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A GENERALIZATION OF SCHUR’S P - AND Q-FUNCTIONS

SOICHI OKADA

Dedicated to Christian Krattenthaler on the occasion of his 60th birthday

Abstract. We introduce and study a generalization of Schur’s P -/Q-functions associ-
ated with a polynomial sequence, which can be viewed as “Macdonald’s ninth variation”
for P -/Q-functions. This variation includes as special cases Schur’s P -/Q-functions,
Ivanov’s factorial P -/Q-functions and the t = −1 specialization of Hall–Littlewood func-
tions associated with the classical root systems. We establish several identities and
properties such as generalizations of Schur’s original definition of Schur’s Q-functions, a
Cauchy-type identity, a generalization of the Józefiak–Pragacz–Nimmo formula for skew
Q-functions, and a Pieri-type rule for multiplication.

Contents

1. Introduction
2. Several expressions for generalized P -functions 4
3. Dual P -functions and Cauchy-type identity 11
4. Generalized skew P -functions 16
5. Pieri-type rule 24
6. Applications to factorial P - and Q-functions 28
7. P -functions associated with classical root systems 39
Appendix A. Pfaffian formulas 44
References 49

1. Introduction

Schur (S-)functions and Schur P -/Q-functions are two important families of symmet-
ric functions, and they appear in several parallel situations. For example, in the rep-
resentation theory of the symmetric groups, Schur functions describe the characters of
irreducible linear representations, while Schur Q-functions describe the characters of ir-
reducible projective representations (see [22]). In cohomology theory, Schur functions
represent the Schubert classes of Grassmannians, while Schur Q-functions represent the
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Schubert classes of Lagrangian Grassmannians (see [20]). Moreover, some identities for
Schur functions have their counterparts for Schur P -/Q-functions.

There are several generalizations, variations or deformations of Schur functions, such
as Hall–Littlewood functions, Macdonald functions and factorial Schur functions. The
generalization relevant to this paper is Macdonald’s ninth variation ([11], see also [16])
associated with a polynomial sequence, which is defined as follows.

Let F = {fd}
∞
d=0 be a sequence of polynomials fd(u) ∈ K[u], where K is a ground field

of characteristic 0, such that deg fd = d for d ≥ 0. Given a partition λ of length l ≤ n,
we define the generalized Schur function sFλ (x1, . . . , xn) as the ratio of two alternants,

sFλ (x1, . . . , xn) =
det
(
fλj+n−j(xi)

)
1≤i,j≤n

det
(
fn−j(xi)

)
1≤i,j≤n

, (1.1)

where λl+1 = · · · = λn = 0. The original Schur functions sλ(x) are recovered by setting
fd(u) = ud for d ≥ 0. The factorial Schur functions sλ(x|a) with factorial parameters

a = (a0, a1, . . . ) are obtained by taking fd(u) = (u|a)d =
∏d−1

i=0 (u − ai). Moreover,
classical group characters are special cases of generalized Schur functions. For example,
if the polynomial sequence F = {fd}

∞
d=0 is defined by

fd(x+ x−1) =
xd+1 − x−d−1

x− x−1
(d ≥ 0),

then it is not difficult to see that the generalized Schur function sFλ (x1+x
−1
1 , . . . , xn+x

−1
n )

equals the irreducible character of the symplectic group Sp2n(C) with highest weight λ.
Generalized Schur functions share many of the same properties as the original Schur

functions. For example, they satisfy the modified Jacobi–Trudi identity and the Giambelli
identity,

sFλ (x1, . . . , xn) = det
(
sF(λi−i+j)(xj , . . . , xn)

)
1≤i,j≤l

= det
(
sF(αi|βj)

(x1, . . . , xn)
)
1≤i,j≤r

,

where λ is a partition of length l ≤ n and λ = (α1, . . . , αr|β1, . . . , βr) in Frobenius notation.
The aim of this paper is to introduce and study the “ninth variation” of Schur P -/Q-

functions, which we call generalized P -functions associated with polynomial sequences.
We define generalized P -functions in terms of Nimmo-type formula and derive Pfaffian
identities and basic properties by following a linear algebraic approach similar to [19].

We use the following terminology on polynomial sequences.

Definition 1.1. Let F = {fd}
∞
d=0 be a sequence of polynomials fd(u) ∈ K[u]. We say

that F is admissible if it satisfies the conditions

f0(u) = 1, deg fd = d (d ≥ 1). (1.2)

An admissible sequence F is called constant-term free if fd(0) = 0 for any d ≥ 1.

In this article, a partition of length l is a weakly decreasing sequence λ = (λ1, . . . , λl) of

positive integers. We write l = l(λ) and |λ| =
∑l

i=1 λi. A partition λ of length l is called
strict if λ1 > · · · > λl. The empty sequence ∅ is the unique strict partition of length 0.
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For a sequence x = (x1, . . . , xn) of n indeterminates, we put

A(x) =

(
xj − xi
xj + xi

)

1≤i,j≤n

, ∆(x) =
∏

1≤i<j≤n

xj − xi
xj + xi

. (1.3)

Now we give a definition of generalized P -functions associated with polynomial sequences
in terms of a Nimmo-type formula (see [18, (A13)]).

Definition 1.2. Let n be a positive integer and x = (x1, . . . , xn) a sequence of n in-
determinates. For an admissible sequence F = {fd}

∞
d=0 of polynomials and a sequence

α = (α1, . . . , αr) of nonnegative integers, let V F
α (x) be the n× r matrix given by

V F
α (x) =

(
fαj

(xi)
)
1≤i≤n,1≤j≤r

.

Given a strict partition λ of length l, we define the corresponding generalized P -function
PF
λ (x) associated with F by putting

PF
λ (x) =





1

∆(x)
Pf

(
A(x) V F

λ (x)

−tV F
λ (x) O

)
, if n + l is even,

1

∆(x)
Pf

(
A(x) V F

λ0(x)

−tV F
λ0 (x) O

)
, if n + l is odd,

(1.4)

where λ0 = (λ1, . . . , λl, 0). We simply write Vα(x) and Pλ(x) for V F
α (x) and PF

λ (x) if
there is no confusion, e.g., in the proofs.

Note that (see Proposition A.1)

∆(x) =





Pf A(x), if n is even,

Pf

(
A(x) 1

−t1 0

)
, if n is odd,

where 1 is the all-one column vector of appropriate size. Hence our definition (1.4) can
be regarded as a counterpart of the definition (1.1) of generalized Schur functions.

Example 1.3. (1) It follows from Nimmo’s formula [18, (A13)] that we recover the
original Schur P -function Pλ(x) and Schur Q-function Qλ(x) by setting fd(u) = ud

and fd(u) = 2ud, respectively.
(2) It follows from the Nimmo-type formula [7, Theorem 3.2] that Ivanov’s factorial

P -function Pλ(x|a) and Q-function Qλ(x|a) are obtained by taking fd(u) = (u|a)d

and fd(u) = 2(u|a)d, respectively.
(3) As we will see in Section 7, our generalized P -functions include the t = −1 spe-

cializations of Hall–Littlewood functions associated with the root systems of type
B, C and D.

Ikeda and Naruse [4], and Nakagawa and Naruse [17] introduced other generalizations
of factorial P - and Q-functions from the viewpoint of Schubert calculus. In a very recent
paper [2], Foley and King give a combinatorial generalization of Schur Q-functions in
terms of shifted tableaux and prove several Pfaffian formulas.

The organization and main results of this paper are as follows. In Section 2, we re-
late our definition of generalized P -functions (Definition 1.2) with generalizations of two
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other definitions of Schur P -/Q-functions. Namely, we prove that PF
λ (x) is also ob-

tained by setting t = −1 in the generalized Hall–Littlewood function associated with a
polynomial sequence (see Theorem 2.3), and that PF

λ (x) is expressed as the Pfaffian of
the skew-symmetric matrix with entries PF

(λi,λj)
(x) (see Theorem 2.6). In Section 3, we

introduce the notion of generalized dual P -functions P̂F
λ (x) and prove a corresponding

Cauchy-type identity. In Section 4, we define generalized skew P -functions PF
λ/µ,p(x) in

terms of a Józefiak–Pragacz–Nimmo-type Pfaffian and prove that PF
λ/µ,p(x) appears as

the coefficient of PF
µ (y) in the expansion of PF

λ (x,y) (see Theorem 4.2). In Section 5, we

consider the modified Pieri coefficients in the expansion of the product PF
µ (x) · Q(r)(x)

and obtain a determinant formula for the generating function of modified Pieri coefficients
(see Theorem 5.3). Section 6 focuses on Ivanov’s factorial P -/Q-functions. We derive a
determinant formula for the factorial skew P -function in one variable (see Theorem 6.5),
and an explicit product formula for the generating function of modified Pieri coefficients
(see Theorem 6.6). In Section 7, we show that the Hall–Littlewood functions at t = −1
associated with the classical root systems can be written as generalized P -functions asso-
ciated with certain polynomial sequences (see Theorem 7.2). Appendix A collects some
Schur-type Pfaffian evaluations and useful formulas.

2. Several expressions for generalized P -functions

In this section, we give several expressions for generalized P -functions associated with
an admissible polynomial sequence, and we study their basic properties.

2.1. Hall–Littlewood-type expression. In this subsection, we prove that our gener-
alized P -functions are obtained as the t = −1 specialization of Hall–Littlewood-type
functions.

We begin with the following proposition.

Proposition 2.1. Let F be an admissible sequence of polynomials and x = (x1, . . . , xn).
Then we have:

(1) For the empty partition ∅, we have PF
∅ (x) = 1.

(2) If λ is a strict partition of length > n, then we have PF
λ (x) = 0.

Proof. By using the definition (1.4), we can derive (1) from the Pfaffian evaluations (A.3)
and (A.4), and (2) from Proposition A.5. �

We define a generalization of Hall–Littlewood polynomials associated with an admissible
polynomial sequence.

Definition 2.2. Let n be a positive integer and x = (x1, . . . , xn). Given a partition λ
of length l ≤ n, we regard λ as a sequence (λ1, . . . , λl, 0, . . . , 0) of length n, and define a

polynomial v
(n)
λ (t) by putting

v
(n)
λ (t) =

∏

k≥0

[mk]t!,
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where mk = {i : 1 ≤ i ≤ n, λi = k} and [m]t! =
∏m

j=1(1− tj)/(1 − t). For an admissible
polynomial sequence F and a partition λ of length ≤ n, we define the generalized Hall–

Littlewood function PF
λ (x; t) corresponding to λ by putting

PF
λ (x; t) =

1

v
(n)
λ (t)

∑

w∈Sn

w

(
n∏

i=1

fλi
(xi)

∏

1≤i<j≤n

xi − txj
xi − xj

)
, (2.1)

where Sn is the symmetric group acting on K(t)[x1, . . . , xn] by permuting variables. We
write Pλ(x; t) for P

F
λ (x; t) when there is no confusion.

Setting fd(u) = ud for d ≥ 0, we recover the original Hall–Littlewood polynomials. The
following is the main theorem of this subsection.

Theorem 2.3. For an admissible sequence F and a strict partition λ of length l ≤ n, we
have

PF
λ (x) = PF

λ (x;−1). (2.2)

Note that Equation (2.2) with fd(u) = ud is the definition of Schur P -function adopted
in [12, III.8]. For the sake of completeness and later use, we give a proof of this theorem,
which follows the argument in [18, Appendix]. As a first step, we show the following
lemma.

Lemma 2.4. For a strict partition λ of length l ≤ n, we have

PF
λ (x;−1) =

∑

u∈Sn/Sn−l

u




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj


 (2.3)

=
1

(n− l)!

∑

u∈Sn

u




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj


 , (2.4)

where Sn−l is the symmetric group on the last n− l variables xl+1, . . . , xn.

Proof. Since f0(u) = 1 and the product
∏

1≤i<j≤n,i≤l(xi− txj)/(xi−xj) is invariant under
Sn−l, we have

Pλ(x; t)

=
1

v
(n)
λ (t)

∑

w′∈Sn/Sn−l

w′




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi − txj
xi − xj

∑

w′′∈Sn−l

w′′

(
∏

l+1≤i<j≤n

xi − txj
xi − xj

)
 .

By using (see [10, Theorem 2.8])

∑

w′′∈Sn−l

w′′

(
∏

l+1≤i<j≤n

xi − txj
xi − xj

)
= [n− l]t! = v

(n)
λ (t),
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we have

Pλ(x; t) =
∑

w′∈Sn/Sn−l

w′




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi − txj
xi − xj


 .

By specializing t = −1, we obtain (2.3), from which (2.4) follows. �

Proof of Theorem 2.3. Since ∆(x) is alternating in x1, . . . , xn, it follows from (2.3) that

Pλ(x;−1) =
(−1)(

n
2)+(

n−l
2 )

∆(x)

∑

v∈Sn/Sn−l

sgn(v)v

(
l∏

i=1

fλi
(xi)

∏

l+1≤i<j≤n

xj − xi
xj + xi

)
.

Since
∏

l+1≤i<j≤n(xj − xi)/(xj + xi) is invariant under the symmetric group Sl acting on
the first l variables x1, . . . , xl, we have

Pλ(x;−1)

=
(−1)(

n

2)+(
n−l

2 )

∆(x)

∑

v′∈Sn/(Sl×Sn−l)

sgn(v′)v′

(
∑

v′′∈Sl

sgn(v′′)v′′

(
l∏

i=1

fλi
(xi)

)
∏

l+1≤i<j≤n

xj − xi
xj + xi

)

=
(−1)(

n

2)+(
n−l

2 )

∆(x)

∑

v′∈Sn/(Sl×Sn−l)

sgn(v′)v′

(
det
(
fλj

(xi)
)
1≤i,j≤l

∏

l+1≤i<j≤n

xj − xi
xj + xi

)
.

We take R = {u ∈ Sn : u(1) < · · · < u(l), u(l + 1) < · · · < u(n)} as a complete
set of coset representatives of Sn/(Sl × Sn−l). We note that the correspondence u 7→
{u(l + 1), . . . , u(n)} gives a bijection between the coset representatives R and the set(
[n]
n−l

)
of all (n− l)-element subsets of [n] = {1, . . . , n}.

First we consider the case where n − l is even. In this case, by using Schur’s Pfaffian
evaluation (A.3), we have

Pλ(x;−1) =
(−1)(

n
2)+(

n−l
2 )

∆(x)

∑

u∈Sn/Sl×Sn−l

sgn(u)u
(
det Vλ(x[l]) Pf A(x[n]\[l])

)
,

where [l] = {1, . . . , l}, [n]\ [l] = {l+1, . . . , n} and xJ = (xj1, . . . , xjm) for J = {j1, . . . , jm}
with j1 < · · · < jm. On the other hand, by applying Proposition A.5 (a Pfaffian version
of the Laplace expansion) to the matrices Z = A(x) and W = Vλ(x), we obtain

Pf

(
A(x) Vλ(x)

−tVλ(x) O

)
=

∑

I∈( [n]
n−l)

(−1)Σ(I)−(n2) Pf A(xI) det Vλ(x[n]\I),

where Σ(I) =
∑

i∈I i. Since n − l is even, we can see that, if u ∈ R corresponds to

I ∈
(
[n]
n−l

)
, then the inversion number of u is given by

inv(u) =

(
n + 1

2

)
−

(
l + 1

2

)
− Σ(I) ≡

(
n

2

)
−

(
l

2

)
+ Σ(I) mod 2.
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Hence we have

Pf

(
A(x) Vλ(x)

−tVλ(x) O

)
=

∑

u∈Sn/(Sl×Sn−l)

(−1)(
l

2) sgn(u)u
(
det Vλ(x[l]) Pf A(x[n]\[l])

)
,

and

Pλ(x;−1) =
(−1)(

n
2)+(

n−l
2 )+(

l
2)

∆(x)
Pf

(
A(x) Vλ(x)

−tVλ(x) O

)
.

Now we can use the relation
(
n
2

)
−
(
l
2

)
−
(
n−l
2

)
= l(n− l) ≡ 0 mod 2 to complete the proof

of (2.2) in the case where n− l is even.
Next we consider the case where n− l is odd. In this case, by using (A.4), we see that

Pλ(x;−1) =
(−1)(

n

2)+(
n−l

2 )

∆(x)

∑

u∈Sn/(Sl×Sn−l)

sgn(u)u

(
det Vλ(x[l]) Pf

(
A(x[n]\[l]) 1

−t1 0

))
,

where 1 is the all-one column vector. On the other hand, by applying Proposition A.5 to
the matrices

Z =

(
A(x) 1

−t1 0

)
, W =

(
Vλ(x)
O

)
,

we see that

Pf




A(x) 1 Vλ(x)
−t1 0 O

−tVλ(x) O O


 =

∑

I

(−1)Σ(I)−(n+1
2 ) Pf Z(I) detW ([n+ 1] \ I; [l]),

where I runs over all (n+ 1− l)-element subsets of [n + 1]. If n+ 1 6∈ I, then we have

detW ([n+ 1] \ I; [l]) = det

(
Vλ(x[n]\I)

O

)
= 0.

Hence we have

Pf




A(x) 1 Vλ(x)
−t1 0 O

−tVλ(x) O O


 =

∑

I∈( [n]
n−l)

(−1)Σ(I∪{n+1})−(n+1
2 ) Pf

(
A(xI) 1

−t1 0

)
det Vλ(x[n]\I).

Since n− l is odd, we see that, if u ∈ R corresponds to I ∈
(
[n]
n−l

)
, then we have

inv(u) =

(
n + 1

2

)
−

(
l + 1

2

)
− Σ(I) ≡

(
n + 1

2

)
−

(
l

2

)
− Σ(I ∪ {n+ 1}) mod 2.

Moreover, by permuting rows/columns we have

Pf




A(x) 1 Vλ(x)
−t1 0 O

−tVλ(x) O O


 = (−1)l Pf

(
A(x) Vλ0(x)

−tVλ0(x) O

)
.

Hence we have

Pf

(
A(x) Vλ0(x)

−tVλ0(x) O

)
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=
∑

u∈Sn/(Sl×Sn−l)

(−1)(
l

2)+l sgn(u)u
(
Pf

(
A(x[n]\[l]) 1

−t1 0

)
det Vλ(x[l])

)
,

and

Pλ(x;−1) =
(−1)(

n
2)+(

n−l
2 )+(l2)+l

∆(x)
Pf

(
A(x) Vλ0(x)

−tVλ0(x) O

)
.

Now we can complete the proof in the case where n − l is odd by using the congruence
relation

(
n
2

)
−
(
l
2

)
−
(
n−l
2

)
= l(n− l) ≡ l mod 2. �

By combining Theorem 2.3 and Lemma 2.4, we obtain the following corollary.

Corollary 2.5. For a strict partition λ of length l ≤ n, we have

PF
λ (x) =

∑

u∈Sn/Sn−l

u




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj


 (2.5)

=
1

(n− l)!

∑

u∈Sn

u




l∏

i=1

fλi
(xi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj


 . (2.6)

2.2. Schur-type Pfaffian formula. In this subsection, we use the definition (1.4) and a
Pfaffian version of the Sylvester formula (Proposition A.4) to derive a Schur-type Pfaffian
formula for PF

λ (x), which generalizes (a part of) Schur’s original definition of Schur Q-
functions [22, §35] and a similar formula for factorial Q-functions [7, Theorem 9.1]. We
use the following conventions:

PF
(0)(x) = 1, (2.7)

PF
(s,r)(x) = −PF

(r,s)(x), PF
(r,0)(x) = −PF

(0,r)(x) = PF
(r)(x), PF

(0,0)(x) = 0, (2.8)

where r and s are positive integers.

Theorem 2.6. Let F be an admissible sequence. For a sequence α = (α1, . . . , αr) of

nonnegative integers, let SF
α (x) be the r × r skew-symmetric matrix defined by

SF
α (x) =

(
PF
(αi,αj)

(x)
)
1≤i,j≤r

. (2.9)

Then, for a strict partition λ of length l, we have

PF
λ (x) =

{
Pf SF

λ (x), if l is even,

Pf SF
λ0(x), if l is odd,

(2.10)

where λ = (λ1, . . . , λl) and λ
0 = (λ1, . . . , λl, 0).

In order to prove this theorem, we can use the same argument as in [19, Theorem 4.1 (3)
and Remark 4.3]. As we will see in Proposition 2.7, the generalized P -functions do not
have the stability property, so we cannot reduce the proof to the case where n is even.
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Proof. By applying Proposition A.4 to the matrix X given by

X =





(
A(x) Vλ(x)

−tVλ(x) O

)
, if n is even and l is even,

(
A(x) Vλ0(x)

−tVλ0(x) O

)
, if n is even and l is odd,




A(x) 1 Vλ(x)

−t1 0 O

−tVλ(x) O O


 , if n is odd and l is even,




A(x) 1 Vλ(x) 0

−t1 0 O −1

−tVλ(x) O O O

0 1 O 0


 , if n is odd and l is odd.

If n is even, then we have

PfX

PfX([n])
= Pλ(x),

PfX([n] ∪ {n+ i, n + j})

PfX([n])
= P(λi,λj)(x).

If n is odd and l is even, then, by permuting rows/columns, we see that

PfX

PfX([n + 1])
= Pλ(x),

PfX([n + 1] ∪ {n+ 1 + i, n + 1 + j})

PfX([n+ 1])
= P(λi,λj)(x).

If n is odd and l is odd, then by expanding the Pfaffians along the last row/column, we
have

PfX

PfX([n+ 1])
= Pλ(x),

PfX([n+ 1] ∪ {n+ 1 + i, n+ 1 + (l + 1)})

PfX([n+ 1])
= P(λi)(x),

and by permuting rows/columns we see that

PfX([n + 1] ∪ {n+ 1 + i, n + 1 + j})

PfX([n + 1])
= P(λi,λj)(x).

Now Theorem 2.6 follows immediately from Proposition A.4. �

2.3. Stability. The Schur P -functions have the stability property (see [12, III, (2.5)])

Pλ(x1, . . . , xn, 0) = Pλ(x1, . . . , xn).

Our generalizations PF
λ (x) do not have the stability property in general. For example we

can show that
PF
(r)(x1, . . . , xn, 0) = PF

(r)(x1, . . . , xn) + (−1)nfr(0)

for r ≥ 1. The following “mod 2 stability property” was given by [3, Proposition 8.1] for
factorial P -functions.

Proposition 2.7. Let F be an admissible sequence, and λ a strict partition.

(1) In general, we have

PF
λ (x1, . . . , xn, 0, 0) = PF

λ (x1, . . . , xn).
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(2) If F is constant-term free, then we have

PF
λ (x1, . . . , xn, 0) = PF

λ (x1, . . . , xn).

Proof. (1) Let x = (x1, . . . , xn) and x̃ = (x1, . . . , xn, xn+1). It follows from the definition
(1.4) that

Pλ(x1, . . . , xn, xn+1, 0) =
1

(−1)n+1∆(x̃)
Pf




A(x̃) −1 Vλ∗(x̃)
t1 0 Vλ∗(0)

−tVλ∗(x̃) −tVλ∗(0) O


 ,

where λ∗ = λ or λ0 according to whether n+ l is even or odd, and Vα(0) is the row vector
(fα1(0), . . . , fαr

(0)). Hence, if we put xn+1 = 0 in the above formula, we have

Pλ(x1, . . . , xn, 0, 0) =
1

(−1)n+1 · (−1)n∆(x)
Pf




A(x) −1 −1 Vλ∗(x)
t1 0 −1 Vλ∗(0)
t1 1 0 Vλ∗(0)

−tVλ∗(x) −tVλ∗(0) −tVλ∗(0) O


 .

By subtracting the (n + 1)st row/column from the (n + 2)nd row/column and then by
expanding the resulting Pfaffian along the (n + 2)nd row/column, we see that

Pλ(x1, . . . , xn, 0, 0) =
1

(−1)n+1 · (−1)n∆(x)
· (−1) Pf

(
A(x) Vλ∗(x)

−tVλ∗(x) O

)
= Pλ(x).

(2) By the definition (1.4), we have

Pλ(x1, . . . , xn, 0) =
1

(−1)n∆(x)
Pf




A(x) −1 Vλ∗(x)
t1 0 Vλ∗(0)

−tVλ∗(x) −tVλ∗(0) O


 ,

where λ∗ = λ0 or λ according to whether n+ l is even or odd. If n+ l is even, by adding
the (n + 1)st row/column to the last row/column and then by expanding the resulting
Pfaffian along the last row/column, we see that Pλ(x, 0) = Pλ(x). If n + l is odd, then
by permuting rows/columns, we obtain Pλ(x, 0) = Pλ(x). �

2.4. Relation with generalized Schur functions. We conclude this section by proving
a relation between generalized P -functions and generalized Schur functions.

Proposition 2.8. Let F be an admissible sequence and x = (x1, . . . , xn). For a partition

µ of length m ≤ n, let µ + δn be the strict partition obtained from (µ1 + n− 1, µ2 + n −
2, . . . , µn−1 + 1, µn) by removing 0s, where µm+1 = · · · = µn = 0. Then we have

PF
µ+δn(x) =

∏

1≤i<j≤n

(xi + xj) · s
F
µ (x),

where sFµ (x) is the generalized Schur function given by (1.1).

Proof. Since the strict partition µ+ δn has length n− 1 or n, it follows from (2.6) that

PF
µ+δn(x) =

∑

w∈Sn

w

(
n∏

i=1

fµi+n−i(xi)
∏

1≤i<j≤n

xi + xj
xi − xj

)
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=
∏

1≤i<j≤n

xi + xj
xi − xj

∑

w∈Sn

sgn(w)w

(
n∏

i=1

fµi+n−i(xi)

)

=
∏

1≤i<j≤n

(xi + xj) · s
F
µ (x). �

3. Dual P -functions and Cauchy-type identity

In this section, we introduce the dual of generalized P -functions and prove a Cauchy-
type identity for generalized P -functions.

3.1. Dual sequences. For a nonzero formal power series g(v) =
∑∞

i=0 biv
i ∈ K[[v]],

the order ord g of g is defined to be the minimum integer k such that bk 6= 0. Let
〈 , 〉 : K[u]×K[[v]] → K be the non-degenerate bilinear pairing defined by

〈ui, vj〉 =





1, if i = j = 0,

1/2, if i = j > 0,

0, if i 6= j.

Lemma 3.1. Let F = {fd}
∞
d=0 be an admissible sequence of polynomials.

(1) Let F̂ = {f̂d}
∞
d=0 be a sequence of formal power series f̂d(v) ∈ K[[v]] satisfying

ord f̂d = d for d ≥ 0. Then 〈fk, f̂l〉 = δk,l for any k, l ≥ 0 if and only if

∞∑

k=0

fk(u)f̂k(v) =
1 + uv

1− uv
. (3.1)

(2) There exists a unique sequence F̂ = {f̂d}
∞
d=0 satisfying ord f̂d = d for d ≥ 0 and

the equivalent conditions in (1). We call such a sequence F̂ the dual of F .

(3) If F̂ = {f̂d}
∞
d=0 is the dual of F , then F is constant-term free if and only if f̂0 = 1.

Proof. (1), (2) We write fd(u) =
∑

i≥0 ad,iu
i and f̂d(v) =

∑
i≥0 bd,iv

i. Since deg fd = d

and ord f̂d = d, we have ad,i = 0 for i ≥ d+ 1 and bd,i = 0 for i ≤ d− 1. We define b′d,i by
putting

b′d,i =

{
bd,0, if i = 0,

bd,i/2, if i > 0.

Fix a nonnegative integerN and consider two (N+1)×(N+1) matrices A = (ai,j)0≤i,j≤N

and B′ = (b′i,j)0≤i,j≤N . Then it is easy to see that

(a) 〈fk, f̂l〉 = δk,l for all 0 ≤ k, l ≤ N if and only if A · tB′ = IN+1;

(b)
∑

k≥0 fk(u)f̂k(v) = (1+uv)/(1−uv) in the quotient ring K[[u, v]]/(uN+1, vN+1) if

and only if tA · B′ = IN+1.

The claims (1) and (2) follow from this observation.

(3) If fd(0) = 0 for any d ≥ 1, then by substituting u = 0 in (3.1) we obtain f̂0(v) = 1.

Conversely, if f̂0 = 1, then 〈fd, f̂0〉 = δd,0 is equal to the constant term of fd. �
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For example, if fd(u) = ud for d ≥ 0, then the dual of F is given by

f̂d(v) =

{
1, if d = 0,

2vd, if d ≥ 1.

See Lemma 6.1 for the dual of the sequence {(u|a)d}∞d=0 of factorial monomials.

3.2. Generating functions of generalized P -functions. For a sequence of variables
x = (x1, . . . , xn) and another variable z, we put

Πz(x) =

n∏

i=1

1 + xiz

1− xiz
. (3.2)

Then the generating functions of Schur Q-functions Q(r)(x) and Q(r,s)(x) are expressed
as

∑

r≥0

Q(r)(x)z
r = Πz(x), (3.3)

∑

r,s≥0

Q(r,s)(x)z
rws =

z − w

z + w

(
Πz(x)Πw(x)− 1

)
, (3.4)

respectively (see [12, III, (8.1)] and [23, p. 117]). We can generalize these generating

functions in terms of the dual sequence F̂ .

Proposition 3.2. Let F = {fd}
∞
d=0 be an admissible sequence of polynomials, and F̂ =

{f̂d}
∞
d=0 the dual sequence of F . Then we have:

(1) The generating function of generalized P -functions PF
(r)(x) is given by

∑

r≥0

PF
(r)(x)f̂r(z) =

{
Πz(x), if n is odd,

Πz(x) + f̂0(z)− 1, if n is even,
(3.5)

under the convention (2.7).
(2) The generating function of generalized P -functions PF

(r,s)(x) is given by

∑

r,s≥0

PF
(r,s)(x)f̂r(z)f̂s(w)

=





z − w

z + w

(
Πz(x)Πw(x)− 1

)
+ (f̂0(w)− 1)Πz(x)− (f̂0(z)− 1)Πw(x),

if n is odd,
z − w

z + w

(
Πz(x)Πw(x)− 1

)
, if n is even,

(3.6)

under the convention (2.8).

If we set fd(u) = (u|a)d (factorial monomial) with a0 = 0, then it follows from
Lemma 6.1 that the formulas (3.5) and (3.6) reduce to the formulas given in [7, The-
orem 8.2] and [7, Theorem 8.4] for factorial P -functions.
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Proof. The idea of the proof is similar to that of [19, Theorem 4.1 (1) and (2)]. Let Bz(x)
be the column vector with ith entry (1 + xiz)/(1− xiz). By (3.1) we have

∑

r≥0

f̂r(z)V(r)(x) = Bz(x),
∑

r≥1

f̂r(z)V(r)(x) = Bz(x)− f̂0(z)1.

(1) If n is odd, then by the definition (1.4) and the multilinearity of Pfaffians, we have

∑

r≥0

P(r)(x)f̂r(z) =
1

∆(x)
Pf

(
A(x) Bz(x)

−tBz(x) O

)
,

which equals Πz(x) by (A.5). Similarly, if n is even, then we have

∑

r≥0

P(r)(x)f̂r(z) = f̂0(z) +
1

∆(x)
Pf




A(x) Bz(x)− f̂0(z)1 1

−tBz(x) + f̂0(z)
t1 0 0

−t1 0 0


 .

By adding the last row/column multiplied by f̂0(z) to the second to last row/column, and
by then using (A.6) with w = 0, we obtain

∑

r≥0

P(r)(x)f̂r(z) = f̂0(z) +
1

∆(x)
Pf




A(x) Bz(x) 1

−tBz(x) 0 0
−t1 0 0


 = f̂0(z) + (Πz(x)− 1) .

(2) If n is even, then we have

∑

r,s≥0

P(r,s)(x)f̂r(z)f̂s(w) =
1

∆(x)
Pf




A(x) Bz(x) Bw(x)
−tBz(x) 0 0
−tBw(x) 0 0


 ,

and this equals (z − w)/(z + w) · (Πz(x)Πw(x)− 1) by (A.6). If n is odd, then we have
∑

r,s≥0

P(r,s)(x)f̂r(z)f̂s(w)

=
∑

r,s>0

P(r,s)(x)f̂r(z)f̂s(w) +
∑

r≥0

P(r,0)(x)f̂r(z)f̂0(w) +
∑

s≥0

P(0,s)(x)f̂0(z)f̂s(w)

=
1

∆(x)
Pf




A(x) Bz(x)− f̂0(z)1 Bw(x)− f̂0(w)1 1

−tBz(x) + f̂0(z)
t1 0 0 0

−tBw(x) + f̂0(w)
t1 0 0 0

−t1 0 0 0




+ f̂0(w) ·
1

∆(x)
Pf

(
A(x) Bz(x)− f̂0(z)1

−tBz(x) + f̂0(z)
t1 0

)

− f̂0(z) ·
1

∆(x)
Pf

(
A(x) Bw(x)− f̂0(w)1

−tBw(x) + f̂0(w)
t1 0

)
.

By adding the last row/column multiplied by f̂0(z) (respectively f̂0(w)) to the third
(respectively second) to last row/column in the first Pfaffian, we see that
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Pf




A(x) Bz(x)− f̂0(z)1 Bw(x)− f̂0(w)1 1

−tBz(x) + f̂0(z)
t1 0 0 0

−tBw(x) + f̂0(w)
t1 0 0 0

−t1 0 0 0




= Pf




A(x) Bz(x) Bw(x) 1

−tBz(x) 0 0 0
−tBw(x) 0 0 0

−t1 0 0 0


 .

By using the multilinearity of Pfaffians, we have

Pf

(
A(x) Bz(x)− f̂0(z)1

−tBz(x) + f̂0(z)
t1 0

)

= Pf

(
A(x) Bz(x)

−tBz(x) 0

)
− f̂0(z) Pf

(
A(x) 1

−t1 0

)
,

Pf

(
A(x) Bw(x)− f̂0(w)1

−tBw(x) + f̂0(w)
t1 0

)

= Pf

(
A(x) Bw(x)

−tBw(x) 0

)
− f̂0(w) Pf

(
A(x) 1

−t1 0

)
.

Hence we can use (A.7), (A.5) and (A.4) to evaluate these Pfaffians and complete the
proof. �

3.3. Dual P -functions and Cauchy-type identity. In this section, we introduce the
dual P -functions and prove a Cauchy-type identity.

Definition 3.3. Let F = {fd}
∞
d=0 be an admissible sequence and F̂ = {f̂d}

∞
d=0 the dual

of F . For a sequence α = (α1, . . . , αr) of nonnegative integers, let V̂ F
α (x) be the n × r

matrix given by

V̂ F
α (x) =

(
f̂αj

(xi)
)
1≤i≤n,1≤j≤r

.

Given a strict partition λ of length l, we define the generalized dual P -functions P̂F
λ (x)

by putting

P̂F
λ (x) =





1

∆(x)
Pf

(
A(x) V̂ F

λ (x)

−tV̂ F
λ (x) O

)
, if n + l is even,

1

∆(x)
Pf

(
A(x) V̂ F

λ0(x)

−tV̂ F
λ0 (x) O

)
, if n + l is odd,

(3.7)

where λ0 = (λ1, . . . , λl, 0).

If fd(u) = ud for d ≥ 0, then f̂d(v) = 2vd for d ≥ 0. Hence PF
λ (x) = Pλ(x) is the

original Schur P -function, and the dual P -function P̂F
λ (x) = Qλ(x) is the original Schur

Q-function.
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By the same arguments as in Section 2, we obtain the following proposition.

Proposition 3.4. Suppose that F = {fd}
∞
d=0 is a constant-term free admissible sequence

with dual F̂ = {f̂d}
∞
d=0. Then we have:

(1) For a strict partition of length l ≤ n, we have

P̂F
λ (x) =

1

(n− l)!

∑

u∈Sn

u




l∏

i=1

f̂λi
(xi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj


 . (3.8)

(2) For a sequence α = (α1, . . . , αr) of nonnegative integers, let ŜF
α (x) be the r × r

skew-symmetric matrix defined by

ŜF
α (x) =

(
P̂F
(αi,αj)

(x)
)
1≤i,j≤r

,

where we use the same convention as (2.8). Then, for a strict partition λ of

length l, we have

P̂F
λ (x) =

{
Pf ŜF

λ (x), if l is even,

Pf ŜF
λ0(x), if l is odd.

(3.9)

(3) For a strict partition λ, we have

P̂F
λ (x1, . . . , xn, 0) = P̂F

λ (x1, . . . , xn). (3.10)

Proof. By Lemma 3.1 (3), we have f̂0 = 1 for a constant-term free admissible sequence F .
Hence the proofs of Theorems 2.3, 2.6 and Proposition 2.7 (2) work literally in this dual
setting. �

For Schur’s P - and Q-functions we have the following Cauchy-type identity (see [12,
III, (8.13)], and [19, Theorem 5.1] for a linear algebraic proof):

∑

λ

Pλ(x)Qλ(y) =
n∏

i,j=1

1 + xiyj
1− xiyj

,

where x = (x1, . . . , xn), y = (y1, . . . , yn), and the summation is taken over all strict
partitions of length ≤ n. We can use the notion of dual P -functions to formulate a
Cauchy-type identity for generalized P -functions.

Theorem 3.5. Let F be an admissible sequence of polynomials, and let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be two sequences of indeterminates. Then we have

∑

λ

PF
λ (x)P̂F

λ (y) =
n∏

i,j=1

1 + xiyj
1− xiyj

,

where λ runs over all strict partitions.

Proof. We use the same argument as in the proof of [19, Theorem 5.1]. Apply a Pfaffian
version of the Cauchy–Binet formula (A.16) to the matrices

A = A(x), B = A(y), S =
(
fk(xi)

)
1≤i≤n,k≥0

, T =
(
f̂k(yi)

)
1≤i≤n,k≥0

.
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Strict partitions λ are in bijection with subsets of N satisfying #I = n mod 2 via the
correspondence λ 7→ I = {λ1, . . . , λl(λ)} or {λ1, . . . , λl(λ), 0}. Furthermore, we have

PF
λ (x) =

(−1)(
#I
2 )

∆(x)
Pf

(
A(x) S([n]; I)

−tS([n]; I) O

)
,

P̂F
λ (y) =

(−1)(
#I

2 )

∆(y)
Pf

(
A(y) T ([n]; I)

−tT ([n]; I) O

)
,

where S([n]; I) and T ([n]; I) are the submatrices of S and T , respectively, obtained
by picking up the columns indexed by I. Since the (i, j) entry of StT is equal to
(1 + xiyj)/(1 − xiyj) by (3.1), we can complete the proof by using the Pfaffian evalu-
ation (A.5). �

4. Generalized skew P -functions

In this section, we introduce generalized skew P -functions in terms of a Józefiak–
Pragacz–Nimmo-type Pfaffian, and study their properties.

4.1. Józefiak–Pragacz–Nimmo-type formula. First we define generalized skew P -
functions associated with an admissible sequence.

Definition 4.1. Let F = {fd}
∞
d=0 be an admissible sequence. For a pair of nonnegative

integers r and k, we define a symmetric polynomial RF
r/k(x) by the relation

PF
(r)(x1, . . . , xn, y) =

∞∑

k=0

RF
r/k(x1, . . . , xn)fk(y). (4.1)

For two sequences α = (α1, . . . , αr) and β = (β1, . . . , βs) of nonnegative integers, let
Mα/β(x) be the r × s matrix given by

MF
α/β(x) =

(
RF

αi/βs+1−j
(x)
)
1≤i≤r,1≤j≤s

. (4.2)

For a pair of strict partitions λ of length l and µ of length m and a positive integer p, we
define the generalized skew P -function PF

λ/µ,p(x) by putting

PF
λ/µ,p(x) =





Pf

(
SF
λ (x) MF

λ/µ(x)

−tMF
λ/µ(x) O

)
, if l ≡ p and m ≡ p mod 2,

Pf

(
SF
λ (x) MF

λ/µ0(x)

−tMF
λ/µ0(x) O

)
, if l ≡ p and m 6≡ p mod 2,

Pf

(
SF
λ0(x) MF

λ0/µ(x)

−tMF
λ0/µ(x) O

)
, if l 6≡ p and m ≡ p mod 2,

Pf

(
SF
λ0(x) MF

λ0/µ0(x)

−tMF
λ0/µ0(x) O

)
, if l 6≡ p and m 6≡ p mod 2,

(4.3)

where SF
α (x) is the skew-symmetric matrix defined in (2.9), and λ0 = (λ1, . . . , λl, 0),

µ0 = (µ1, . . . , µm, 0).
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The main result of this section is the following theorem, which is a generalization of
the Józefiak–Pragacz–Nimmo formula for Schur P/Q functions (see [21, Theorem 1] and
[18, (2.22)]).

Theorem 4.2. For two sequences of variables x = (x1, . . . , xn) and y = (y1, . . . , yp), we
have

PF
λ (x,y) =

∑

µ

PF
λ/µ,p(x)P

F
µ (y), (4.4)

where µ runs over all strict partitions.

We postpone the proof of this theorem to the next subsection. Before the proof, we
derive several properties of generalized skew P -functions from the definition (4.3). We
begin with the following property of RF

r/k(x).

Lemma 4.3. For a positive integer r, the generalized P -function PF
(r)(x, y) has degree at

most r in y. Hence we have RF
r/k(x) = 0 unless r ≥ k.

Proof. The coefficient of zr in Πz(x, y) =
∏n

i=1(1 + xiz)/(1 − xiz) · (1 + yz)/(1 − yz)

has degree at most r in y. On the other hand, since ord f̂r = r, the coefficient of zr

in
∑

r≥0 P
F
(r)(x, y)f̂r(z) is a linear combination of PF

(0)(x, y), . . . , P
F
(r)(x, y) with nonzero

coefficient for PF
(r)(x, y). Hence, by using (3.5) and the induction on r, we can conclude

that PF
(r)(x, y) has degree at most r in y. �

This lemma can be used to prove the following vanishing property of generalized skew
P -functions. For a strict partition λ, we define its shifted diagram S(λ) by putting

S(λ) = {(i, j) ∈ Z2 : 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1}.

For two strict partitions λ and µ, we write λ ⊃ µ if S(λ) ⊃ S(µ).

Proposition 4.4. Let F be an admissible sequence. For two strict partitions λ and µ,
we have PF

λ/µ,p(x) = 0 unless λ ⊃ µ.

Proof. Suppose that there exists an index k such that λk < µk. Then, if i ≥ k and j ≤ k,
we have λi ≤ λk < µk ≤ µj and Rλi/µj

(x) = 0 by Lemma 4.3. Hence the skew-symmetric

matrices X appearing in the definition (4.3) of PF
λ/µ,p(x) are of the form

X =

(
Z W

−tW O

)
,

where W has k columns and at most (k−1) nonzero rows. Since all the k×k minors ofW
vanish, it follows from the Laplace expansion (Proposition A.5) that PF

λ/µ,p(x) = PfX = 0.
�

If the polynomial sequence F is constant-term free, then the skew P -function PF
λ/µ,p is

independent of p and some formulas have simple forms.

Proposition 4.5. Suppose that F is a constant-term free admissible sequence.

(1) RF
0/0(x) = 1 and RF

r/0(x) = PF
(r)(x) for a positive integer r.
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(2) For two strict partitions λ of length l and µ of length m, we have

PF
λ/µ,p(x) =





Pf

(
SF
λ (x) MF

λ/µ(x)

−tMF
λ/µ(x) O

)
, if l ≡ m mod 2,

Pf

(
SF
λ (x) MF

λ/µ0(x)

−tMF
λ/µ0(x) O

)
= Pf

(
SF
λ0(x) MF

λ0/µ(x)

−tMF
λ0/µ(x) O

)
,

if l 6≡ m mod 2.

In particular, PF
λ/µ,p(x) is independent of p. We write PF

λ/µ(x) in this case.

Proof. (1) Substituting y = 0 in the definition (4.1), we obtain

P(r)(x, 0) =

r∑

k=0

Rr/k(x)fk(0).

Since P(r)(x, 0) = P(r)(x) by the stability property (Proposition 2.7 (2)), and fr(0) = δr,0
by assumption, we have Rr/0(x) = P(r)(x).

(2) By using (1), we see that
(

Sλ(x) Mλ/µ0(x)
−tMλ/µ0(x) O

)
=

(
Sλ0(x) Mλ0/µ(x)

−tMλ0/µ(x) O

)
.

It remains to show that, if l(λ) 6≡ p and l(µ) 6≡ p mod 2, then

Pf

(
Sλ0(x) Mλ0/µ0(x)

−tMλ0/µ0(x) O

)
= Pf

(
Sλ(x) Mλ/µ(x)

−tMλ/µ(x) O

)
.

Let Tλ(x) (respectively Tλ/0(x)) be the column vector with ith entry P(λi)(x) (respectively
Rλi/0(x)). Since R0/0(x) = 1 and R0/k(x) = 0 for k ≥ 1, we have

(
Sλ0(x) Mλ0/µ0(x)

−tMλ0/µ0(x) O

)
=




Sλ(x) Tλ(x) Tλ/0(x) Mλ/µ(x)
−tTλ(x) 0 1 O
−tTλ/0(x) −1 0 O
−tMλ/µ(x) O O O


 .

Since Tλ(x) = Tλ/0(x) by (1), we add the (l + 1)st row/column multiplied by −1 to the
(l + 2)nd row/column and expand the resulting Pfaffian along the (l + 2)nd row/column
to obtain

Pf

(
Sλ0(x) Mλ0/µ0(x)

−tMλ0/µ0(x) O

)
= Pf

(
Sλ(x) Mλ/µ(x)

−tMλ/µ(x) O

)
. �

If x consists of a single variable, then we have the following proposition.

Proposition 4.6. Let F be an admissible sequence and x = (x) a single variable.

(1) For two strict partitions λ and µ, we have PF
λ/µ,p(x) = 0 unless l(λ)− l(µ) ≤ 2.

(2) If F is constant-term free, then we have PF
λ/µ(x) = 0 unless l(λ)− l(µ) ≤ 1, and

PF
λ/µ(x) = det

(
RF

λi/µj
(x)
)
1≤i,j≤l(λ)

. (4.5)
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Proof. Put l = l(λ) and m = l(µ).
(1) Since P(λi,λj)(x) = 0 for λi > λj > 0 by Proposition 2.1, we have

Pλ/µ,p(x) =





Pf

(
Ol Mλ/µ(x)

−tMλ/µ(x) Om

)
, if l ≡ p and m ≡ p mod 2,

Pf

(
Ol Mλ/µ0(x)

−tMλ/µ0(x) Om+1

)
, if l ≡ p and m 6≡ p mod 2,

Pf




Ol Tλ(x) Mλ/µ(x)

−tTλ(x) 0 O

−tMλ/µ(x) O Om


 , if l 6≡ p and m ≡ p mod 2,

Pf




Ol Tλ(x) Tλ/0(x) Mλ/µ(x)

−tTλ(x) 0 1 O

−tTλ/0(x) −1 0 O

−tMλ/µ(x) O O Om


 , if l 6≡ p and m 6≡ p mod 2,

where Tλ(x) (respectively Tλ/0(x)) is the column vector with ith entry P(λi)(x) (respec-
tively Rλi/0(x)). By using Proposition A.5, we see that Pλ/µ(x) = 0 unless





l = m, if l ≡ p and m ≡ p mod 2,

l = m+ 1, if l ≡ p and m 6≡ p mod 2,

l = m+ 1, if l 6≡ p and m ≡ p mod 2,

l = m or m+ 2, if l 6≡ p and m 6≡ p mod 2.

Here we note that m ≤ l ≤ m+2 if and only if l ≤ (l+m+2)/2 and m+1 ≤ (l+m+2)/2.
(2) By using Proposition 4.5 (2) and Proposition A.5, we have

PF
λ/µ,p(x) =





Pf

(
Ol MF

λ/µ(x)

−tMF
λ/µ(x) O

)
= (−1)(

l
2) detMλ/µ(x), if l = m,

Pf

(
Ol MF

λ/µ0(x)

−tMF
λ/µ0(x) O

)
= (−1)(

l
2) detMλ/µ0(x), if l = m+ 1.

By permuting columns of Mλ/µ(x) and Mλ/µ0(x), we obtain (4.5). �

4.2. Proof of Theorem 4.2. We give a proof of Theorem 4.2 by using the same idea as
in the proof of [19, Theorem 6.1] for Schur Q-functions. A key is played by the following
proposition, which interpolates the Nimmo-type formula (1.4) (n = 0 case) and the Schur-
type formula (2.10) (p = 0 case).

Proposition 4.7. Let F be an admissible polynomial sequence and x = (x1, . . . , xn) and
y = (y1, . . . , yp) two sequences of indeterminates. For a nonnegative integer sequence

α = (α1, . . . , αr), let N
F
α (x|y) be the r × p matrix defined by

NF
α (x|y) =

(
PF
αi
(x, yj)

)
1≤i≤r,1≤j≤p

.
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Then, for a strict partition λ of length l, we have

PF
λ (x,y) =





1

∆(y)
Pf

(
SF
λ (x) NF

λ (x|y)

−tNF
λ (x|y) A(y)

)
, if l + p is even,

1

∆(y)
Pf

(
SF
λ0(x) NF

λ0(x|y)

−tNF
λ0(x|y) A(y)

)
, if l + p is odd,

(4.6)

where λ0 = (λ1, . . . , λl, 0), and S
F
α (x) and A(y) are given by (2.9) and (1.3), respectively.

We denote by P ′
λ(x|y) the right-hand side of (4.6). First we prove that P ′

λ(x|y) satisfies
a Schur-type Pfaffian formula.

Lemma 4.8. For a strict partition λ of length l, we have

P ′
λ(x|y) =




Pf
(
P ′
(λi,λj)

(x|y)
)
1≤i,j≤l

, if l is even,

Pf
(
P ′
(λi,λj)

(x|y)
)
1≤i,j≤l+1

, if l is odd,

where λl+1 = 0 if l is odd, and we use a convention similar to (2.8).

Proof. The proof is similar to that of Theorem 2.6, so we omit the details. We apply a
Pfaffian analogue of the Sylvester formula (Proposition A.4) to the following matrix X
(after permuting rows/columns):

X =





(
Sλ(x) Nλ(x|y)

−tNλ(x|y) A(y)

)
, if l is even and p is even,

(
Sλ0(x) Nλ0(x|y)

−tNλ0(x|y) A(y)

)
, if l is odd and p is even,




Sλ(x) Tλ(x) Nλ(x|y)

−tTλ(x) 0 t1

−tNλ(x|y) −1 A(y)


 , if l is even and p is even,




Sλ(x) Tλ(x) 0 Nλ(x|y)

−tTλ(x) 0 1 O

0 −1 0 t1

−tNλ(x|y) O −t1 A(y)


 , if l is odd and p is odd,

where Tλ(x) is the column vector with ith entry P(λi)(x). �

Proof of Proposition 4.7. By comparing Theorem 2.6 with Lemma 4.8, the proof is re-
duced to showing

P(r)(x,y) = P ′
(r)(x|y), P(r,s)(x,y) = P ′

(r,s)(x|y).

By considering the generating functions and using Proposition 3.2, it is enough to prove

∑

r≥0

P ′
(r)(x|y)f̂r(z) =

{
Πz(x,y), if n + p is odd,

Πz(x,y) + f̂0(z)− 1, if n + p is even,
(4.7)

and



A GENERALIZATION OF SCHUR’S P - AND Q-FUNCTIONS 21

∑

r,s≥0

P ′
(r,s)(x|y)f̂r(z)f̂s(w)

=





z − w

z + w

(
Πz(x,y)Πw(x,y)− 1

)
+ (f̂0(w)− 1)Πz(x,y)− (f̂0(z)− 1)Πw(x,y),

if n+ p is odd,
z − w

z + w

(
Πz(x,y)Πw(x,y)− 1

)
, if n + p is even.

(4.8)

First we prove (4.7). We put

Fz(x) =
∑

r≥0

P(r)(x)f̂r(x), F+
z (x) =

∑

r≥1

P(r)(x)f̂r(x) = Fz(x)− f̂0(z).

Let Uz(x|y) (respectively U
+
z (x|y)) be the row vector with jth entry

∑
r≥0 P(r)(x, yj)f̂r(z)

(respectively
∑

r≥1 P(r)(x, yj)f̂r(z)). Then, by the definition of P ′
(r)(x) and the multilin-

earity of Pfaffians, we have

∑

r≥0

P ′
(r)(x|y)f̂r(z) =





1

∆(y)
Pf

(
0 Uz(x|y)

−tUz(x|y) A(y)

)
, if p is odd,

f̂0(z) +
1

∆(y)
Pf




0 F+
z (x) U+

z (x|y)

−F+
z (x) 0 t1

−tU+z(x|y) −1 A(y)


 , if p is even.

By adding the 2nd row/column multiplied by f̂0(z) to the 1st row/column, we see that

Pf




0 F+
z (x) U+

z (x|y)
−F+

z (x) 0 t1

−tU+z(x|y) −1 A(y)


 = Pf




0 F+
z (x) Uz(x|y)

−F+
z (x) 0 t1

−tUz(x|y) −1 A(y)


 .

By Proposition 3.2, we have

Uz(x|y) =

{
Πz(x)

tBz(y), if n is even,

Πz(x)
tBz(y) + (f̂0(z)− 1)t1, if n is odd.

(4.9)

F+
z (x) =

{
Πz(x)− 1, if n is even,

Πz(x)− f̂0(z), if n is odd,
(4.10)

where Bz(x) is the column vector with ith entry (1 + xiz)/(1− xiz). Now we distinguish
four cases according to the parity of p and n.

If p is odd and n is even, then, by using (A.5), we have

∑

r≥0

P ′
(r)(x|y)f̂r(z) =

1

∆(y)
· Πz(x) Pf

(
0 tBz(y)

−Bz(y) A(y)

)
= Πz(x)Πz(y).
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If p is odd and n is odd, then, by using the multilinearity of Pfaffians and (A.5), (A.4),
we have

∑

r≥0

P ′
(r)(x|y)f̂r(z) =

1

∆(y)

[
Πz(x) Pf

(
0 tBz(y)

−Bz(y) A(y)

)
+ (f̂0(z)− 1) Pf

(
0 t1

−1 A(y)

)]

= Πz(x,y) + f̂0(z)− 1.

If p is even and n is even, then, by using the multilinearity and the expansion of Pfaffians,
(A.5) (with w = 0) and (A.4), we have
∑

r≥0

P ′
(r)(x|y)f̂r(z)

= f̂0(z)

+
1

∆(y)


(Πz(x)− 1) Pf




0 1 t0

−1 0 t1

0 −1 A(y)


+Πz(x) Pf




0 0 tBz(y)
0 0 t1

−Bz(y) −1 A(y)






= Πz(x,y) + f̂0(z)− 1.

If p is even and n is odd, then similarly we have

∑

r≥0

P ′
(r)(x|y)f̂r(z) = f̂0(z) +

1

∆(y)


(Πz(x)− f̂0(z)) Pf




0 1 0
−1 0 t1

0 −1 A(y)




+ Πz(x) Pf




0 0 tBz(y)
0 0 t1

−Bz(y) −1 A(y)






= Πz(x,y).

Next we prove (4.8). We put

Gz,w(x) =
∑

r,s≥0

P(r,s)(x)f̂r(z)f̂s(w), G++
z,w(x) =

∑

r,s≥1

P(r,s)(x)f̂r(z)f̂s(w).

By the definition of P ′
(r,s)(x) and the multilinearity of Pfaffians, we see that, if p is even,

then

∑

r,s≥0

P ′
(r,s)(x|y)f̂r(z)f̂s(w) =

1

∆(y)
Pf




0 Gz,w(x) Uz(x|y)
−Gz,w(x) 0 Uw(x|y)
−tUz(x|y) −tUw(x|y) A(y)


 ,

and, if p is odd, then
∑

r,s≥0

P ′
(r,s)(x|y)f̂r(z)f̂s(w)

=
∑

r,s≥1

P ′
(r,s)(x|y)f̂r(z)f̂s(w) +

∑

r≥1

P ′
(r,0)(x|y)f̂r(z)f̂0(w) +

∑

s≥1

P ′
(0,s)(x|y)f̂0(z)f̂s(w)
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=
1

∆(y)
Pf




0 G++
z,w(x) F+

z (x) U+
z (x|y)

−G++
z,w(x) 0 F+

w (x) U+
w (x|y)

−F+
z (x) −F+

w (x) 0 t1

−tU+
z (x|y) −tU+

w (x|y) −1 A(y)




+ f̂0(w) ·
1

∆(y)
Pf

(
0 U+

z (x|y)
−tU+

z (x|y) A(y)

)

− f̂0(z) ·
1

∆(y)
Pf

(
0 U+

w (x|y)
−tU+

w (x|y) A(y)

)
.

Here we note

Gz,w(x) = G++
z,w(x) + f̂0(w)F

+
z (x)− f̂0(z)F

+
w (x),

and

Uz(x|y) = U+
z (x|y) + f̂0(z)

t1, Uw(x|y) = U+
w (x|y) + f̂0(w)

t1.

By adding the 3rd row/column multiplied by f̂0(z) (respectively f̂0(w)) to the 1st (re-
spectively 2nd) row/column in the first Pfaffian, we see that

Pf




0 G++
z,w(x) F+

z (x) U+
z (x|y)

−G++
z,w(x) 0 F+

w (x) U+
w (x|y)

−F+
z (x) −F+

w (x) 0 t1

−tU+
z (x|y) −tU+

w (x|y) −1 A(y)




= Pf




0 Gz,w(x) F+
z (x) Uz(x|y)

−Gz,w(x) 0 F+
w (x) Uw(x|y)

−F+
z (x) −F+

w (x) 0 t1

−tUz(x|y) −tUw(x|y) −1 A(y)


 .

By Proposition 3.2, we have

Gz,w(x)

=





z − w

z + w

(
Πz(x)Πw(x)− 1

)
, if n is even,

z − w

z + w

(
Πz(x)Πw(x)− 1

)
+ (f̂0(w)− 1)Πz(x)− (f̂0(z)− 1)Πw(x), if n is odd.

(4.11)

Now we distinguish four cases according to the parity of p and n, and in each case we
evaluate Pfaffians by using (4.9), (4.10) and (4.11) together with Propositions A.1 and A.2.
The rest of the proof is done by straightforward computation, so we omit it. �

Now we are in the position to give a proof of Theorem 4.2.

Proof of Theorem 4.2. We put l = l(λ).
First we consider the case where l ≡ p mod 2. Then we apply the Pfaffian analogue of

the Cauchy–Binet formula (A.15) to the matrices given by

A = Sλ(x), S =
(
Rλi/k(x)

)
1≤i≤l,k≥0

,

B = A(y), T =
(
fk(xi)

)
1≤i≤p,k≥0

.
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Strict partitions µ are in bijection with subsets of N satisfying #I = p mod 2 via the
correspondence µ 7→ I = {µ1, . . . , µl(µ)} or {µ1, . . . , µl(µ), 0}, and we see that

Pf

(
Sλ(x) S([l]; I)

−tS([l]; I) O

)
= Pλ/µ,p(x),

Pf

(
A(y) T ([p]; I)

−tT ([p]; I) O

)
= (−1)(

#I

2 )∆(y)Pµ(y).

By (4.1), the (i, j) entry of StT is equal to
∑

k≥0

Rλi/k(x)fk(yj) = P(λi)(x, yj).

Hence, by applying (A.15), we have

∑

µ

Pλ/µ,p(x)Pµ(y) =
1

∆(y)
Pf

(
Sλ(x) Nλ(x,y)

−tNλ(x,y) A(y)

)
.

If l 6≡ p mod 2, then we apply (A.15) to the matrices given by

A = Sλ0(x), S =
(
Rλi/k(x)

)
1≤i≤l+1,k≥0

,

B = A(y), T =
(
fk(yi)

)
1≤i≤p,k≥0

.

Then, by an argument similar to above, we obtain
∑

µ

Pλ/µ,p(x)Pµ(y) =
1

∆(y)
Pf

(
Sλ0(x) Nλ0(x,y)

−tNλ0(x,y) A(y)

)
.

Now the proof of Theorem 4.2 can be completed by using Proposition 4.7. �

5. Pieri-type rule

In this section, we give a Pieri-type rule for the product of any generalized P -function
PF
λ (x) with a Schur Q-function Q(r)(x) corresponding to a one-row partition.

5.1. The ring of Schur P - and Q-functions. Let Γ(n) be the subring of the ring of
symmetric polynomials Λ(n) = K[x1, . . . , xn]

Sn defined by

Γ(n) = {f ∈ K[x1, . . . , xn]
Sn : f(t,−t, x3, . . . , xn) is independent of t}.

Then it is known that Schur P -functions {Pλ(x) : λ ∈ S(n)} form a basis of Γ(n), where
S(n) is the set of all strict partitions of length ≤ n (see [20, Theorem 2.11]).

We give a relation between two families of generalized P -functions associated with
different admissible sequences.

Proposition 5.1. Let F = {fd}
∞
d=0 and G = {gd}

∞
d=0 be two admissible sequences. For

a strict partition λ of length l ≤ n, the generalized P -function PF
λ (x) associated with F

can be written as a K-linear combination of the generalized P -functions P G
µ (x) associated

with G in the following form:

PF
λ (x) = aλ,λP

G
λ (x) +

∑

µ(λ

aλ,µP
G
µ (x),
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where aλ,λ 6= 0, and µ runs over all strict partitions satisfying µ ( λ.

Proof. We write fk =
∑∞

i=0 ak,lgl for k ≥ 0. Then by the assumption (1.2) we have ak,l = 0
for k < l, ak,k 6= 0, and a0,0 = 1.

If n+ l is even, then by using the multilinear and alternating property of Pfaffians we
have

PF
λ (x) =

1

∆(x)

∑

α∈Nl

aλ1,α1 . . . aλl,αl
Pf

(
A(x) V G

α (x)
−tV G

α (x) O

)

=
∑

µ1>···>µl≥0

det
(
aλi,µj

)
1≤i,j≤l

P G
µ (x),

where µ runs over all strict partitions of length l − 1 or l. Similarly, if n + l is odd, then
we have

PF
λ (x) =

1

∆(x)

∑

α∈Nl+1

aλ1,α1 . . . aλl,αl
a0,αl+1

Pf

(
A(x) V G

α (x)
−tV G

α (x) O

)
.

Since a0,l = 0 for l > 0, we see that

PF
λ (x) =

∑

µ1>···>µl>0

det
(
aλi,µj

)
1≤i,j≤l

P G
µ (x),

where µ runs over all strict partitions of length l. For a strict partition µ of length l − 1
or l, we put

aλ,µ = det
(
aλi,µj

)
1≤i,j≤l

,

where µl = 0 if l(µ) = l − 1. We prove that aλ,λ 6= 0 and aλ,µ = 0 unless λ ⊃ µ. Since

the matrix
(
aλi,λj

)
1≤i,j≤l

is upper-triangular, we have aλ,λ =
∏l

i=1 aλi,λi
6= 0. If there is

an index k such that λk < µk, then we have λi ≤ λk < µk ≤ µj and aλi,µj
= 0 for i ≥ k

and j ≤ k and thus aλ,µ = 0. Hence we obtain the desired result. �

Corollary 5.2. The generalized P -functions {PF
λ (x) : λ ∈ S(n)} associated with a fixed

sequence F form a basis of Γ(n).

5.2. Pieri-type rule. Let qr(x) = Q(r)(x) be the Schur Q-function corresponding to

a one-row partition (r), and set q0(x) = 1. It is known (see [12, III.(8.5)]) that Γ(n)

is generated by qr(x) (r ≥ 1). Thus the algebra structure of Γ(n) is governed by the
multiplication rule for qr(x)s.

Theorem 5.3. Let F = {fd}
∞
d=0 be an admissible sequence. We define formal power

series bsr(z) by the relation

fr(u) ·
1 + uz

1− uz
=

∞∑

s=0

bsr(z)fs(u). (5.1)

We define the modified Pieri coefficients cλµ,r by the relation

PF
µ (x) · qr(x) =

∑

λ

cλµ,rP
F
λ (x), (5.2)
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where the summation is taken over all strict partitions. Then the generating function of

modified Pieri coefficients is given by

∞∑

r=0

cλµ,rz
r =





detBλ
µ , if n+ l(µ) is even and l(λ) = l(µ),

detBλ0

µ , if n+ l(µ) is even and l(λ) = l(µ)− 1,

detBλ
µ0 , if n+ l(µ) is even and l(λ) = l(µ) + 1,

detBλ0

µ0 , if n+ l(µ) is odd and l(λ) = l(µ),

detBλ
µ0 , if n+ l(µ) is odd and l(λ) = l(µ) + 1,

0, otherwise,

(5.3)

where Bα
β =

(
bαi

βj
(z)
)
1≤i,j≤r

for α = (α1, . . . , αr) and β = (β1, . . . , βr).

If we put

cλµ(z) =

∞∑

r=0

cλµ,rz
r,

then it follows from (3.3) and (5.2) that

PF
µ (z) · Πz(x) =

∑

λ

cλµ(z)P
F
λ (z). (5.4)

In order to prove the above theorem, we derive a Nimmo-type expression for the product
PF
µ (x) · Πz(x) in terms of a Pfaffian.

Lemma 5.4. For a sequence α = (α1, . . . , αr) of nonnegative integers, we put

Wα(x) =

(
fαj

(xi) ·
1 + xiz

1− xiz

)

1≤i≤n,1≤j≤r

.

Then, for a strict partition µ of length m, we have

PF
µ (x) ·Πz(x) =





1

∆(x)
Pf




A(x) Wµ(x) W(0)(x) 1

−tWµ(x) 0 0 0

−tW(0)(x) 0 0 1

−t1 0 −1 0


 , if n+m is even,

1

∆(x)
Pf

(
A(x) Wµ0(x)

−tWµ0(x) 0

)
, if n+m is odd.

Proof. The method of the proof is the same as in the proof of Theorem 2.3, so we will
only give a sketch of the proof.

Since Πz(x) =
∏n

i=1(1 + xiz)/(1 − xiz) is invariant under the symmetric group Sn, it
follows from Corollary 2.5 that

Pµ(x) ·Πz(x)

=
∑

w∈Sn/Sn−m

w




m∏

i=1

fµi
(xi)

n∏

i=1

1 + xiz

1− xiz

∏

1≤i<j≤n
i≤m

xi + xj
xi − xj



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=
(−1)(

n

2)+(
n−m

2 )

∆n(x)

×
∑

w∈Sn/Sn−m

sgn(w)w

(
m∏

i=1

(
fµi

(xi)
1 + xiz

1− xiz

) n∏

i=m+1

1 + xiz

1− xiz

∏

m+1≤i<j≤n

xj − xi
xj + xi

)
.

By using (A.5) with p = 2, y1 = z, y2 = 0, or p = 1, y1 = z, we obtain

Pµ(x) · Πz(x) =
(−1)(

n
2)+(

n−m
2 )

∆(x)

∑

w∈Sn/Sm×Sn−m

sgn(w)w
(
detWµ(x[m]) PfX

)
,

where the skew-symmetric matrix X is given by

X =








A(x[n]\[m]) W(0)(x[n]\[m]) 1

−tW(0)(x[n]\[m]) 0 1

−t1 −1 0


 , if n +m is even,

(
A(x[n]\[m]) W(0)(x[n]\[m])

−tW(0)(x[n]\[m]) 0

)
, if n +m is odd.

Now we can use a Pfaffian analogue of Laplace expansion (Proposition A.5) to complete
the proof. �

Proof of Theorem 5.3. The argument is similar to that in the proof of Proposition 5.1.
First we consider the case where n+m is even. In this case, by using the multilinearity

and the expansion along the last row/column, we have

Pf




A(x) Wµ(x) W(0)(x) 1

−tWµ(x) O O O
−tW(0)(x) O 0 1

−t1 O −1 0




= Pf




A(x) Wµ0(x) 1

−tWµ0(x) O O
−t1 O 0


+ (−1)n+m Pf

(
A(x) Wµ(x)

−tWµ(x) 0

)
.

Since W(r)(x) =
∑∞

s=0 b
s
r(z)V(s)(x) by (5.1), we can use the multilinear and alternating

property to obtain

Pf




A(x) Wµ0(x) 1

−tWµ0(x) O O
−t1 O 0




=
∑

α∈Nm+1

m+1∏

i=1

bαi
µi
(z) Pf




A(x) Vα(x) 1

−tVα(x) O O
−t1 O 0




=
∑

λ1>···>λm+1≥0

det
(
bλi
µj
(z)
)
1≤i,j≤m+1

Pf




A(x) Vλ(x) 1

−tVλ(x) O O
−t1 O 0


 .
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If λm+1 = 0, then the last column of Vλ(x) coincides with 1, so the corresponding Pfaffian
vanishes. Hence we have

1

∆(x)
Pf




A(x) Wµ0(x) 1

−tWµ0(x) O O
−t1 O 0


 =

∑

λ

detBλ
µ0Pλ(x),

where λ runs over all strict partitions of length m+ 1. Similarly we have

1

∆(x)
Pf

(
A(x) Wµ(x)

−tWµ(x) 0

)
=
∑

λ

detBλ∗

µ Pλ(x),

where λ runs over all strict partitions of length m− 1 or m, and λ∗ = λ0 or λ.
The case where n +m is odd can be treated in a similar manner. �

If F is constant-term free, then we have a simpler formula.

Corollary 5.5. If F is constant-term free, then we have

cλµ(z) =





detBλ
µ, if l(λ) = l(µ),

detBλ
µ0 , if l(λ) = l(µ) + 1,

0, otherwise,

under the same notation as in Theorem 5.3.

Proof. By substituting t = 0 in (5.1) and using the assumption fd(0) = δd,0, we see that
b0r(z) = δr,0. Hence we have

detBλ0

µ0 = detBλ
µ, detBλ0

µ = 0,

and we obtain the corollary. �

6. Applications to factorial P - and Q-functions

In this section, we focus on Ivanov’s factorial P - and Q-functions.

6.1. Factorial P - and Q-functions. Recall the definition of Ivanov’s factorial P - and
Q-functions. Let a = (a0, a1, . . . ) be parameters, called factorial parameters. We define
the factorial monomial (u|a)d by putting

(u|a)d =
d−1∏

i=0

(u− ai).

Then the factorial P -function Pλ(x|a) is defined to be the generalized P -function PF
λ (x)

associated with F = {(u|a)d}∞d=0 (see Definition 1.2). The factorial Q-function Qλ(x|a)
is defined by

Qλ(x|a) = 2l(λ)Pλ(x|a).

The factorial Q-function Qλ(x|a) is also the generalized P -function PF ′

λ (x) associated
with the sequence F ′ = {f ′

d}
∞
d=0 given by

f ′
d(u) =

{
1, if d = 0,

2(u|a)d, if d ≥ 1.
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Note that the sequence F = {(u|a)d}∞d=0 is constant-term free if and only if a0 = 0.
Since the factorial P - and Q-functions are special cases of our generalized P -functions,

we can recover some formulas in [6] and [7] from the results of Section 2. For example,
we recover [7, Theorem 9.1] without assumption a0 = 0:

Qλ(x|a) = Pf
(
Q(λi,λj)(x|a)

)
1≤i,j≤r

,

where r = l(λ) if l(λ) is even and l(λ) + 1 if l(λ) is odd, and λl(λ)+1 = 0. (We use the
convention (2.8).)

Next we compute explicitly the dual of F = {(t|a)d}∞d=0 introduced in Section 3.

Lemma 6.1. Let F̂ = {f̂d}
∞
d=0 be the dual of F = {(u|a)d}∞d=0. Then we have

f̂d(v) =





1 + a0v

1− a0v
, if d = 0,

2vd
∏d

i=0(1− aiv)
, if d ≥ 1.

Proof. Put fd(u) = (u|a)d. The sequence {f̂d}
∞
d=0 is uniquely determined by the rela-

tion (3.1). Since f0 = 1, we see that f̂0(v) is determined by substituting u = a0 in (3.1),

and we obtain f̂0(v) = (1 + a0v)/(1 − a0v). Let r > 0. Since fk(ar) = 0 for k > r and

fr(ar) 6= 0, we see that f̂r(t) is determined inductively by the relation
r∑

k=0

f̂k(v)fk(ar) =
1 + arv

1− arv
.

Hence it is enough to show

1 + arv

1− arv
=

1 + a0v

1− a0v
+

r∑

k=1

2vr
∏k

i=0(1− aiv)

k−1∏

j=0

(ar − aj). (6.1)

By using
1 + arv

1− arv
−

1− a0v

1− a0v
=

2v(ar − a0)

(1− a0v)(1− arv)
,

and cancelling the common factor 2z(ar − a0)/(1− a0z), we see that (6.1) is equivalent to

1

1− arv
=

r∑

k=1

vk−1

∏k
i=1(1− aiv)

k−1∏

j=1

(ar − aj). (6.2)

We proceed by induction on r to prove (6.2). The case r = 1 is trivial. If r > 1, then
by the induction hypothesis with factorial parameters (a2, . . . , ar), we have

1

1− arv
=

r∑

k=2

vk−2

∏k
i=2(1− aiv)

k−1∏

j=2

(ar − aj).

Hence we have
r∑

k=1

vk−1

∏k
i=1(1− aiv)

k−1∏

j=1

(ar − ai) =
1

1− a1v
+
v(ar − a1)

1− a1v

r∑

k=2

vk−2

∏k
i=2(1− aiv)

k−1∏

j=2

(ar − aj)
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=
1

1− a1v
+
v(ar − a1)

1− a1v
·

1

1− arv

=
1

1− arv
.

This completes the proof. �

We denote by P̂λ(x|a) the dual P -function P̂
F
λ (x) associated with F = {(u|a)d}∞d=0. If

the first parameter a0 is equal to 0, then we can recover Korotkikh’s dual P -function (see
[8, Definition 2] and (3.8)) given by

P̂λ(x|a) =
2l

(n− l)!

∑

w∈Sn

w




l∏

i=1

xλi

i∏λi

k=0(1− akxi)

∏

1≤i<j≤n
i≤l

xi + xj
xi − xj




and the Cauchy-type identity (see [8, Theorem 8])

∑

λ

Pλ(x|a)P̂λ(x|a) =
n∏

i,j=1

1 + xiyj
1− xiyj

.

6.2. Factorial skew P -functions. For two strict partitions λ and µ and a positive
integer p, we denote by Pλ/µ,p(x|a) the generalized skew P -functions PF

λ/µ,p(x) associated

with F = {(u|a)d}∞d=0, and call it the factorial skew P -function (see Definition 4.1). Since
(u|a)r depends only on a0, a1, . . . , ar−1, it follows from the definition (1.4) that P(r)(x|a)
also depends only on a0, a1, . . . , ar−1. So we write P(r)(x|a0, a1, . . . , ar−1) for P(r)(x|a).

Proposition 6.2. We define Rr/k(x|a) by the relation

P(r)(x, y|a) =
∞∑

k=0

Rr/k(x|a)(y|a)
k.

Then we have we have

Rr/k(x|a) =





P(r)(x| − a0, a1, . . . , ar−1), if k = 0,

P(r−k)(x|0, ak+1, . . . , ar−1), if 1 ≤ k ≤ r − 1,

1, if k = r,

0, if k > r.

(6.3)

In particular, if a0 = 0, then we have

Rr/k(x|a) = P(r−k)(x|0, ak+1, . . . , ar−1). (6.4)

If x = (x) consists of a single variable, then P(r)(x|a) = (x|a)r. Hence we obtain

Corollary 6.3. If x = (x) consists of a single variable, then we have

Rr/k(x|a) =





(x+ a0)
∏r−1

i=1 (x− ai), if k = 0,

x
∏r−1

i=k+1(x− ai), if 1 ≤ k ≤ r − 1,

1, if k = r,

0, if k > r.
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In the proof of Proposition 6.2, we need the following relations for elementary symmetric
polynomials er(x).

Lemma 6.4. (1) If k > 0 and l > 0, then we have

r−1∑

m=1

em−k(x1, . . . , xm)er−m−l(xm+2, . . . , xr) = er−k−l(x1, . . . , xr).

(2) If l > 0, then we have

2

r−1∑

m=1

em(x1, . . . , xm)er−m−l(xm+2, . . . , xr) + er−l(−x1, x2, . . . , xr) = er−l(x1, x2, . . . , xr).

Proof. For 1 ≤ a < b ≤ r, we put [a, b] = {a, a+ 1, . . . , b} and denote by
(
[a,b]
p

)
the set of

p-element subsets of [a, b]. If we put xI =
∏

i∈I xi for I ⊂ [a, b], then we have

ep(xa, . . . , xb) =
∑

I∈([a,b]p )

xI .

(1) We define a map

ϕ :

r−1⊔

m=1

(
[1, m]

m− k

)
×

(
[m+ 2, r]

r −m− l

)
→

(
[1, r]

r − k − l

)

by ϕ(I, J) = I ⊔ J . Given K ∈
(

[1,r]
r−k−l

)
, let m + 1 be the (k + 1)st smallest element in

the (k + l)-element subset [r] \K and put I = K ∩ [1, m] and J = K ∩ [m+ 2, r]. Then
the correspondence K 7→ (I, J) gives the inverse map of ϕ, and we obtain the desired
identity.

(2) Since we have

er−l(−x1, x2, . . . , xr) = −
∑

I∈([1,r]r−l)
1∈I

xI +
∑

I∈([1,r]r−l)
16∈I

xI ,

it is enough to show that

r−1∑

m=1

em(x1, . . . , xm)er−m−l(xm+2, . . . , xr) =
∑

K∈([1,r]r−l)
1∈K

xK .

We define a map

ψ :
r−1⊔

m=1

(
[m+ 2, r]

r −m− l

)
→

{
K ∈

(
[1, r]

r − l

)
: 1 ∈ K

}

by ψ(J) = [1, m] ⊔ J . Given K ∈
(
[1,r]
r−l

)
with 1 ∈ K, let m be the maximum integer m

satisfying [1, m] ⊂ K, and put J = K \ [1, m]. Then the correspondence K 7→ J gives the
inverse map of ψ, and we obtain the desired identity. �

Now we prove Proposition 6.2.
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Proof of Proposition 6.2. We need to show that

P(r)(x, y|a0, . . . , ar−1) = P(r)(x| − a0, a1, . . . , ar−1)

+
r−1∑

k=1

P(r−k)(x|0, ak+1, . . . , ar−1)(y|a0, . . . , ak−1)
k

+ (y|a0, . . . , ar−1)
r. (6.5)

We compare the coefficients of P(k)(x)y
l in the expansions of both sides, where P(k)(x) is

the Schur P -function. We denote by ak,l and bk,l the coefficients of P(k)(x)y
l on the left-

and right-hand sides, respectively.
Plugging (u|a)r =

∑r
m=0(−1)r−mer−m(a0, . . . , ar−1)u

m into the definition (1.4) and
using the multilinearity of Pfaffians, we have

P(r)(x|a) =

{∑r
m=1(−1)r−mer−m(a0, . . . , ar−1)P(m)(x), if n is even,∑r
m=0(−1)r−mer−m(a0, . . . , ar−1)P(m)(x), if n is odd.

(6.6)

Since Q(r)(x) = 2P(r)(x), it follows from (3.3) that

1 + 2

∞∑

r=1

P(r)(x, y)z
r =

n∏

i=1

1 + xiz

1− xiz
·
1 + yz

1− yz
=

(
1 + 2

∞∑

r=1

P(r)(x)z
r

)(
1 + 2

∞∑

r=1

yrzr

)
.

Equating coefficients of zr, we get

P(r)(x, y) = P(r)(x) + 2

r−1∑

h=1

P(r−h)(x)y
h + yr. (6.7)

Using (6.6) and (6.7), we have

P(r)(x, y|a)

=





er(a0, . . . , ar−1)

+
∑r

m=1(−1)r−mer−m(a0, . . . , ar−1)
(
P(m)(x) + 2

∑m−1
l=1 P(m−l)(x)y

l + ym
)
,

if n is even,∑r
m=1(−1)r−mer−m(a0, . . . , ar−1)

(
P(m)(x) + 2

∑m−1
l=1 P(m−l)(x)y

l + ym
)
,

if n is odd.

Hence the coefficient ak,l of P(k)(x)y
l on the left-hand side of (6.5) is given by

ak,l =





er(a0, . . . , ar−1), if k = 0, l = 0 and n is even,

0, if k = 0, l = 0 and n is odd,

(−1)r−ler−l(a0, . . . , ar−1), if k = 0 and l > 0,

2(−1)r−k−ler−k−l(a0, . . . , ar−1), if k > 0.

In a similar manner, we can compute the coefficient bk,l on the right-hand side of (6.5)
and see that
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(a) if k = l = 0, then

b0,0 =

{
er(a0, . . . , ar−1), if n is even,

0, if n is odd,

(b) if k = 0 and l > 0, then

b0,l = (−1)r−ler−l(a0, . . . , ar−1),

(c) if k > 0 and l = 0, then

bk,0 = (−1)r−k




er−k(−a0, a1, . . . , ar−1)

+
r−1∑

m=1

er−m−k(0, am+1, . . . , ar−1)em(a0, . . . , am−1)


 ,

(d) if k > 0 and l > 0, then

bk,l = (−1)r−k−l

r−1∑

m=1

er−m−k(0, am+1, . . . , ar−1)em−l(a0, . . . , am−1).

Now, by using Lemma 6.4, we see that ak,l = bk,l and obtain (6.5). �

By an argument similar to the one in the proof of Proposition 4.6, we can derive a
determinant formula for Pλ/µ,p(x|a) for a single variable x.

Theorem 6.5. Let a = (a0, a1, . . . ) be factorial parameters. For two strict partitions λ of

length l and µ of length m, the factorial skew P -function Pλ/µ,p(x|a) in a single variable

x is given as follows:

(1) We have Pλ/µ,p(x|a) = 0 unless λ ⊃ µ and m = l or l − 1.
(2) If λ ⊃ µ and m = l or l − 1, then we have

Pλ/µ,p(x|a) = det
(
Rλi/µj

(x|a)
)
1≤i,j≤l

.

Proof. It follows from Proposition 4.4 that Pλ/µ,p(x|a) = 0 unless λ ⊃ µ. By an argument
similar to the one in the proof of Proposition 4.5, we can show:

(a) if l ≡ p and m ≡ p mod 2, then

Pλ/µ,p(x|a) =

{
det
(
Rλi/µj

(x|a)
)
1≤i,j≤l

, if l = m,

0, otherwise,

(b) if l ≡ p and m 6≡ p mod 2, or if l 6≡ p and m ≡ p mod 2, then

Pλ/µ,p(x|a) =

{
det
(
Rλi/µj

(x|a)
)
1≤i,j≤l

, if l = m+ 1,

0, otherwise,

where µl = 0.
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It remains to consider the case where l 6≡ p and m 6≡ p mod 2. By the definition (4.3) and
the multilinearity of Pfaffians we have

Pλ/µ,p(x|a) = Pf




Ol Tλ(x) Tλ/0(x) Mλ/µ(x)
−tTλ(x) 0 1 O
−tTλ/0(x) −1 0 O
−tMλ/µ(x) O O Om




= Pf




Ol Tλ(x) Tλ/0(x) Mλ/µ(x)
−tTλ(x) 0 0 O
−tTλ/0(x) 0 0 O
−tMλ/µ(x) O O Om




+ Pf




Ol Tλ(x) 0 Mλ/µ(x)
−tTλ(x) 0 1 O

0 −1 0 O
−tMλ/µ O O Om


 ,

where Tλ(x) and Tλ/0(x) are the column vectors with ith entry P(λi)(x|a) and Rλi/0(x|a),

respectively. Since P(r)(x|a) = (x−a0)
∏r−1

i=1 (x−ai) and Rr/0(x|a) = (x+a0)
∏r−1

i=1 (x−ai)
by Corollary 6.3, we see that Tλ(x) and Tλ/0(x) are linearly independent. Hence the first
Pfaffian vanishes. By expanding the second Pfaffian along the (l + 2)nd row/column, we
have

Pλ/µ,p(x) = Pf

(
Ol Mλ/µ(x)

−tMλ/µ(x) Om

)
=

{
det
(
Rλi/µj

(x)
)
1≤i,j≤l

, if l = m,

0, otherwise.

This completes the proof. �

We can use this theorem to provide a lattice path proof of the tableau description of
factorial P - and Q-functions given in [1, Theorem 2.1] and [7, Theorem 4.3] (the case
where a0 = 0).

6.3. Modified Pieri coefficients. In this subsection, we give a combinatorial description
of the modified Pieri coefficients for factorial P -functions. Recall that the skew shifted
diagram S(λ/µ) = S(λ) \ S(µ) is called a border strip if it is connected and contains no
2× 2 block of cells.

Theorem 6.6. Let a = (a0, a1, . . . ) be factorial parameters. We define the modified Pieri

coefficient cλµ,r(a) by the relation

Pµ(x|a) · qr(x) =
∑

λ

cλµ,r(a)Pλ(x|a), (6.8)

where qr(x) = Q(r)(x) is Schur’s Q-function, and λ runs over all strict partitions. For two

strict partitions λ and µ, we consider the generating function of modified Pieri coefficients

cλµ(z|a) =
∞∑

r=0

cλµ,r(a)z
r.

Then we have:
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(1) If the skew shifted diagram S(λ/µ) contains a 2 × 2 block of cells, then we have

cλµ(z|a) = 0.
(2) Suppose that S(λ/µ) contains no 2× 2 block of cells. Let

S(λ/µ) =

r⊔

i=1

S((λm(i), . . . , λM(i))/(µm(i), . . . , µM(i)))

be the decomposition of S(λ/µ) into a disjoint union of border strips, wherem(1) ≤
M(1) < m(2) ≤M(2) < · · · < m(r) ≤M(r). Then we have

cλµ(z|a) =
∏

k∈K

1 + aµk
z

1− aµk
z

r∏

i=1

2zλm(i)−µM(i)

∏λm(i)

j=µM(i)
(1− ajz)

, (6.9)

where

K =

{
{k : 1 ≤ k ≤ l(µ), λk = µk}, if n+ l(µ) is even,

{k : 1 ≤ k ≤ l(µ) + 1, λk = µk}, if n+ l(µ) is odd.

(3) In particular, the modified Pieri coefficient cλµ,r(a) is a polynomial in the factorial

parameters a0, a1, . . . with nonnegative integer coefficients.

Example 6.7. Let λ = (8, 6, 4, 3, 2) and µ = (6, 5, 4, 2, 1). Then the skew shifted diagram
S(λ/µ) is decomposed into a disjoint union of border strips as follows:

S(λ/µ) =

= S((8, 6)/(6, 5)) ⊔ S((3, 2)/(2, 1)).

Since we have

K =

{
{3}, if n is even,

{3, 6}, if n is odd,

we obtain

c
(8,6,4,3,2)
(6,5,4,2,1)(z|a) =





1 + a4z

1− a4z
·

2z8−5

∏8
i=5(1− aiz)

·
2z3−1

∏3
i=1(1− aiz)

, if n is even,

1 + a4z

1− a4z
·
1 + a0z

1− a0z
·

2z8−5

∏8
i=5(1− aiz)

·
2z3−1

∏3
i=1(1− aiz)

, if n is odd.

Setting a0 = a1 = · · · = 0, we recover the Pieri rule for Schur P -functions.

Corollary 6.8 (Morris [15, Theorem 1]). For a strict partition µ and a nonnegative

integer k, we have

Pµ(x) · qr(x) =
∑

λ

2a(λ,µ)Pλ(x),

where λ runs over all strict partitions such that |λ|−|µ| = r and S(λ/µ) contains no 2×2
block, and where a(λ, µ) is the number of connected components of S(λ/µ).
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Now we use Theorem 5.3 to give a proof of Theorem 6.6. Let bsr(z|a) be the coefficient
in the expansion

(u|a)r ·
1 + uz

1− uz
=
∑

s≥0

bsr(z|a)(u|a)
s. (6.10)

The following lemma gives an explicit formula for bsr(z|a).

Lemma 6.9. For two nonnegative integers r and s, we have

bsr(z|a) =





1 + arz

1− arz
, if s = r,

2zs−r

∏s
j=r(1− ajz)

, if s > r,

0, otherwise.

Proof. We need to prove

(u|a)r
1 + uz

1− uz
=

1 + aru

1− aru
(u|a)r +

∞∑

s=r+1

2zs−r

∏s
j=r(1− ajz)

(u|a)s. (6.11)

By dividing both sides of (6.11) by
∏r−1

i=0 (u− ai) and then shifting the indices of factorial
parameters, we may assume r = 0. The latter case follows from Lemma 6.1. �

We prove Theorem 6.6 by computing the determinant given in (5.3) of Theorem 5.3.

Proof of Theorem 6.6. By (5.3), we see that a nonzero cλµ(z|a) is equal to the determinant

whose (i, j) entry is equal to bλi
µj

= bλi
µj
(z|a).

Claim 6.10. We have cλµ(z|a) = 0 unless S(λ) ⊃ S(µ).

Proof. If there exists an index k such that λk < µk, then we have λi < λk < µk < µj for
i ≥ k and j ≤ k. By Lemma 6.9, we have bλi

µj
= 0 for i ≥ k and j ≤ k, thus cλµ = 0. �

In what follows we assume that S(λ) ⊃ S(µ). In this case, by Theorem 5.3, we have

cλµ(z|a) =





detBλ
µ, if n+ l(µ) is even and l(λ) = l(µ),

detBλ0

µ0 , if n+ l(µ) is odd and l(λ) = l(µ),

detBλ
µ0 , if l(λ) = l(µ) + 1,

0, otherwise.

If n + l(µ) is odd and l(λ) = l(µ) = l, then b0µj
= 0 for 1 ≤ j ≤ l by Lemma 6.9. By

expanding the determinant along the last row, we have

detBλ0

µ0 = b00 · detB
λ
µ.

Hence it is enough to compute the determinant detBλ
µ∗ , where µ∗ = µ or µ0. By abuse of

notation, we write simply Bλ
µ for Bλ

µ and Bλ
µ0 in the following.

First we assume that S(λ/µ) is not connected. In this case, there exists an index k
such that λk+1 < µk or λk = µk.

Claim 6.11. Suppose that S(λ) ⊃ S(µ).
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(1) If there exists an index k such that λk+1 < µk, then we have

detBλ
µ = detBλ′

µ′ · detBλ′′

µ′′ ,

where

′ = (λ1, . . . , λk), µ′ = (µ1, . . . , µk),

λ′′ = (λk+1, . . . , λl), µ′′ = (µk+1, . . . , µl).

(2) If there exists an index k such that λk = µk > 0, then we have

detBλ
µ = detBλ′

µ′ · bλk
µk

· detBλ′′

µ′′ ,

where

′ = (λ1, . . . , λk−1), µ′ = (µ1, . . . , µk−1),

λ′′ = (λk+1, . . . , λl), µ′′ = (µk+1, . . . , µl).

Proof. (1) If i ≥ k + 1 and j ≤ k, then we have λi ≤ λk+1 < µk ≤ µj and b
λi
µj

= 0, thus

detBλ
µ = det

(
Bλ′

µ′ ∗
O Bλ′′

µ′′

)
= detBλ′

µ′ · detBλ′′

µ′′ .

(2) By a similar consideration, we have

detBλ
µ = det



Bλ′

µ′ ∗ ∗
O bλk

µk
∗

O 0 Bλ′′

µ′′


 = detBλ′

µ′ · bλk
µk

· detBλ′′

µ′′ . �

Now we consider the case where S(λ/µ) is connected.

Claim 6.12. Suppose that S(λ) ⊃ S(µ) and S(λ/µ) is connected. If S(λ/µ) contains a

2× 2 block of cells, then we have detBλ
µ = 0.

Proof. If S(λ/µ) contains a 2×2 square, then there exists an index k such that λk+1 > µk.
We take the smallest such index k. Then we have

λ1 > µ1 = λ2 > µ2 = λ3 > · · · > µk−1 = λk > λk+1 > µk.

(Since S(λ/µ) is connected, we have λi+1 ≥ µi if λi+1 > 0.) It follows from Lemma 6.9
that, if t > s > r, then

btr = bsr ·
zt−s

(1− as+1z) · · · (1− atz)
. (6.12)

We proceed by induction on k. If k = 1, then the first row of Bλ
µ is a scalar multiple

of the second row by (6.12), and detBλ
µ = 0. If k > 1, then by subtracting the (k + 1)st

row multiplied by zλk−λk+1/(1− aλk+1+1z) · · · (1 − aλk
z) from the kth row in detBλ

µ, and
then expanding the resulting determinant along the kth row, we have

detBλ
µ = (−1)k+(k−1)bλk

µk−1
detBλ′

µ′ ,

where λ′ (respectively µ′) is the strict partition obtained from λ (respectively µ) by re-
moving λk (respectively µk−1), i.e.,

λ′ = (λ1, . . . , λk−1, λk+1, . . . , λl), µ′ = (µ1, . . . , µk−2, µk, . . . , µl).
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Since detBλ′

µ′ = 0 by the induction hypothesis, we obtain detBλ
µ = 0. �

Now it remains to compute detBλ
µ when S(λ/µ) is a border strip.

Claim 6.13. If S(λ/µ) is a border strip, i.e.,

λ1 > µ1 = λ2 > µ2 = λ3 > · · · > µl−1 = λl > µl,

then we have

detBλ
µ =

2zλ1−µl

∏λ1

i=µl
(1− aiz)

.

Proof. We proceed by induction on l. A direct computation verifies the cases l = 1 and
l = 2. So we assume l ≥ 3. By Lemma 6.9, we have

bλi
µl
=

zµl−1−µl

∏µl−1−1
j=µl

(1− ajz)
· bλi

µl−1
(1 ≤ i ≤ l − 1),

bλl
µl
=

zµl−1−µl

∏µl−1−1
j=µl

(1− ajz)
·

2

1− aλl

· bλl
µl−1

.

Factor out the common term zµl−1−µl/
∏µl−1−1

j=µl
(1 − ajz) from the last column of detBλ

µ,
and then subtract the lth column from the (l − 1)st column. Since we have

bλl
µl−1

−
2

1− aλl

· bλl
µl−1

= −1,

we expand the resulting determinant along the (l − 1)st column to see

detBλ
µ =

zµl−1−µl

∏µl−1−1
j=µl

(1− ajz)
· detBλ′

µ′ ,

where λ′ = (λ1, . . . , λl−1) and µ′ = (µ1, . . . , µl−1). Using the induction hypothesis, we
obtain Claim 6.13. �

Combining the above claims together completes the proof of the theorem. �

Based on Theorem 6.6 (3) and some experimental evidence, we propose the following
conjecture.

Conjecture 6.14. We define fλ
µ,ν(a) by the formula

Pµ(x|a)Pν(x) =
∑

λ

fλ
µ,ν(a)Pλ(x|a), (6.13)

where λ runs over all strict partitions. Then the coefficient fλ
µ,ν(a) is a polynomial in a =

(a0, a1, . . . ) with nonnegative integer coefficients. More generally, if we expand the product

of factorial P -functions corresponding to different factorial parameters a = (a0, a1, . . . )
and −b = (−b0,−b1, . . . ) as a linear combination of Pλ(x|a)s,

Pµ(x|a)Pν(x| − b) =
∑

λ

fλ
µ,ν(a, b)Pλ(x|a), (6.14)

then the coefficient fλ
µ,ν(a, b) is a polynomial in a and b with nonnegative integer coeffi-

cients.
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Cho and Ikeda [1, Theorem 4.6] gave a combinatorial formula for the Pieri-type coeffi-
cients fλ

µ,(r)(a,−a), which implies that fλ
µ,(r)(a,−a) is a polynomial in ai ± aj with i > j

with nonnegative integer coefficients.

Remark 6.15. Let sλ(x|a) be the factorial Schur function with factorial parameters a,
and expand

sµ(x|a)sν(x| − b) =
∑

λ

mλ
µ,ν(a, b)sλ(x|a).

Then Molev and Sagan [14, Theorem 3.1] gave a combinatorial formula for the coefficient
mλ

µ,ν(a, b), which implies that mλ
µ,ν(a, b) is a polynomial in a and b with nonnegative

integer coefficients.

7. P -functions associated with classical root systems

In this section, we show that the Hall–Littlewood functions at t = −1 associated with
the classical root systems can be written as generalized P -functions associated with certain
polynomial sequences.

7.1. Hall–Littlewood function associated with root systems. Macdonald [13] gen-
eralized the definition of Hall–Littlewood functions to any root system. Let Φ be a root
system in a Euclidean vector space V and fix a positive system Φ+. We denote by Λ and
Λ+ the weight lattice and the set of dominant weights, respectively. Let K = Q(t) be the
rational function field in an indeterminate t, and let K[Λ] be the group algebra of Λ with
basis {eλ : λ ∈ Λ} over K. Let W be the Weyl group of Φ. Then the Hall–Littlewood
functions associated with the root system Φ are defined as follows.

Definition 7.1. The Hall–Littlewood function PΦ
λ ∈ K[Λ] corresponding to a dominant

weight λ ∈ Λ+ is defined by

PΦ
λ =

1

Wλ(t)

∑

w∈W

w

(
eλ
∏

α∈Φ+

1− te−α

1− e−α

)
, (7.1)

where Wλ(t) =
∑

w∈Wλ
tl(w) is the Poincaré polynomial ofWλ, with Wλ = {w ∈ W : wλ =

λ} being the stabilizer of λ in W .

In this section, we consider the root systems of types Xn = Bn, Cn and Dn. Let V
be the n-dimensional Euclidean vector space with orthonormal basis ε1, . . . , εn. We put
xi = eεi for 1 ≤ i ≤ n and write PΦ

λ = PΦ
λ (x; t). Let Φ(Xn) ⊂ V be the root system of

type Xn with the positive system Φ+(Xn) given by

Φ+(Bn) = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {εi : 1 ≤ i ≤ n},

Φ+(Cn) = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {2εi : 1 ≤ i ≤ n},

Φ+(Dn) = {εi ± εj : 1 ≤ i < j ≤ n}.

Then the set Λ+(Xn) of dominant weights is given by

Λ+(Bn) =

{
n∑

i=1

λiεi : (λi)
n
i=1 ∈ Zn ∪ (Z+ 1/2)n, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

}
,
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Λ+(Cn) =

{
n∑

i=1

λiεi : (λi)
n
i=1 ∈ Zn, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

}
,

Λ+(Dn) =

{
n∑

i=1

λiεi : (λi)
n
i=1 ∈ Zn ∪ (Z+ 1/2)n, λ1 ≥ λ2 ≥ . . . λn−1 ≥ |λn|

}
,

where Z + 1/2 = {r + 1/2 : r ∈ Z}. We identify a partition λ of length l ≤ n with a
dominant weight λ1ε1 + · · ·+ λlεl ∈ Λ+(Xn).

We note that a reciprocal Laurent polynomial g(z) =
∑d

i=−d aiz
i with ai = a−i and

ad 6= 0 can be written as g(z) = f(z + z−1) for some polynomial of degree d. We use the
notation x + x−1 = (x1 + x−1

1 , . . . , xn + x−1
n ). The following is the main theorem of this

section.

Theorem 7.2. (1) Let FB = {fB
d }∞d=0 be the sequence of polynomials defined by

fB
0 = 1, fB

d (x+ x−1) = (xd − x−d)
x1/2 + x−1/2

x1/2 − x−1/2
(d ≥ 1).

For a strict partition λ of length l ≤ n, we have

P
Φ(Bn)
λ (x;−1) = PFB

λ (x+ x−1). (7.2)

(2) Let FC = {fC
d }

∞
d=0 be the sequence of polynomials defined by

fC
0 = 1, fC

d (x+ x−1) = (xd − x−d)
x+ x−1

x− x−1
(d ≥ 1).

For a strict partition λ of length l ≤ n, we have

P
Φ(Cn)
λ (x;−1) = PFC

λ (x+ x−1). (7.3)

(3) Let FD = {fD
d }∞d=0 be the sequence of polynomials defined by

fD
0 = 1, fD

d (x+ x−1) = xd + x−d (d ≥ 1).

For a strict partition λ of length l < n, we have

P
Φ(Dn)
λ (x;−1) = PFD

λ (x+ x−1), (7.4)

and, for a strict partition λ of length n, we have

P
Φ(Dn)
λ (x;−1) + P

Φ(Dn)
λ′ (x;−1) = PFD

λ (x+ x−1), (7.5)

where λ′ = λ1ε1 + · · ·+ λn−1εn−1 − λnεn.

The first few terms of the sequences FB, FC and FD are

fB
1 (u) = u+ 2, fB

2 (u) = u2 + 2u, fB
3 (u) = u3 + 2u2 − u− 2,

fC
1 (u) = u, fC

2 (u) = u2, fC
3 (u) = u3 − u,

fD
1 (u) = u, fD

2 (u) = u2 − 2, fD
3 (u) = u3 − 3u.

See Lemma 7.7 for the generating functions of fX
d (x+ x−1).
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Definition 7.3. Let x = (x1, . . . , xn) be indeterminates and λ a strict partition of length
l ≤ n. We define symmetric Laurent polynomials PX

λ (x) and QX
λ (x) of type Xn, where

X ∈ {B,C,D}, by putting

PX
λ (x) = PFX

λ (x+ x−1), QX
λ (x) = 2lPFX

λ (x+ x−1),

where FX is the polynomial sequence given in Theorem 7.2. We call QB
λ (x), Q

C
λ (x)

and QD
λ (x) the odd orthogonal Q-function, symplectic Q-function and even orthogonal

Q-function, respectively.

Note that QX
λ (x) is obtained as the generalized P -function P G

λ (x+x−1) associated with
the sequence GX = {gXd }∞d=0 given by

gXd (u) =

{
1, if d = 0,

2fX(u), if d ≥ 1.

In order to prove Theorem 7.2, we recall the structure of the Weyl groups of type Bn,
Cn and Dn. Let Tn be the abelian group of order 2n generated by t1, . . . , tn subject to
the relations t2i = 1 (1 ≤ i ≤ n) and titj = tjti (1 ≤ i, j ≤ n), and Wn = Tn ⋊ Sn the
semidirect product of Tn with the symmetric group Sn, where Sn acts on Tn by permuting
t1, . . . , tn. Put T ′

n = {tu1
1 . . . tun

n :
∑n

i=1 ui ≡ 0 mod 2} and W ′
n = T ′

n ⋊ Sn the semidirect
product of T ′

n with Sn. Then Wn is isomorphic to the Weyl groups of type Bn and Cn,
and W ′

n is isomorphic to the Weyl group of type Dn. The natural action of Sn on V and
K[x±1

1 , . . . , x±1
n ] is extended to Wn by

tiεk =

{
−εi, if k = i,

εk, if k 6= i,
tixk =

{
x−1
i , if k = i,

xk, if k 6= i.

If λ is a strict partition of length l, then the stabilizer Wλ of λ1ε1+ · · ·+λlεl is isomorphic
to Wn−l for types Bn and Cn, and to W ′

n−l for type Dn.

Lemma 7.4. For a strict partition λ of length l, we have

P
Φ(Bn)
λ (x; t) =

∑

w∈Wn/Wn−l

w




l∏

i=1

xλi

i

l∏

i=1

1− tx−1
i

1− x−1
i

∏

1≤i<j≤n
i≤l

(1− tx−1
i xj)(1− tx−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )


 ,

P
Φ(Cn)
λ (x; t) =

∑

w∈Wn/Wn−l

w




l∏

i=1

xλi

i

l∏

i=1

1− tx−2
i

1− x−2
i

∏

1≤i<j≤n
i≤l

(1− tx−1
i xj)(1− tx−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )


 ,

P
Φ(Dn)
λ (x; t) =

∑

w∈W ′

n/W
′

n−l

w




l∏

i=1

xλi

i

∏

1≤i<j≤n
i≤l

(1− tx−1
i xj)(1− tx−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )


 .

Proof. For a general root system Φ with Weyl group W , we have (see [10, Theorem 2.8])

∑

w∈W

w

(
∏

α∈Φ+

1− te−α

1− e−α

)
=
∑

w∈W

tl(w).
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We can use the same argument as the one in the proof of Lemma 2.4 to prove this lemma.
�

Proof of Theorem 7.2. (1) We can take {wu : w ∈ Sn/Sn−l, u ∈ Tl} as a complete set of
coset representatives of Wn/Wn−l, where Tl = 〈t1, . . . , tl〉. Since the product

∏

1≤i<j≤n
i≤l

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

is invariant under Tl, we see that

∑

w∈Tl

w




l∏

i=1

xλi

i

1 + x−1
i

1− x−1
i

∏

1≤i<j≤n
i≤l

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )




=

l∏

i=1

(
xλi

i

1 + x−1
i

1− x−1
i

+ x−λi

i

1 + x1i
1− x1i

) ∏

1≤i<j≤n
i≤l

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

.

By using

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

=
(xi + x−1

i ) + (xj + x−1
j )

(xi + x−1
i )− (xj + x−1

j )
,

we have

P
Φ(Bn)
λ (x;−1)

=
∑

w∈Sn/Sn−l

w




l∏

i=1

(
xλi

i − x−λi

i

) x1/2i + x
−1/2
i

x
1/2
i − x

−1/2
i

∏

1≤i<j≤n
i≤l

(xi + x−1
i ) + (xj + x−1

j )

(xi + x−1
i )− (xj + x−1

j )


 .

Comparing this with (2.5), we obtain (7.2).
(2) can be shown in the same manner as (1).
(3) Suppose that l < n. Since Wn = W ′

n ⊔W
′
ntn, Wn−l = W ′

n−l ⊔W
′
n−ltn and

∏

1≤i<j≤n
i≤l

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

is invariant under tn, we see that

P
Φ(Dn)
λ (x;−1) =

∑

w∈Wn/Wn−l

w




l∏

i=1

xλi

i

∏

1≤i<j≤n
i≤l

(xi + x−1
i ) + (xj + x−1

j )

(xi + x−1
i )− (xj + x−1

j )


 .



A GENERALIZATION OF SCHUR’S P - AND Q-FUNCTIONS 43

If l = n, then the stabilizer Wλ is trivial and we have

P
Φ(Dn)
λ (x;−1) + P

Φ(Dn)
λ′ (x;−1)

=
∑

w∈W ′

n

w

(
n−1∏

i=1

xλi

i x
λn

n

∏

1≤i<j≤n

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

)

+
∑

w∈W ′

n

w

(
n−1∏

i=1

xλi

i x
−λn

n

∏

1≤i<j≤n

(1 + x−1
i xj)(1 + x−1

i x−1
j )

(1− x−1
i xj)(1− x−1

i x−1
j )

)

=
∑

w∈Wn

w

(
n∏

i=1

xλi

i

∏

1≤i<j≤n

(xi + x−1
i ) + (xj + x−1

j )

(xi + x−1
i )− (xj + x−1

j )

)
.

The rest of the proof is the same as in the proof of (1). �

7.2. Generating functions. Since the Q-functions QX
λ (x) of type X are special cases

of generalized P -functions, we have a Schur-type Pfaffian formula.

Proposition 7.5. For a strict partition λ of length l, we have

QX
λ (x) = Pf

(
QX

(λi,λj)
(x)
)
1≤i,j≤r

,

where r = l or l+1 according to whether l is even or odd, and where we use the convention

(2.8).

Hence, in order to obtain QX
λ (x) for a general strict partition λ, we need to know

QX
(r)(x) and Q

X
(r,s)(x). We compute the generating functions for them. In order to state

formulas, we introduce formal power series ϕX(z) and ψX(z) by putting

ϕX(z) =





(1 + z)2

1 + z2
, if X = B,

1, if X = C,
1− z2

1 + z2
, if X = D,

ψX(z) =





2z

1 + z2
, if X = B,

0, if X = C,

−
2z2

1 + z2
, if X = D.

Furthermore, we put

Π̃z(x) =

n∏

i=1

(1 + xiz)(1 + x−1
i z)

(1− xiz)(1 − x−1
i z)

.

Then we have the following formulas.

Proposition 7.6. (1) The generating function for QX
(r)(x) is given by

∞∑

r=0

QX
(r)(x)z

r = ϕX(z)Π̃z(x)− (−1)nψX(z).

(2) The generating function for QX
(r,s)(x) is given by

∑

r,s≥0

QX
(r,s)(x)z

rws =
(z − w)(1− zw)

(z + w)(1 + zw)
· ϕX(z)ϕX(w)

(
Π̃z(x)Π̃w(x)− 1

)
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+ (−1)n
(
ϕX(z)ψX(w)Π̃z(x)− ϕX(w)ψX(z)Π̃w(x)

)

+ ψX(z)− ψX(w).

By a straightforward case-by-case computation, we can show the following lemma.

Lemma 7.7. We have

1 + 2

∞∑

r=1

fX
r (x+ x−1)zr = ϕX(z) ·

(1 + xz)(1 + x−1z)

(1− xz)(1 − x−1z)
+ ψX(z).

Proof of Proposition 7.6. By Theorem 7.2 and (1.4), we see that the Q-function QX
λ (x)

corresponding to a strict partition λ of length l is expressed as

QX
λ (x) =

1

∆̃(x)
Pf

(
Ã(x) Ṽ X

λ∗ (x)

−tṼ X
λ∗ (x) O

)
,

where λ∗ = λ or λ0 according to whether n+ l is even or odd, and

Ã(x) =

(
(xj + x−1

j )− (xi + x−1
i )

(xj + x−1
j ) + (xi + x−1

i )

)

1≤i,j≤n

=

(
(xi − xj)(1− xixj)

(xi + xj)(1 + xixj)

)

1≤i,j≤n

,

∆̃(x) =
∏

1≤i<j≤n

(xj + x−1
j )− (xi + x−1

i )

(xj + x−1
j ) + (xi + x−1

i )
=

∏

1≤i<j≤n

(xi − xj)(1− xixj)

(xi + xj)(1 + xixj)
,

Ṽ X
(α1,...,αr)(x) =

(
χ(αj)f

X
αj
(xi + x−1

i )
)
1≤i≤n,1≤j≤r

, χ(d) =

{
1, if d = 0,

2, if d ≥ 1.

Now, by an argument similar to the one in the proof of Proposition 3.2, we can estab-
lish this proposition by using the Pfaffian evaluations in Proposition A.3 together with
Lemma 7.7 and the relation ϕX(z)− ψX(z) = 1. The details are left to the readers. �

Appendix A. Pfaffian formulas

In this appendix, we collect several useful Pfaffian identities.

A.1. Pfaffians. Recall the definition and some properties of Pfaffians (see [5] for an
exposition). Let X =

(
xij
)
1≤i,j≤2m

be a skew-symmetric matrix of order 2m. The Pfaffian

of X , denoted by Pf(X), is defined by

Pf(X) =
∑

σ∈F2m

sgn(σ)

m∏

i=1

xσ(2i−1),σ(2i), (A.1)

where F2m is the set of permutations σ ∈ S2m satisfying σ(1) < σ(3) < · · · < σ(2m − 1)
and σ(2i− 1) < σ(2i) for 1 ≤ i ≤ m.

Pfaffians are multilinear and alternating in the following sense. Let X =
(
xij
)
1≤i,j≤n

be an even-sized skew-symmetric matrix and fix a row/column index k. If the entries of
the kth row and kth column of X are written as xi,j = αx′i,j + βx′′i,j for i = k or j = k,
then

PfX = αPfX ′ + β PfX ′′,
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where X ′ (respectively X ′′) is the skew-symmetric matrix obtained from X by replacing
the entries xij for i = k or j = k with x′ij (respectively x

′′
ij). Moreover, for a permutation

σ ∈ Sn, we have
Pf
(
xσ(i),σ(j)

)
1≤i,j≤n

= sgn(σ) Pf
(
xi,j
)
1≤i,j≤n

.

It follows that, if Y is the skew-symmetric matrix obtained from X by adding the kth
row multiplied by a scalar α to the lth row and then adding the kth column multiplied
by α to the lth column, then we have Pf Y = PfX .

We use the following notations for submatrices. For a positive integer n, we put [n] =
{1, 2, . . . , n}. Given a subset I ⊂ [n], we put Σ(I) =

∑
i∈I i. For an M × N matrix

X =
(
xi,j
)
1≤i≤M,1≤j≤N

and subsets I ⊂ [M ] and J ⊂ [N ], we denote by X(I; J) the

submatrix of X obtained by picking up rows indexed by I and columns indexed by J . If
X is a skew-symmetric matrix, then we write X(I) for X(I; I). We use the convention
that detX(∅; ∅) = 1 and PfX(∅) = 1.

For an n×n skew-symmetric matrix X =
(
xi,j
)
1≤i,j≤n

, we have the following expansion

formula along the kth row/column:

PfX =

k−1∑

i=1

(−1)k+i−1xi,k PfX([n] \ {i, k}) +
n∑

i=k+1

(−1)k+i−1xk,i PfX([n] \ {k, i}). (A.2)

A.2. Schur’s Pfaffian evaluation and its variations. Recall that

A(x) =

(
xj − xi
xj + xi

)

1≤i,j≤n

, ∆(x) =
∏

1≤i<j≤n

xj − xi
xj + xi

for a sequence x = (x1, . . . , xn) of indeterminates. The evaluation of the Pfaffian in (A.3)
below originates from [22], and its simple proof can be found in [9]. Equation (A.4) is
derived from (A.3) by specializing the last indeterminate to 0.

Proposition A.1. If n is even, then we have

Pf A(x) = ∆(x). (A.3)

If n is odd, then we have

Pf

(
A(x) 1

−t1 0

)
= ∆(x), (A.4)

where 1 is the all-one column vector.

For two sequences x = (x1, . . . , xn) and y = (y1, . . . , yp) of indeterminates, we put

B(x;y) =

(
1 + xiyj
1− xiyj

)

1≤i≤n,1≤j≤p

, Π(x;y) =
n∏

i=1

p∏

j=1

1 + xiyj
1− xiyj

.

Let Bz(x) = B(x; (z)) be the column vector with ith entry (1 + xiz)/(1 − xiz) and set
Πz(x) = Π(x; (z)) =

∏n
i=1(1 + xiz)/(1 − xiz). Then we have the following variations of

Schur’s Pfaffian evaluation.

Proposition A.2. (1) If n+ p is even, then we have

Pf

(
A(x) B(x;y)

−tB(x;y) −A(y)

)
= (−1)(

p

2)∆(x)∆(y)Π(x;y). (A.5)
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(2) If n is even, then we have

Pf




A(x) Bz(x) Bw(x)
−tBz(x) 0 0
−tBw(x) 0 0


 = ∆(x) ·

z − w

z + w

(
Πz(x)Πw(x)− 1

)
. (A.6)

(3) If n is odd, then we have

Pf




A(x) Bz(x) Bw(x) 1

−tBz(x) 0 0 0
−tBw(x) 0 0 0

−t1 0 0 0




= ∆(x) ·

{
z − w

z + w

(
Πz(x)Πw(x)− 1

)
−Πz(x) + Πw(x)

}
. (A.7)

Proof. (1) Apply (A.3) to the indeterminates (x1, . . . , xn,−1/y1, . . . ,−1/yp).
(2) By applying (1) with p = 2 and (y1, y2) = (z, w), we have

Pf




A(x) Bz(x) Bw(x)

−tBz(x) 0
z − w

z + w

−tBw(x) −
z − w

z + w
0


 = ∆(x)Πz(x)Πw(x) ·

z − w

z + w
.

By using the multilinearity of Pfaffians, we obtain

Pf




A(x) Bz(x) Bw(x)

−tBz(x) 0
z − w

z + w

−tBw(x) −
z − w

z + w
0




= Pf




A(x) Bz(x) Bw(x)
−tBz(x) 0 0
−tBw(x) 0 0


 +

z − w

z + w
· Pf




A(x) Bz(x) 0
−tBz(x) 0 1

0 −1 0


 .

The last Pfaffian is shown to be equal to ∆(x) by expanding along the last row/column
and using (A.3). Thus we obtain (A.6).

(3) Applying (1) with p = 3 and (y1, y2, y3) = (z, w, 0), we obtain

Pf




A(x) Bz(x) Bw(x) −1

−tBz(x) 0
z − w

z + w
−1

−tBw(x) −
z − w

z + w
0 −1

t1 1 1 0




= ∆(x)Πz(x)Πw(x) ·
z − w

z + w
· (−1)n+2.
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By using the multilinearity we see that

Pf




A(x) Bz(x) Bw(x) −1

−tBz(x) 0
z − w

z + w
−1

−tBw(x) −
z − w

z + w
0 −1

t1 1 1 0




= −Pf




A(x) Bz(x) Bw(x) 1

−tBz(x) 0 0 0
−tBw(x) 0 0 0

−t1 0 0 0


−

z − w

z + w
Pf




A(x) Bz(x) 0 1

−tBz(x) 0 1 0
−tBw(x) −1 0 0

−t1 0 0 0




− Pf




A(x) Bz(x) Bw(x) 0

−tBz(x) 0
z − w

z + w
1

−tBw(x) −
z − w

z + w
0 0

0 −1 0 0




− Pf




A(x) Bz(x) Bw(x) 0

−tBz(x) 0
z − w

z + w
0

−tBw(x) −
z − w

z + w
0 1

0 0 −1 0



.

The last three Pfaffians can be evaluated by expanding them along a row/column and
then using (A.4) and (A.5) with p = 1 as follows:

Pf




A(x) Bz(x) 0 1

−tBz(x) 0 1 0
−tBw(x) −1 0 0

−t1 0 0 0


 = Pf

(
A(x) 1

−t1 0

)
= ∆(x),

Pf




A(x) Bz(x) Bw(x) 0

−tBz(x) 0
z − w

z + w
1

−tBw(x) −
z − w

z + w
0 0

0 −1 0 0




= −Pf

(
A(x) Bw(x)

−tBw(x) 0

)
= −∆(x)Πw(x),

Pf




A(x) Bz(x) Bw(x) 0

−tBz(x) 0
z − w

z + w
0

−tBw(x) −
z − w

z + w
0 1

0 0 −1 0




= Pf

(
A(x) Bz(x)

−tBz(x) 0

)
= ∆(x)Πz(x).

If these evaluations are combined, the proof of (A.7) is completed. �

The following Pfaffian evaluations are used in Section 7. For x = (x1, . . . , xn) and
y = (y1, . . . , yp), we put

Ã(x) =

(
(xj + x−1

j )− (xi + x−1
i )

(xj + x−1
j ) + (xi + x−1

i )

)

1≤i,j≤n

=

(
(xi − xj)(1− xixj)

(xi + xj)(1 + xixj)

)

1≤i,j≤n

,

∆̃(x) =
∏

1≤i<j≤n

(xj + x−1
j )− (xi + x−1

i )

(xj + x−1
j ) + (xi + x−1

i )
=

∏

1≤i<j≤n

(xi − xj)(1− xixj)

(xi + xj)(1 + xixj)
,



48 SOICHI OKADA

B̃(x;y) =

(
(1 + xiyj)(1 + x−1

i yj)

(1− xiyj)(1− x−1
i yj)

)

1≤i≤n,1≤j≤p

,

Π̃(x;y) =

n∏

i=1

p∏

j=1

(1 + xiyj)(1 + x−1
i yj)

(1− xiyj)(1− x−1
i yj)

.

We write B̃z(x) = B̃(x; (z)) and Π̃z(x) = Π̃(x; (z)). Then we have the following result.

Proposition A.3. (1) If n is even, then we have

Pf Ã(x) = ∆̃(x). (A.8)

(2) If n is odd, then we have

Pf

(
Ã(x) 1

−t1 0

)
= ∆̃(x). (A.9)

(3) If n+ p is even, then we have

Pf

(
Ã(x) B̃(x;y)

−tB̃(x;y) Ã(y)

)
= ∆̃(x)∆̃(y)Π̃(x;y). (A.10)

(4) If n is even, then we have

Pf




Ã(x) B̃z(x) B̃w(x)

−tB̃z(x) 0 0

−tB̃w(x) 0 0


 = ∆̃(x)

(z − w)(1− zw)

(z + w)(1 + zw)

(
Π̃z(x)Π̃w(x)− 1

)
. (A.11)

(5) If n is odd, then we have

Pf




Ã(x) B̃z(x) B̃w(x) 1

−tB̃z(x) 0 0 0

−tB̃w(x) 0 0 0
−t1 0 0 0




= ∆̃(x)

{
(z − w)(1− zw)

(z + w)(1 + zw)

(
Π̃z(x)Π̃w(x)− 1

)
− Π̃z(x) + Π̃w(x)

}
. (A.12)

Proof. (1) and (2) are obtained by replacing xi by xi+x
−1
i in (A.3) and (A.4), respectively.

(3) is obtained by applying (A.3) with (x1+x
−1
1 , . . . , xn+x

−1
n ,−(y1+y

−1
1 ), . . . ,−(yp+y

−1
p )).

(4) and (5) are derived from (3) by an argument similar to the ones in the proof of (A.6)
and (A.7), respectively. �

A.3. Useful formulas for Pfaffians. The following propositions are Pfaffian analogues
of the Sylvester identity, the Laplace expansion formula, and the Cauchy–Binet formula
for determinants.

Proposition A.4 ([9, (2.5)]). Let n and m be even integers. If X is an (n+m)×(n+m)
skew-symmetric matrix such that PfX([n]) 6= 0, then we have

Pf

(
PfX([n] ∪ {n + i, n+ j})

PfX([n])

)

1≤i,j≤m

=
PfX

PfX([n])
. (A.13)
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Proposition A.5 ([19, Corollary 2.4 (1)]). Let m and n be nonnegative integers with the

same parity. If Z is an m×m skew-symmetric matrix and W an m× n matrix, then we

have

Pf

(
Z W

−tW On,n

)
=





∑

I

(−1)Σ(I)+(m2 ) Pf Z(I) detW ([m] \ I; [n]), if m > n,

(−1)(
m
2 ) detW, if m = n,

0, if m < n,

(A.14)

where I runs over all (m− n)-element subsets of [n].

Proposition A.6 ([19, Theorem 3.2]). Let m and n be nonnegative integers with the

same parity. Let A and B be m×m and n× n skew-symmetric matrices, and let S and

T be m× l and n× l matrices, respectively. Then we have

∑

I

(−1)(
#I

2 ) Pf

(
A S([m]; I)

−tS([m]; I) O

)
Pf

(
B T ([n]; I)

−tT ([n]; I) O

)

= Pf

(
A StT

−T tS B

)
, (A.15)

∑

I

Pf

(
A S([m]; I)

−tS([m]; I) O

)
Pf

(
B T ([n]; I)

−tT ([n]; I) O

)

= (−1)(
n

2) Pf

(
A StT

−T tS −B

)
, (A.16)

where I runs over all subsets of [l] with #I ≡ m ≡ n mod 2.
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