequence. If the generating function of (a,)n>0 has a
m-branched continued fraction with non-negative coefficients, then
(an)n>0 is Hankel totally positive.

The proof relies on Lindstrom—Gessel-Viennot theorem

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions SLC 80 9 /17



Some (proved) examples

The following sequences are Hankel totally positive as they have a
nonnegative branched continued fractions:

o Fuss-Catalan numbers (m((m’;”n))nzo

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions



Some (proved) examples

The following sequences are Hankel totally positive as they have a
nonnegative branched continued fractions:

o Fuss-Catalan numbers (m((m’;”n))nzo

e m-factorial numbers (Hﬂ;é(mk+ 1)) o

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions



Some (proved) examples

The following sequences are Hankel totally positive as they have a
nonnegative branched continued fractions:

@ Fuss-Catalan numbers (m((m’;””))nzo
e m-factorial numbers (Hﬂ;é(mk+ 1)) o

e powers of factorial numbers (n!™), -,

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions



Some (proved) examples

The following sequences are Hankel totally positive as they have a
nonnegative branched continued fractions:

o Fuss-Catalan numbers (m((m’;”n))nzo

e m-factorial numbers (Hﬂ;é(mk+ 1)) o

e powers of factorial numbers (n!™), -,

(Pn(x)) >0, Where Pp(x) is the number of non crossing tree counted
with respect to the outer degree of the root, has a 2-branched
continued fraction
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© Application to ratios of generalized hypergeometric functions
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Another point of view: a recurrence relation

Starting from fi(t) = 1+ fi(t) - - - fepmQkr2t,

define
gk(t) = H

k
fi(t)
i=0
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Another point of view: a recurrence relation

Starting from fi(t) = 1+ fi(t) - - - fepmQkr2t,

define )
gk(t) = H fi(t)
i=0
We get:

8k(t) — gk-1(t) = akrmtgrem(t)  (¥)

Principle (Euler, 1746; P.—Sokal-Zhu, 2018)

A pair of sequences (gi(t))n>—1 and («;)i>m satisfying (x) gives a m
branched continued fraction for go(t)/g_1(t)
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Example of n!™

Define g_1(t) = 1 and

_ S(n )™ (D)™ (n i 1)K
8(m+1)i+k(t) = ;’(”!) MK (7 £ 1)K t

and
AUm41)itkim = (I + 1)k 4 2)k T
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Example of n!™

Define g_1(t) = 1 and

S(n )™ (D)™ (n i 1)K
g(m+1)i+k(t) = Z(”!) iIm+1=k(j 4 1)k t

n>0

and
AUm41)itkim = (I + 1)Lk (4 2)k

Checking (x) is purely computational.
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Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

-5 dp L\ (a1)n - (ap)nt”
qu(bl,...,bq't) '_;(bi)n--«(bq),,n!

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions



Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

a,...,ap )nt”
qu<b17 < t) Z n!

n>0

Theorem (P.—Sokal-Zhu, 2018)

Any ratio
ap+1l,a,...,ap ar...,ap
ol ot ot
(bl—i—l bo, ..., bg' )/p (bl,...,bq

has a max(p — 1, q)-branched continued fraction.
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a,...,ap )nt”
qu<b17 < t) Z n!

n>0

Theorem (P.—Sokal-Zhu, 2018)
Any ratio

ap+1l,a,...,ap ar...,ap
ol ot ot
(bl—i—l bg,..,b )/p (bl,...,bq

has a max(p — 1, q)-branched continued fraction.

)

Ideas of the proof:
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Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

a,. .- ap t”
Aol ) = S e

n>0

Theorem (P.—Sokal-Zhu, 2018)

Any ratio
ap+1l,a,...,ap ar...,ap
ol ot ot
(bl—i—l bo, ..., bg' )/p (bl,...,bq

has a max(p — 1, q)-branched continued fraction.

Ideas of the proof:
o define an (explicit) sequence of functions (g;(t))i>o0
@ prove that (*) holds for this sequence, by (proving and) using new
contiguous relations for ,Fg
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Total positivity for ratios of ,,F

Let (An(a1,-..,ap))n>0 be the sequence with generating function

a+1la,...,a a...,a
A ()
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Total positivity for ratios of ,,Fg

Let (An(a1,-..,ap))n>0 be the sequence with generating function

a+1la,...,a a...,a
A ()

Theorem (P.—Sokal-Zhu, 2018)

The sequence (An(ay, . .., ap))n>0 is Hankel totally positive
(coefficientwise in all the variables a;’s)

Applications:
e nlm
e (mn)!
e (2n—1)Nm
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Some conjectures and open questions

o Generalized Genocchi numbers
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Some conjectures and open questions

@ Generalized Genocchi numbers
e find all contiguous relations for ,Fg

e find a combinatorial interpretation of ratios of ,Fg in terms of
permutations
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Thank you for your attention!
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