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WEAK ORDER & PERMUTAHEDRON



WEAK ORDER

inversions of σ ∈ Sn = pair (σi, σj) such that i < j and σi > σj
weak order = permutations of Sn ordered by inclusion of inversion sets
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PERMUTAHEDRON

Permutohedron Perm(n) = conv {(σ(1), . . . , σ(n)) ∈ Rn | σ ∈ Sn}
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PERMUTAHEDRON

Permutohedron Perm(n) = conv {(σ(1), . . . , σ(n)) ∈ Rn | σ ∈ Sn}
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weak order = orientation of the graph of Perm(n)



COXETER ARRANGEMENT

Coxeter fan = fan defined by the hyperplane arrangement {x ∈ Rn | xi = xj}1≤i<j≤n
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COXETER ARRANGEMENT

Coxeter fan = fan defined by the hyperplane arrangement {x ∈ Rn | xi = xj}1≤i<j≤n
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LATTICE QUOTIENTS

Reading, Lattice congruences, fans and Hopf algebras (’05)
Reading, Finite Coxeter groups and the weak order (’16)

Reading, Lattice theory of the poset of regions (’16)



LATTICE CONGRUENCES

lattice congruence = equivalence relation ≡ on L which respects meets and joins

x ≡ x′ and y ≡ y′ =⇒ x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′

lattice quotient of L/≡ = lattice on equivalence classes of L under ≡ where

• X ≤ Y ⇐⇒ ∃x ∈ X, y ∈ Y, x ≤ y

• X ∧ Y = equivalence class of x ∧ y for any x ∈ X and y ∈ Y
• X ∨ Y = equivalence class of x ∨ y for any x ∈ X and y ∈ Y

polygons stars

circles

crosses



EXM: TAMARI LATTICE
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Tamari lattice = lattice quotient of the weak order by the relation “same binary tree”

Catalan combinatorics — Associahedron — Non-crossing partitions — ...



RELEVANT LATTICE QUOTIENTS OF THE WEAK ORDER

Cambrian trees Acyclic k-triangulations diagonal rectangulations
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Reading, Cambrian lattices (’06)

Chatel-P., Cambrian algebra (’17)

P., Brick polytopes, lattice quotients, and Hopf algebras (’15+)

Law-Reading, The Hopf algebra of diagonal rectangulations (’12)

P.-Pons, Permutrees (’17)



QUOTIENT FAN

Reading, Lattice congruences, fans and Hopf algebras (’05)
Reading, Finite Coxeter groups and the weak order (’16)

Reading, Lattice theory of the poset of regions (’16)



SHARDS

shard Σ(i, j, n, S) :=

{
x ∈ Rn

∣∣∣∣ xi = xj and

[
xi ≤ xk for all k ∈ S while

xi ≥ xk for all k ∈ ]i, j[ r S

}



SHARDS

shard Σ(i, j, n, S) :=

{
x ∈ Rn

∣∣∣∣ xi = xj and

[
xi ≤ xk for all k ∈ S while

xi ≥ xk for all k ∈ ]i, j[ r S

}

REM. The shards Σ(i, j, n, S) for all

subsets S ⊆ ]i, j[ decompose the hy-

perplane xi = xj into 2j−i−1 pieces.

REM. A chamber of the Coxeter fan is

characterized by the shards below it.



SHARDS AND QUOTIENT FAN

shard Σ(i, j, n, S) :=

{
x ∈ Rn

∣∣∣∣ xi = xj and

[
xi ≤ xk for all k ∈ S while

xi ≥ xk for all k ∈ ]i, j[ r S

}

THM. For a lattice congruence ≡ on Sn,

the cones obtained by glueing the Coxeter

regions of the permutations in the same

congruence class of ≡ form a fan F≡ of Rn

whose dual graph realizes the lattice quo-

tient Sn/≡.
Reading, Lattice congruences, fans & Hopf algebras (’05)

THM. Each lattice congruence ≡ on Sn

corresponds to a set of shards Σ≡ such

that the cones of F≡ are the connected

components of the complement of the

union of the shards in Σ≡.
Reading, Lattice congruences, fans & Hopf algebras (’05)



SHARD IDEALS



SHARD IDEALS

THM. Each lattice congruence ≡ on Sn corresponds to a set of shards Σ≡ such that

the cones of F≡ are the connected components of the complement of the union of the

shards in Σ≡.
Reading, Lattice congruences, fans & Hopf algebras (’05)

THM. The following are equivalent for a set of shards Σ:

• there exists a lattice congruence ≡ on Sn with Σ = Σ≡,

• Σ is an upper ideal for the order Σ(a, d, n, S) ≺ Σ(b, c, n, T ) ⇐⇒ a ≤ b < c ≤ d

and T = S ∩ ] b, c [.
Reading, Noncrossing arc diagrams and canonical join representations (’15)



SHARD IDEALS

shard ideal = upper ideal for the forcing order



QUOTIENTOPES

Pilaud-Santos, Quotientopes (’17+)



QUOTIENTOPE

fix a forcing dominant function f : σ → R>0 ie. st. f (Σ) >
∑

Σ′�Σ

f (Σ′) for any shard Σ.

for a shard Σ = (i, j, n, S) and a subset ∅ 6= R ( [n] define the contribution

γ(Σ, R) :=

{
1 if |R ∩ {i, j}| = 1 and S = R ∩ ]i, j[,

0 otherwise

define height function h for ∅ 6= R ( [n] by hf≡(R) :=
∑

Σ∈Σ≡
f (Σ) γ(Σ, R).

THM. For a lattice congruence ≡ on Sn and a forcing dominant function f : Σ→ R>0,

the quotient fan F≡ is the normal fan of the polytope

P f
≡ :=

{
x ∈ Rn

∣∣ 〈 r(R) | x 〉 ≤ hf≡(R) for all ∅ 6= R ( [n]
}
.

P.-Santos, Quotientopes (’17+)



QUOTIENTOPE LATTICE



QUOTIENTOPE LATTICE

POLPOLYWOODOODPOLYWOOD


insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)



TOWARDS QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

H hyperplane arrangement in Rn

B distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions Pos(H, B) = regions of Rn rH ordered by inclusion of inversion sets

THM. The poset of regions Pos(H, B)

• is never a lattice when B is not a simple region,

• is always a lattice when H is a simplicial arrangement.
Björner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions (’90)

THM. If Pos(H, B) is a lattice, and ≡ is a lattice congruence of Pos(H, B), the cones

obtained by glueing together the regions of RnrH in the same congruence class form

a complete fan.
Reading, Lattice congruences, fans & Hopf algebras (’05)

Is the quotient fan polytopal?
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