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HANKEL DETERMINANTS, HAHN POLYNOMIALS, AND A
FORMULA OF KRATTENTHALER

DIEGO DOMINICI

Dedicated to Professor Christian Krattenthaler on the occasion of his 60th birthday

Abstract. In this note, we find a connection between an identity of C. Krattenthaler
and some Hankel determinants related to the Hahn polynomials. We also consider
some limiting cases related to the Meixner and Charlier polynomials.

1. Introduction

Let N0 denote the set
N0 = N ∪ {0} = {0, 1, 2, . . .}.

If {µn} is a sequence of complex numbers and L : C [x] → C is the linear functional
defined by

L[xn] = µn, n ∈ N0,

then L is called the moment functional [9] determined by the formal moment sequence
{µn}. The number µn is called the moment of order n.

Suppose that {Pn} is a family of monic polynomials, with deg(Pn) = n. If the poly-
nomials Pn(x) satisfy

L[PnPm] = hnδn,m, for n,m ∈ N0, (1.1)

where h0 = µ0, hn 6= 0 and δn,m is Kronecker’s delta, then {Pn} is called a sequence of
orthogonal polynomials with respect to L. Since

L[xPnPk] = 0, for k /∈ {n− 1, n, n+ 1} ,
the monic orthogonal polynomials Pn(x) satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x),

with initial conditions P−1 = 0 and P0 = 1, where β0 = µ1
µ0

and

βn =
1

hn
L
[
xP 2

n

]
, γn =

1

hn−1
L[xPnPn−1], for n ∈ N.

Since L[xPnPn−1] = L [P 2
n ] , we have

γn =
hn
hn−1

, for n ∈ N, (1.2)

and it follows that

hn = µ0

n∏
i=1

γi. (1.3)
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Let the lower triangular matrix An be defined by

(An)i,j =

{
ai,j, i ≥ j,

0, i < j,
for 0 ≤ i, j ≤ n− 1,

where

xi =
i∑

k=0

ai,kPk(x), ai,i = 1.

If we define the diagonal matrix Dn by

(Dn)i,j = hiδi,j, for 0 ≤ i, j ≤ n− 1,

and the Hankel matrix Hn by

(Hn)i,j = µi+j, for 0 ≤ i, j ≤ n− 1, (1.4)

then we have the LDLT factorization (see [29, Section 4.1])

Hn = AnDnA
T
n . (1.5)

We define the corresponding Hankel determinants by ∆0 = 1 and

∆n = det(Hn), for n ∈ N.

Using (1.5), we see that

∆n =
n−1∏
j=0

hj, (1.6)

and using (1.3) in (1.6), we get

∆n =
n−1∏
j=0

µ0

j∏
i=1

γi = µn0

n−1∏
k=1

γn−kk . (1.7)

The identity (1.7) is sometimes called ”Heilermann formula” [39], since J. B. H. Heil-
ermann considered the J-fraction expansion [31] 1

∞∑
n=0

µn
wn+1

=
µ0

w − β1 −
γ1

w − β2 −
γ2

w − β3 −
γ3
. . .

, (1.8)

in his 1845 Ph.D. thesis ”De transformatione serierum in fractiones continuas” [6,
Eq. (5.2)].

Determinants have a long history and an extensive literature, see [3, 7, 47, 53, 59,
60, 61, 64], and the impressive monographs [39] and [41].

The theories of Hankel determinants and orthogonal polynomials are deeply con-
nected, see [9, 14, 19, 27, 33, 36, 38, 42, 57].

For some applications of Hankel determinants to combinatorial problems, see [1, 10,
11, 21, 28, 30, 35, 55, 56, 62].

1We are indebted to one of the anonymous referees for pointing out this reference.
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Some authors2 have computed Hankel determinants related to continuous Hahn poly-
nomials [25], q-Hahn polynomials [8], and little q-Jacobi polynomials [32]. For exten-
sions to continuous and discrete elliptic Selberg integrals, see [52].

In [40, Eq. (3.5)], C. Krattenthaler showed (among many other results), the identity∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
(x)ki(y)N−ki
ki! (N − ki)!

] ∏
1≤i<j≤n

(kj − ki)2

=
n−1∏
k=0

[
k!

(N − k)!
(x)k(y)k(x+ y + k + n− 1)N−n+1

]
, (1.9)

as a limiting case of the q-analog∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
(x; q)ki (y; q)N−ki
(q; q)ki (q; q)N−ki

yki
] ∏

1≤i<j≤n

(
qkj − qki

)2
=

n−1∏
k=0

[
ykqk(k−1)

(q; q)k
(q; q)N−k

(x; q)k (y; q)k
(
xyqk+n−1; q

)
N−n+1

]
. (1.10)

He gave two different proofs of (1.10) using: 1) a Schur function identity from [44], and
2) a q-integral evaluation from [22, 37].

The purpose of this note is to give a different proof of (1.9) related to the theory of
orthogonal polynomials. We also study some limiting cases, and consider some possible
generalizations.

2. Main result

Suppose that the linear functional L has the form

L[p] =
N∑
k=0

ckp(k), for p(x) ∈ C[x], (2.1)

for some sequence {ck} . Then, the moments µl are given by

µl =
N∑
k=0

klck, for l ∈ N0,

and the entries of the Hankel matrix (1.4) are

(Hn)i,j = µi+j =
N∑
k=0

ki+jck, for 0 ≤ i, j ≤ n− 1. (2.2)

We can obtain a representation for the determinants of Hn.

Proposition 1. The Hankel determinants ∆n are given by

∆n =
∑

0≤k1<k2<···<kn≤N

(
n∏
i=1

cki)Vn(k1, . . . , kn), (2.3)

2We are indebted to one of the anonymous referee for suggesting these references.
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where Vn(k1, . . . , kn) denotes the polynomial

Vn(k1, . . . , kn) =
∏

1≤i<j≤n

(kj − ki)2.

Proof. If we rewrite (2.2) as

(Hn)i,j =
N∑
k=0

N∑
l=0

kickδk,ll
j,

we see that Hn has the form

Hn = V TCV, (2.4)

where V is the (N + 1)× n Vandermonde matrix

(V )i,j = ij, for 0 ≤ i ≤ N, 0 ≤ j ≤ n− 1,

and C is the (N + 1)× (N + 1) diagonal matrix

(C)i,j = ciδi,j, for 0 ≤ i, j ≤ N.

Using the Cauchy–Binet formula [26] in (2.4), we have

det(Hn) =
∑

0≤k1<k2<···<kn≤N

det(ciδi,ki)
[
det
(
kji
)
0≤j≤n−1

]2
,

and since [
det

1≤i,j≤n

(
kj−1i

)]2
=

∏
1≤i<j≤n

(kj − ki)2,

the result follows. �

Remark 2. The expression (2.3) is a particular case of Heine’s formula [34]

det
1≤i,j≤n

(µi+j) =
1

n!

b∫
a

b∫
a

· · ·
b∫

a

Vn(x1, . . . , xn)dα(x1)dα(x2) · · · dα(xn),

where

µi =

b∫
a

xidα(x), for i ∈ N0.

Heine’s formula is used extensively in random matrix theory [4, 45, 12].

In the following, we shall use standard hypergeometric notation: the Pochhammer
symbol (or rising factorial) (u)k [49, Eq. (5.2.4)] is defined by (u)0 = 1 and

(u)k = u(u+ 1) · · · (u+ k − 1), for k ∈ N. (2.5)

We can also write [49, Eq. (5.2.5)]

(u)z =
Γ(u+ z)

Γ(u)
, if − (u+ z) /∈ N0, (2.6)
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where Γ(z) is the Gamma function. Then the generalized hypergeometric function [49,
Ch. 16] is defined by

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
. (2.7)

The Stieltjes transform of the moments µn is given by

S(w) =
∞∑
n=0

µn
wn+1

=
∞∑
n=0

1

wn+1

N∑
k=0

knck =
N∑
k=0

ck
w − k

.

If

ck =
(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
, for k ∈ N0,

we have (see [17])

S(w) =
1

w
p+1Fq+1

(
−w, a1, . . . , ap

1− w, b1, . . . , bq
; z

)
. (2.8)

If a1 = −N, with N ∈ N, then the series (2.7) terminates, and the Stieltjes transform
(2.8) is a rational function (of w). It was shown by Wall in [63, Theorem 43.1]3 that a
rational function has the form

R(w) =
N∑
k=0

ck
w − xk

, ck > 0, xk ∈ R, xi 6= xj,

if and only if

R(w) =
µ0

β1 + w −
γ1

β2 + w −
γ2
. . .

βN−1 + w −
γN−1

βN + w

,

where βk ∈ R and µ0, γk > 0. Thus, we recover the J-fraction expansion (1.8) and
could compute the Hankel determinant ∆n using Heilermann’s formula (1.7). This was
a technique used (among others) by Flajolet in [23].

2.1. Hahn polynomials. Here we apply the previous considerations to the monic
Hahn polynomials, which are defined by [49, Eq. (18.20.5)]

Qn(x) =
(α + 1)n (−N)n
(n+ α + β + 1)n

3F2

(
−n,−x, n+ α + β + 1

α + 1,−N ; 1

)
.

For α, β ∈ R\ [−N,−1], the monic Hahn polynomials satisfy the orthogonality relation
[16]

N∑
k=0

Qn(k)Qm(k)

(
N

k

)
(α + 1)k (β + 1)N−k = hnδn,m, (2.9)

3We are indebted to one of the reviewers for pointing out this reference.
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where

hn = (n!)2
(
N

n

)
(α + 1)n (β + 1)n

(α + β + 2 + 2n)N−n
(α + β + 1 + n)n

. (2.10)

In order to prove our main theorem, we will need the identity
n∏
k=0

(x+ 2k + 1)N−k
(x+ k)k

=
n∏
k=0

(x+ k + n+ 1)N−n, for 0 ≤ n ≤ N, (2.11)

which is easy to verify by making use of (2.6).
We now have all the elements necessary to show our main result.

Theorem 3. For all 1 ≤ n ≤ N and α, β ∈ R \ [−N,−1], we have∑
0≤k1<k2<···<kn≤N

n∏
i=1

[(
N

ki

)
(α + 1)ki (β + 1)N−ki

]
Vn(k1, . . . , kn)

=
n−1∏
k=0

[
(k!)2

(
N

k

)
(α + 1)k (β + 1)k (α + β + 1 + k + n)N−n+1

]
. (2.12)

Proof. Let

ck =

(
N

k

)
(α + 1)k (β + 1)N−k.

From (2.9), we see that the monic orthogonal polynomials associated with the linear
functional L defined by (2.1) are the Hahn polynomials.

On the other hand, we have from (2.3)

det
0≤i,j≤n−1

(
L
[
xi+j

])
=

∑
0≤k1<k2<···<kn≤N

(
n∏
i=1

cki)Vn(k1, . . . , kn).

Using (1.6) and (2.10), we get∑
0≤k1<k2<···<kn≤N

n∏
i=1

[(
N

ki

)
(α + 1)ki (β + 1)N−ki

]
Vn(k1, . . . , kn)

=
n−1∏
k=0

[
(k!)2

(
N

k

)
(α + 1)k (β + 1)k

(α + β + 2 + 2k)N−k
(α + β + 1 + k)k

]
.

If we use (2.11), with x = α + β + 1, we have

n−1∏
k=0

(α + β + 2 + 2k)N−k
(α + β + 1 + k)k

=
n−1∏
k=0

(α + β + 1 + k + n)N−n+1,

and the result follows. �

Corollary 4. For all 1 ≤ n ≤ N, we have∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
(x)ki (y)N−ki
ki! (N − ki)!

]
Vn(k1, . . . , kn)

=
n−1∏
k=0

[
k!

(N − k)!
(x)k (y)k (x+ y + k + n− 1)N−n+1

]
. (2.13)
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Proof. If we set α = x − 1, β = y − 1 in (2.12) and divide both sides of by (N !)n, we
obtain (2.13). To remove any restrictions on x, y, we observe that (2.13) is an identity
between polynomials in x and y of degree

n−1∑
k=0

(k + k +N − n+ 1) = Nn.

According to Theorem 3, Equation (2.13) is true for x, y /∈ [−N + 1, 0], and therefore
it is true for all x, y. �

2.2. Meixner polynomials.

Lemma 5. Let 0 ≤ k ≤ n ≤ N and w > 0. Then, as N →∞, we have

N !

(N − k)!

(1 + wN)N−k
(1 + wN)N

∼ (w + 1)−k, (2.14)

and, for all a > 0,

N !

(N − k)!

(1 + wN)k
(1 + wN)N

(a+ k + n+ wN)N−n+1 ∼ w1−a−n(w + 1)a+kN2k−n+1. (2.15)

Proof. From (2.6), we have

N !

(N − k)!

(1 + wN)N−k
(1 + wN)N

=
Γ(N + 1)

Γ(N + 1− k)

Γ(Nw +N + 1− k)

Γ(Nw +N + 1)
.

Using Stirling’s formula [49, Eq. (5.11.1)]

ln Γ(z) =

(
z − 1

2

)
ln(z)− z +

1

2
ln(2π) +O

(
z−1
)
, for z →∞, (2.16)

we obtain

ln

[
Γ(N + 1)

Γ(N + 1− k)

Γ(Nw +N + 1− k)

Γ(Nw +N + 1)

]
= −k ln(w + 1) +O

(
N−1

)
, for N →∞.

Similarly, from (2.6) we have

N !

(N − k)!

(1 + wN)k
(1 + wN)N

(a+ k + n+ wN)N−n+1

=
Γ(N + 1)

Γ(N + 1− k)

Γ(Nw + k + 1)

Γ(Nw +N + 1)

Γ(Nw +N + k + a+ 1)

Γ(Nw + n+ k + a)
.

Then, using (2.16), we get

ln

[
Γ(N + 1)

Γ(N + 1− k)

Γ(Nw + k + 1)

Γ(Nw +N + 1)

Γ(Nw +N + k + a+ 1)

Γ(Nw + n+ k + a)

]
= (2k − n+ 1) ln(N) + (a+ k) ln(w + 1)− (a+ n− 1) ln(w) +O

(
N−1

)
as N →∞. �

Corollary 6. Let 0 < z < 1, a > 0 and n = 1, 2, . . . . Then∑
0≤k1<k2<···<kn

n∏
i=1

[
(a)ki z

ki

ki!

]
Vn(k1, . . . , kn) =

n−1∏
k=0

[
k!(a)k z

k (1− z)−a−2k
]
. (2.17)
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Proof. Multiplying both sides of (2.13) by[
N !

(y)N

]n
,

setting

x = a, y = 1 +
1− z
z

N,

and using (2.14)–(2.15), we obtain

∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
N !

(y)N

(a)ki(y)N−ki
ki! (N − ki)!

]
Vn(k1, . . . , kn)

∼
∑

0≤k1<k2<···<kn

n∏
i=1

[
(a)ki z

ki

ki!

]
Vn(k1, . . . , kn), for N →∞,

and

n−1∏
k=0

[
N !

(y)N

k!

(N − k)!
(a)k (y)k (a+ y + k + n− 1)N−n+1

]

∼
n−1∏
k=0

[
k! (a)k

(
1− z
z

)1−a−n

z−a−kN2k−n+1

]
, for N →∞.

However,

n−1∏
k=0

(1− z)1−a−n = (1− z)−n(a+n−1) =
n−1∏
k=0

(1− z)−a−2k,

n−1∏
k=0

zn−1−k = z
1
2
n(n−1) =

n−1∏
k=0

zk,

and
n−1∏
k=0

N2k−n+1 = 1.

Therefore,

lim
N→∞

∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
(a)ki z

ki

ki!

]
Vn(k1, . . . , kn) =

n−1∏
k=0

[
k! (a)k z

k (1− z)−a−2k
]
. �

The monic Meixner polynomials are defined by [49, Eq. (18.20.7)]

Mn(x) = (a)n
(
1− z−1

)−n
2F1

[
−n, −x

a
; 1− z−1

]
.

For a > 0 and 0 < z < 1, the monic Meixner polynomials satisfy the orthogonality
relation [16]

∞∑
k=0

Mn(k)Mm(k)
(a)k
k!

zk = n! (a)n z
n(1− z)−a−2nδn,m. (2.18)
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If we choose

ck =
(a)k
k!

zk, for k ∈ N0, (2.19)

we see from (2.18) that the monic orthogonal polynomials associated with the linear
functional L defined by

L[p] = lim
N→∞

N∑
k=0

ckp(k) (2.20)

are the Meixner polynomials. Now, from (2.3), we have

det
0≤i,j≤n−1

(
L
[
xi+j

])
= lim

N→∞

∑
0≤k1<k2<···<kn≤N

(
n∏
i=1

cki)Vn(k1, . . . , kn), (2.21)

and using (1.6) and (2.18), we get

lim
N→∞

∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
(a)ki z

ki

ki!

]
Vn(k1, . . . , kn) =

n−1∏
k=0

[
k! (a)k z

k(1− z)−a−2k
]
,

in agreement with (2.17).

Remark 7. The moments associated with (2.19) are given by [17]

µn(z) =
∞∑
k=0

kn (a)k
zk

k!
= (1− z)−a−nPn(z),

where Pn(z) is the polynomial

Pn(z) =
n∑
k=0

S(n, k) (a)k z
k (1− z)n−k, (2.22)

and the coefficients S(n, k) are the Stirling numbers of the second kind defined by [49,
Eq. (26.8)]

S(n, k) =
1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn.

Since

∆n = (1− z)−an−
1
2
n(n−1) det

0≤i,j≤n−1
(Pi+j(z)),

we see from (2.17) that

det
0≤i,j≤n−1

(Pi+j(z)) = z
1
2
n(n−1)

n−1∏
k=0

k! (a)k. (2.23)

The polynomials (2.22) and their Hankel determinants (2.23) seem not to have been
studied before.
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2.3. Charlier polynomials.

Corollary 8. Let z > 0 and n = 1, 2, . . . . Then∑
0≤k1<k2<···<kn

n∏
i=1

[
zki

ki!

]
Vn(k1, . . . , kn) =

n−1∏
k=0

[
(k!)2

zk

k!
ez
]
. (2.24)

Proof. If we do the replacement

z → z

z + a

in (2.17), we obtain

∑
0≤k1<k2<···<kn

n∏
i=1

[
(a)ki

(
z

z+a

)ki
ki!

]
Vn(k1, . . . , kn)

=
n−1∏
k=0

[
(k!)2

(a)k
(

z
z+a

)k
k!

(
1− z

z + a

)−a−2k]
.

The result follows from the limits

lim
a→∞

(a)k
(z + a)k

= lim
a→∞

k−1∏
j=0

a+ j

a+ z
= 1,

and

lim
a→∞

(
1− z

z + a

)−a−2k
lim
a→∞

(
1 +

z

a

)a+2k

= ez. �

The monic Charlier polynomials are defined by [49, Eq. (18.20.7)]

Cn(x) = (−z)n 2F0

[
−n, −x
− ;−z−1

]
.

For z > 0, the monic Charlier polynomials satisfy the orthogonality relation [49,
Eq. (18.19.1)]

∞∑
k=0

Cn(k)Cm(k)
zk

k!
= n!znezδn,m. (2.25)

If we choose

ck =
zk

k!
, for k ∈ N0, (2.26)

we see from (2.25) that the monic orthogonal polynomials associated with the linear
functional L defined by (2.20) are the Charlier polynomials. Using (1.6), (2.3) and
(2.25), we get

lim
N→∞

∑
0≤k1<k2<···<kn≤N

n∏
i=1

[
zki

ki!

]
Vn(k1, . . . , kn)2 =

n−1∏
k=0

(
k!zkez

)
,

in agreement with (2.24).
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Remark 9. The moments associated with (2.26) are given by [17]

µn(z) =
∞∑
k=0

kn
zk

k!
= ezTn(z),

where Tn(z) is the Touchard (or exponential, or Bell) polynomial

Tn(z) =
n∑
k=0

S(n, k)zk.

We clearly have

∆n = enz det
0≤i,j≤n−1

(Ti+j).

The determinant

det
0≤i,j≤n−1

(Ti+j) = z
1
2
n(n−1)

n−1∏
k=0

k!

has been computed by several authors in many different ways, see [5, 20, 24, 36, 46, 50,
51, 54]. The special case z = 1 (Bell numbers), was considered in [2, 13, 43, 58, 65].

3. Conclusions

We have established a connection between C. Krattenthaler’s identity (1.9) and the
Hankel determinants of moments of Hahn polynomials. As we mentioned at the end of
the last section, the corresponding identity for Hankel determinants of Charlier poly-
nomials has appeared in the literature multiple times.

We have not been able to find any other instance of the determinants

det
0≤i,j≤n−1

(
N∑
k=0

ki+jck

)
, det

0≤i,j≤n−1

(
∞∑
k=0

ki+jck

)
,

for general ck, or at least for ck being a hypergeometric term (we do not claim that
they do not exist, but we have not uncovered a single reference). That is why we were
so amazed to learn about (1.9).

The next case of interest will be

ck =
(α1)k (α2)k (α3)k

(β1)k (β2)k

1

k!
, for k ∈ N0,

which is the weight function for the Generalized Hahn polynomials of type II introduced
in [18].

In his work [40], Krattenthaler employed Schur functions to establish (1.9). In [15], we
used Schur functions to compute the Hankel determinants of the Meixner and Charlier
polynomials, and consider some extensions.
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