Coefficientwise Hankel-total positivity

Alan Sokal
University College London / New York University

Séminaire Lotharingien de Combinatoire Lyon, 26 March 2018

A big project in collaboration with Mathias Pétréolle, Bao-Xuan Zhu, Jiang Zeng and Andrew Elvey Price

Key references:

1. Flajolet, Combinatorial aspects of continued fractions,

Discrete Math. 32, 125-161 (1980).
2. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux (UQAM, 1983).

Total positivity

A (finite or infinite) matrix of real numbers is called totally positive if all its minors are nonnegative.

Applications:

- Mechanics of oscillatory systems
- Zeros of polynomials and entire functions
- Numerical linear algebra
- Approximation theory
- Statistics
- Stieltjes moment problem
- Enumerative combinatorics

Hankel-total positivity

Given a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$, we define its Hankel matrix

$$
H_{\infty}(\boldsymbol{a})=\left(a_{i+j}\right)_{i, j \geq 0}=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- We say that the sequence \boldsymbol{a} is Hankel-totally positive if its Hankel matrix $H_{\infty}(\boldsymbol{a})$ is totally positive.
- This implies that the sequence is log-convex, but is much stronger.

Fundamental Characterization (Stieltjes 1894, Gantmakher-Krein 1937):
For a sequence $\boldsymbol{a}=\left(a_{n}\right)_{n \geq 0}$ of real numbers, the following are equivalent:
(a) \boldsymbol{a} is Hankel-totally positive.
(b) There exists a positive measure μ on $[0, \infty)$ such that $a_{n}=\int x^{n} d \mu(x)$ for all $n \geq 0$.
[That is, $\left(a_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.]
(c) There exist numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}
$$

in the sense of formal power series.
[Stieltjes-type continued fraction with nonnegative coefficients]

From numbers to polynomials

Consider polynomials that enumerate some combinatorial objects with weights for some statistics: e.g.

- Counting permutations of $[n]$ by number of cycles:

$$
\left.S_{n}(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \quad \text { (Stirling cycle polynomial }\right)
$$

- Counting permutations of $[n]$ by number of descents:

$$
\left.A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k} \quad \text { (Eulerian polynomial }\right)
$$

- Counting partitions of $[n]$ by number of blocks:

$$
B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k} \quad \text { (Bell polynomial) }
$$

- Counting non-crossing partitions of $[n]$ by number of blocks:

$$
N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k} \quad(\text { Narayana polynomial })
$$

These polynomials can also be multivariate!

An industry in combinatorics: q-Narayana polynomials, (p, q)-Bell polynomials, ...

Coefficientwise total positivity

- Consider sequences and matrices whose entries are polynomials with real coefficients in one or more indeterminates \mathbf{x}.
- A matrix is coefficientwise totally positive if every minor is a polynomial with nonnegative coefficients.
- A sequence is coefficientwise Hankel-totally positive if its Hankel matrix is coefficientwise totally positive.
- More generally, can consider sequences and matrices with entries in a partially ordered commutative ring.

But now there is no analogue of the Fundamental Characterization!

Coefficientwise Hankel-TP is combinatorial, not analytic.

Coefficientwise Hankel-TP implies that $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $\mathbf{x} \geq 0$, but it is stronger.

Coefficientwise Hankel-TP in combinatorics

Many interesting sequences of combinatorial polynomials $\left(P_{n}(x)\right)_{n \geq 0}$ have been proven in recent years to be coefficientwise log-convex:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
(Liu-Wang 2007, Chen-Wang-Yang 2011)
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$ (Chen-Wang-Yang 2010)
- Narayana polynomials of type B: $W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}$ (Chen-Tang-Wang-Yang 2010)
- Eulerian polynomials $A_{n}(x)=\sum_{k=0}^{n}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}$ (Liu-Wang 2007, Zhu 2013)

Might these sequences actually be coefficientwise Hankel-totally positive?

- In many cases I can prove that the answer is yes, by using the Flajolet-Viennot method of continued fractions.
- In several other cases I have strong empirical evidence that the answer is yes, but no proof.
- The continued-fraction approach gives a sufficient but not necessary condition for coefficientwise Hankel-total positivity.

Combinatorics of continued fractions (Flajolet 1980)

We consider two types of continued fractions:

- Stieltjes type (S-fractions):

$$
f(t)=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\frac{\alpha_{3} t}{1-\cdots}}}}
$$

- Jacobi type (J-fractions):

$$
f(t)=\frac{1}{1-\gamma_{0} t-\frac{\beta_{1} t^{2}}{1-\gamma_{1} t-\frac{\beta_{2} t^{2}}{1-\gamma_{2} t-\frac{\beta_{3} t^{2}}{1-\gamma_{3} t-\cdots}}}}
$$

For lack of time I will show here only Stieltjes.

Jacobi can also be handled, but Hankel-TP is more subtle.

Combinatorics of Stieltjes-type continued fractions

A Dyck path of length $2 n$ is a path in the right quadrant $\mathbb{N} \times \mathbb{N}$ from $(0,0)$ to $(2 n, 0)$ using steps $(1,1)$ ["rise"] and $(1,-1)$ ["fall"]:

Theorem (Flajolet 1980): As an identity in $\mathbb{Z}[\boldsymbol{\alpha}][[t]]$, we have

$$
\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\cdots}}}=\sum_{n=0}^{\infty} S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) t^{n}
$$

where $S_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the generating polynomial for Dyck paths of length $2 n$ in which each fall starting at height i gets weight α_{i}.
$S_{n}(\boldsymbol{\alpha})$ is called the Stieltjes-Rogers polynomial of order n.
Theorem (A.S. 2014, based on Viennot 1983): The sequence $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ of Stieltjes-Rogers polynomials is coefficientwise Hankel-totally positive in the polynomial ring $\mathbb{Z}[\boldsymbol{\alpha}]$.

Proof uses the Karlin-McGregor-Lindström-Gessel-Viennot lemma on families of nonintersecting paths.

Can now specialize $\boldsymbol{\alpha}$ to nonnegative elements in any partially ordered commutative ring, and get Hankel-TP.

Example 1: Narayana polynomials

- Narayana numbers $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$
- Count numerous objects of combinatorial interest:
- Dyck paths of length $2 n$ with k peaks
- Non-crossing partitions of $[n]$ with k blocks
- Non-nesting partitions of $[n]$ with k blocks
- Narayana polynomials $N_{n}(x)=\sum_{k=0}^{n} N(n, k) x^{k}$
- Ordinary generating function $\mathcal{N}(t, x)=\sum_{n=0}^{\infty} N_{n}(x) t^{n}$
- Elementary "renewal" argument on Dyck paths implies

$$
\mathcal{N}=\frac{1}{1-t x-t(\mathcal{N}-1)}
$$

which can be rewritten as

$$
\mathcal{N}=\frac{1}{1-\frac{x t}{1-t \mathcal{N}}}
$$

- Leads immediately to S-type continued fraction

$$
\sum_{n=0}^{\infty} N_{n}(x) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{t}{1-\frac{x t}{1-\frac{t}{1-\cdots}}}}}
$$

Conclusion: The sequence $\left(N_{n}(x)\right)_{n \geq 0}$ of Narayana polynomials is coefficientwise Hankel-totally positive.

Example 2: Bell polynomials

- Stirling number $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ of partitions of $[n]$ with k blocks
- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$
- Ordinary generating function $\mathcal{B}(t, x)=\sum_{n=0}^{\infty} B_{n}(x) t^{n}$
- Flajolet (1980) expressed $\mathcal{B}(t, x)$ as a J-type continued fraction
- Can be transformed to an S-type continued fraction

$$
\sum_{n=0}^{\infty} B_{n}(x) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{1 t}{1-\frac{x t}{1-\frac{2 t}{1-\cdots}}}}}
$$

Conclusion: The sequence $\left(B_{n}(x)\right)_{n \geq 0}$ of Bell polynomials is coefficientwise Hankel-totally positive.

- Can extend to polynomial $B_{n}(x, p, q)$ that enumerates set partitions w.r.t. blocks (x), crossings (p) and nestings (q) :

$$
\sum_{n=0}^{\infty} B_{n}(x, p, q) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{[1]_{p, q} t}{1-\frac{x t}{1-\frac{[2]_{p, q} t}{1-\cdots}}}}}
$$

- Implies coefficientwise Hankel-TP jointly in x, p, q

Example 3: Narayana polynomials of type B

The polynomials

$$
W_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} x^{k}
$$

- Grand Dyck paths with weight x for each peak
- Coordinator polynomial of the classical root lattice A_{n}
- Rank generating function of the lattice of noncrossing partitions of type B on $[n]$
- There is no S-type continued fraction in the ring of polynomials: we have

$$
\alpha_{1}, \alpha_{2}, \ldots=1+x, \frac{2 x}{1+x}, \frac{1+x^{2}}{1+x}, \frac{x+x^{2}}{1+x^{2}}, \frac{1+x^{3}}{1+x^{2}}, \frac{x+x^{3}}{1+x^{3}}, \ldots
$$

- However, there is a nice J-type continued fraction:

$$
\sum_{n=0}^{\infty} W_{n}(x) t^{n}=\frac{1}{1-(1+x) t-\frac{2 x t^{2}}{1-(1+x) t-\frac{x t^{2}}{1-(1+x) t-\frac{x t^{2}}{1-\cdots}}}}
$$

- By J-fraction theory (not explained here) one can show:

Theorem (A.S. unpublished 2014, Wang-Zhu 2016):
The sequence $\left(W_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

Some cases I am unable (as yet) to prove ...

Finally, there are many cases where I find empirically that a sequence $\left(P_{n}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP, but I am unable to prove it because there is neither an S-type nor a J-type continued fraction in the ring of polynomials:

- Rook polynomials
- Domb polynomials
- Apéry polynomials
- Boros-Moll polynomials
- Ramanujan polynomials
- Inversion enumerators for trees
- Reduced binomial discriminant polynomials

Example 1: Rook polynomials

- Non-attacking rooks on $n \times n$ chessboard with weight x per rook:

$$
R_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2} k!x^{k}
$$

- Can prove: Stieltjes moment sequence for each $x \geq 0$.
(Can find explicit moment representation)
- Empirical: Hankel matrix is coefficientwise TP up to 11×11.
- Conjecture: Hankel matrix is coefficientwise TP.

Example 2: Apéry polynomials

- Apéry numbers $A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
- Theorem (conjectured by me, 2014; proven G. Edgar, unpub. 2016): $\left(A_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence.
- Define Apéry polynomials $A_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{k}$
- Conjecture 1: $\left(A_{n}(x)\right)_{n \geq 0}$ is a Stieltjes moment sequence for all $x \geq 1$ (but not for $0<x<1$).
- Conjecture 2: $\left(A_{n}(1+y)\right)_{n \geq 0}$ is coefficientwise Hankel-TP in y. (Tested up to 12×12)

(Tentative) Conclusion

- Many interesting sequences $\left(P_{n}(\mathbf{x})\right)_{n \geq 0}$ of combinatorial polynomials are (or appear to be) coefficientwise Hankel-totally positive.
- In some cases this can be proven by the Flajolet-Viennot method of continued fractions.
- When S-fractions exist, they give the simplest proofs.
- Sometimes S-fractions don't exist, but J-fractions can work.
- Alas, in many cases neither S-fractions nor J-fractions exist (in the ring of polynomials).

- New methods of proof will be needed:

- Branched continued fractions (\Longrightarrow Pétréolle talk)
- Differential operators?
- Direct study of Hankel minors?
- . . . ???
- Coefficientwise Hankel-TP is a big phenomenon that we understand, at present, only very incompletely.

Dédié à la mémoire de Philippe Flajolet (1948-2011)

