QUOTIENTOPES

V. PILAUD (CNRS & LIX)

F. SANTOS (Univ. Cantabira)

Séminaire Lotharingien de Combinatoire

March 27th, 2018

WEAK ORDER & PERMUTAHEDRON

WEAK ORDER

<u>inversions</u> of $\sigma \in \mathfrak{S}_n = \text{pair}(\sigma_i, \sigma_j)$ such that i < j and $\sigma_i > \sigma_j$ weak order = permutations of \mathfrak{S}_n ordered by inclusion of inversion sets

PERMUTAHEDRON

Permutohedron Perm $(n) = \operatorname{conv} \{ (\sigma(1), \dots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in \mathfrak{S}_n \}$

PERMUTAHEDRON

<u>Permutohedron</u> Perm $(n) = \operatorname{conv} \{ (\sigma(1), \dots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in \mathfrak{S}_n \}$

weak order = orientation of the graph of Perm(n)

COXETER ARRANGEMENT

<u>Coxeter fan</u> = fan defined by the hyperplane arrangement $\{\mathbf{x} \in \mathbb{R}^n \mid x_i = x_j\}_{1 \le i < j \le n}$

COXETER ARRANGEMENT

<u>Coxeter fan</u> = fan defined by the hyperplane arrangement $\{\mathbf{x} \in \mathbb{R}^n \mid x_i = x_j\}_{1 \le i < j \le n}$

LATTICE QUOTIENTS

Reading, Lattice congruences, fans and Hopf algebras ('05) Reading, Finite Coxeter groups and the weak order ('16) Reading, Lattice theory of the poset of regions ('16)

LATTICE CONGRUENCES

 $\underline{\text{lattice congruence}} = \text{equivalence relation} \equiv \text{on } L \text{ which respects meets and joins}$ $x \equiv x' \text{ and } y \equiv y' \implies x \land y \equiv x' \land y' \text{ and } x \lor y \equiv x' \lor y'$ $\text{lattice quotient of } L/\equiv = \text{ lattice on equivalence classes of } L \text{ under } \equiv \text{ where}$

• $X \le Y$ \iff $\exists x \in X, y \in Y, x \le y$

- $X \wedge Y =$ equivalence class of $x \wedge y$ for any $x \in X$ and $y \in Y$
- $X \lor Y =$ equivalence class of $x \lor y$ for any $x \in X$ and $y \in Y$

EXM: TAMARI LATTICE

Tamari lattice = lattice quotient of the weak order by the relation "same binary tree"

Catalan combinatorics — Associahedron — Non-crossing partitions — ...

RELEVANT LATTICE QUOTIENTS OF THE WEAK ORDER

QUOTIENT FAN

Reading, Lattice congruences, fans and Hopf algebras ('05) Reading, Finite Coxeter groups and the weak order ('16) Reading, Lattice theory of the poset of regions ('16)

SHARDS

SHARDS

shard Σ(*i*, *j*, *n*, *S*) := {
$$\mathbf{x} \in \mathbb{R}^n | x_i = x_j$$
 and $\begin{bmatrix} x_i \le x_k \text{ for all } k \in S \text{ while} \\ x_i \ge x_k \text{ for all } k \in]i, j[\sim S \end{bmatrix}$
REM. The shards Σ(*i*, *j*, *n*, *S*) for all subsets $S \subseteq]i, j[$ decompose the hyperplane $x_i = x_j$ into 2^{j-i-1} pieces.
REM. A chamber of the Coxeter fan is characterized by the shards below it.

SHARDS AND QUOTIENT FAN

$$\underline{\mathsf{shard}} \ \Sigma(i, j, n, S) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^n \ \middle| \ x_i = x_j \text{ and } \left[\begin{array}{c} x_i \le x_k \text{ for all } k \in S \text{ while} \\ x_i \ge x_k \text{ for all } k \in]i, j[\ \diagdown S \end{array} \right] \right\}$$

THM. For a lattice congruence \equiv on \mathfrak{S}_n , the cones obtained by glueing the Coxeter regions of the permutations in the same congruence class of \equiv form a fan \mathcal{F}_{\equiv} of \mathbb{R}^n whose dual graph realizes the lattice quotient \mathfrak{S}_n/\equiv .

Reading, *Lattice congruences, fans & Hopf algebras* ('05)

THM. Each lattice congruence \equiv on \mathfrak{S}_n corresponds to a set of shards Σ_{\equiv} such that the cones of \mathcal{F}_{\equiv} are the connected components of the complement of the union of the shards in Σ_{\equiv} .

Reading, Lattice congruences, fans & Hopf algebras ('05)

$$[x_i \ge x_k \text{ for all } k \in]i, j[< S]$$

SHARD IDEALS

SHARD IDEALS

THM. Each lattice congruence \equiv on \mathfrak{S}_n corresponds to a set of shards Σ_{\equiv} such that the cones of \mathcal{F}_{\equiv} are the connected components of the complement of the union of the shards in Σ_{\equiv} .

Reading, Lattice congruences, fans & Hopf algebras ('05)

THM. The following are equivalent for a set of shards Σ :

- there exists a lattice congruence \equiv on \mathfrak{S}_n with $\Sigma = \Sigma_{\equiv}$,
- Σ is an upper ideal for the order $\Sigma(a, d, n, S) \prec \Sigma(b, c, n, T) \iff a \leq b < c \leq d$ and $T = S \cap]b, c[.$

Reading, Noncrossing arc diagrams and canonical join representations ('15)

SHARD IDEALS

QUOTIENTOPES

Pilaud-Santos, *Quotientopes* ('17⁺)

QUOTIENTOPE

fix a <u>forcing dominant</u> function $f : \sigma \to \mathbb{R}_{>0}$ ie. st. $f(\Sigma) > \sum_{\Sigma' \succ \Sigma} f(\Sigma')$ for any shard Σ . for a shard $\Sigma = (i, j, n, S)$ and a subset $\emptyset \neq R \subsetneq [n]$ define the <u>contribution</u>

$$\gamma(\Sigma, R) \coloneqq \begin{cases} 1 & \text{if } |R \cap \{i, j\}| = 1 \text{ and } S = R \cap]i, j[, 0] \\ 0 & \text{otherwise} \end{cases}$$

define height function h for $\emptyset \neq R \subsetneq [n]$ by $h^f_{\equiv}(R) := \sum_{\Sigma \in \Sigma_{\equiv}} f(\Sigma) \gamma(\Sigma, R)$.

THM. For a lattice congruence \equiv on \mathfrak{S}_n and a forcing dominant function $f: \Sigma \to \mathbb{R}_{>0}$, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the polytope

$$P^f_{\equiv} := \big\{ \mathbf{x} \in \mathbb{R}^n \ \big| \ \langle \mathbf{r}(R) \mid \mathbf{x} \, \rangle \le h^f_{\equiv}(R) \text{ for all } \emptyset \neq R \subsetneq [n] \big\}.$$

P.-Santos, *Quotientopes* ('17⁺)

QUOTIENTOPE LATTICE

QUOTIENTOPE LATTICE

TOWARDS QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 \mathcal{H} hyperplane arrangement in \mathbb{R}^n B distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ <u>inversion set</u> of a region C = set of hyperplanes of \mathcal{H} that separate B and C<u>poset of regions</u> $\operatorname{Pos}(\mathcal{H}, B)$ = regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

- THM. The poset of regions $Pos(\mathcal{H}, B)$
 - is never a lattice when B is not a simple region,
 - \bullet is always a lattice when ${\cal H}$ is a simplicial arrangement.

Björner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions ('90)

THM. If $Pos(\mathcal{H}, B)$ is a lattice, and \equiv is a lattice congruence of $Pos(\mathcal{H}, B)$, the cones obtained by glueing together the regions of $\mathbb{R}^n \smallsetminus \mathcal{H}$ in the same congruence class form a complete fan.

Reading, Lattice congruences, fans & Hopf algebras ('05)

Is the quotient fan polytopal?

