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Introduction

A finite or infinite matrix M is totally positive if every minor of M is
non-negative.

Let (an)n∈N be a sequence. It is Hankel totally positive if its Hankel matrix
H∞ = (ai+j)i ,j≥0 is totally positive.

Previous work:

Gauss (1813): continued fraction for ratios of 2F1

Stieltjes (1890’s): introduction of Stieltjes-Rogers polynomials

Flajolet (1980): interpretation of continued fractions in terms of Dyck
paths

Viennot (1983): consequence for total positivity
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m-Dyck paths

Definition

A Dyck path of length n is a path starting a (0, 0) and ending at (2n, 0),
staying above the x-axis, with steps (1, 1) or (1,−1)

(0, 0) (12, 0)

m = 2

Theorem (Fuss, 1795)

There are 1
(m+1)n+1

((m+1)n
n

)
m-Dyck paths of length n
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Stieltjes continued fractions

Define fk(t) as the generating function for Dyck path starting and ending
at height k , staying at height ≥ k

fk(t) = 1 + fk(t) fk+1(t) t

fk(t) =
1

1 − fk+1(t)t

Theorem (Flajolet, 1980)

We have: f0(t) =
1

1 − t

1 − t

. . .
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Stieltjes continued fractions

Define fk(t) as the generating function for Dyck path starting and ending
at height k , staying at height ≥ k with weight αi for a fall from height i

fk(t) = 1 + fk(t) fk+1(t)αkt

fk(t) =
1

1 − fk+1(t)tαk

Theorem (Flajolet, 1980)

We have: f0(t) =
1

1 − α1t

1 − α2t

. . .
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From m-Dyck Paths to m-branched continued fractions

Define fm,k(t) as the generating function for m-Dyck path starting and
ending at height k and staying at height ≥ k with weight αi for a fall from
height i

fm,k(t) = 1 + fm,k(t) fm,k+1(t) · · · fm,k+mαk+mt

fm,k(t) =
1

1 − fm,k+1(t) · · · fm,k+mαk+mt

Theorem (P.–Sokal–Zhu, 2018)

We have: fm,0(t) =
1

1 − αmt

(1 − αm+1t
(1− αm+2t

...
)···(1− α2m+2t

...
)
) · · · (1 − α2mt

(1− α2m+1t

...
)···(1− α3mt

...
)
)
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Total positivity

m-Dyck paths live in a proper sub-graph of Z2. This sub-graph is planar

m = 2

Theorem (P.–Sokal–Zhu, 2018)

Let (an)n≥0 be a sequence. If the generating function of (an)n≥0 has a
m-branched continued fraction with non-negative coefficients, then
(an)n≥0 is Hankel totally positive.

The proof relies on Lindstrom–Gessel–Viennot theorem
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Some (proved) examples

The following sequences are Hankel totally positive as they have a
nonnegative branched continued fractions:

Fuss-Catalan numbers ( 1
(m+1)n+1

((m+1)n
n

)
)n≥0

m-factorial numbers
(∏n−1

k=0(mk + 1)
)
n≥0

powers of factorial numbers (n!m)n≥0

(Pn(x))n≥0, where Pn(x) is the number of non crossing tree counted
with respect to the outer degree of the root, has a 2-branched
continued fraction
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Another point of view: a recurrence relation

Starting from fk(t) = 1 + fk(t) · · · fk+mαk+2t,
define

gk(t) =
k∏

i=0

fi (t)

We get:

gk(t) − gk−1(t) = αk+mtgk+m(t) (∗)

Principle (Euler, 1746; P.–Sokal–Zhu, 2018)

A pair of sequences (gi (t))n≥−1 and (αi )i≥m satisfying (∗) gives a m
branched continued fraction for g0(t)/g−1(t)
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Example of n!m

Define g−1(t) = 1 and

g(m+1)i+k(t) =
∑
n≥0

(n!)m
(n + 1)m+1 . . . (n + i)m+1(n + i + 1)k

i !m+1−k(i + 1)k
tn

and
α(m+1)i+k+m = (i + 1)m+1−k(i + 2)k−1

Checking (∗) is purely computational.
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Generalisation of Gauss continued fraction

Define the generalized hypergeometric function

pFq

(
a1, . . . , ap
b1, . . . , bq

; t

)
:=
∑
n≥0

(a1)n · · · (ap)nt
n

(b1)n · · · (bq)nn!

Theorem (P.–Sokal–Zhu, 2018)

Any ratio

pFq

(
a1 + 1, a2, . . . , ap
b1 + 1, b2, . . . , bq

; t

)/
pFq

(
a1 . . . , ap
b1, . . . , bq

; t

)
has a max(p − 1, q)-branched continued fraction.

Ideas of the proof:

define an (explicit) sequence of functions (gi (t))i≥0

prove that (*) holds for this sequence, by (proving and) using new
contiguous relations for pFq
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Total positivity for ratios of mF0

Let (An(a1, . . . , ap))n≥0 be the sequence with generating function

pF0

(
a1 + 1, a2, . . . , ap

—
; t

)
/pF0

(
a1 . . . , ap

—
; t

)

Theorem (P.–Sokal–Zhu, 2018)

The sequence (An(a1, . . . , ap))n≥0 is Hankel totally positive
(coefficientwise in all the variables ai ’s)

Applications:

n!m

(mn)!

(2n − 1)!!m
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Some conjectures and open questions

Generalized Genocchi numbers

find all contiguous relations for pFq

find a combinatorial interpretation of ratios of pF0 in terms of
permutations
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Thank you for your attention!

M. Pétréolle, A. Sokal, B. Zhu Branched continued fractions SLC 80 17 / 17


	General theory
	Application to ratios of generalized hypergeometric functions

