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A GENERALIZATION OF SCHUR’S P- AND Q-FUNCTIONS
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Dedicated to Christian Krattenthaler on the occasion of his 60th birthday

ABSTRACT. We introduce and study a generalization of Schur’s P-/Q-functions associ-
ated with a polynomial sequence, which can be viewed as “Macdonald’s ninth variation”
for P-/Q-functions. This variation includes as special cases Schur’s P-/@Q-functions,
Ivanov’s factorial P-/@Q-functions and the ¢ = —1 specialization of Hall-Littlewood func-
tions associated with the classical root systems. We establish several identities and
properties such as generalizations of Schur’s original definition of Schur’s @Q-functions, a
Cauchy-type identity, a generalization of the Jozefiak—Pragacz—Nimmo formula for skew
Q-functions, and a Pieri-type rule for multiplication.
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Schur (S-)functions and Schur P-/Q-functions are two important families of symmet-

ric functions, and they appear in several parallel situations.

For example, in the rep-

resentation theory of the symmetric groups, Schur functions describe the characters of
irreducible linear representations, while Schur @-functions describe the characters of ir-

reducible projective representations (see [22]).

In cohomology theory, Schur functions

represent the Schubert classes of Grassmannians, while Schur -functions represent the
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Schubert classes of Lagrangian Grassmannians (see [20]). Moreover, some identities for
Schur functions have their counterparts for Schur P-/Q-functions.

There are several generalizations, variations or deformations of Schur functions, such
as Hall-Littlewood functions, Macdonald functions and factorial Schur functions. The
generalization relevant to this paper is Macdonald’s ninth variation ([11], see also [16])
associated with a polynomial sequence, which is defined as follows.

Let F = {fa}32, be a sequence of polynomials fy(u) € Ku], where K is a ground field
of characteristic 0, such that deg f; = d for d > 0. Given a partition A of length [ < n,
we define the generalized Schur function s{(z1,...,x,) as the ratio of two alternants,

B det (fAj—l—n—j(xi))lgi,an

f
S (@150 ) = ’
X " det (fnfj<xi>)1§i,jﬁn

where A1 = --- = A\, = 0. The original Schur functions s,(x) are recovered by setting
fa(u) = u? for d > 0. The factorial Schur functions sy(x|a) with factorial parameters
a = (ag,ay,...) are obtained by taking f;(u) = (ula)? = Hf;ol(u — a;). Moreover,
classical group characters are special cases of generalized Schur functions. For example,
if the polynomial sequence F = {f4}32, is defined by

(1.1)

d+1 —d—1

=—— (d>0),

fue + a7y =T (d20)
then it is not difficult to see that the generalized Schur function s{ (z1+z;",..., 7, +z;")
equals the irreducible character of the symplectic group Sp,,,(C) with highest weight .
Generalized Schur functions share many of the same properties as the original Schur
functions. For example, they satisfy the modified Jacobi-Trudi identity and the Giambelli

identity,

Sf(l’h e ,x‘n) = det (S{;\i_i'ﬁ‘j)('rj’ e ’xn))lgi,jgl
_ F
— det (S(ai‘ﬁj)(xl, e ’x"))lgi,jgr’
where A is a partition of length [ < nand A = («q, ..., |51, ..., 5;) in Frobenius notation.

The aim of this paper is to introduce and study the “ninth variation” of Schur P-/Q-
functions, which we call generalized P-functions associated with polynomial sequences.
We define generalized P-functions in terms of Nimmo-type formula and derive Pfaffian
identities and basic properties by following a linear algebraic approach similar to [19].

We use the following terminology on polynomial sequences.

Definition 1.1. Let F = {f4}52, be a sequence of polynomials f;(u) € K[u]. We say
that F is admissible if it satisfies the conditions

folu) =1, degfo=d (d=1). (1.2)
An admissible sequence F is called constant-term free if f;(0) = 0 for any d > 1.

In this article, a partition of length [ is a weakly decreasing sequence A = (A1, ..., \;) of
positive integers. We write [ = [(\) and |A| = Y2'_, \i. A partition \ of length [ is called
strict if Ay > --- > X\;. The empty sequence () is the unique strict partition of length 0.
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For a sequence = (z1,...,x,) of n indeterminates, we put
T — T T — T
Az) = <J7) . Az) = SR (1.3)
it %) 1<ij<n 1gg§n Tj i

Now we give a definition of generalized P-functions associated with polynomial sequences
in terms of a Nimmo-type formula (see [18, (A13)]).

Definition 1.2. Let n be a positive integer and * = (z1,...,x,) a sequence of n in-
determinates. For an admissible sequence F = {f;}32, of polynomials and a sequence
a = (ay,...,q,) of nonnegative integers, let V.7 (x) be the n x r matrix given by

It i R s

Given a strict partition A\ of length [, we define the corresponding generalized P-function
P (x) associated with F by putting

1 Alx) Vi(=x) , ,
N Alz) Pt W () o , ifn+11is even,
BR@=1 Alz)  Vi(x) 4
Alz) —t[/)f(m) O , ifn+41is odd,

where A’ = (\,...,\;,0). We simply write V() and Py(z) for V.7 (z) and P{ (z) if
there is no confusion, e.g., in the proofs.

Note that (see Proposition A.1)

Pf A(x), if n is even,
A =
(@) Pf A(z) ;) , if n is odd,

where 1 is the all-one column vector of appropriate size. Hence our definition (1.4) can
be regarded as a counterpart of the definition (1.1) of generalized Schur functions.

Example 1.3. (1) It follows from Nimmo’s formula [18, (A13)] that we recover the
original Schur P-function Py(z) and Schur Q-function Qy(x) by setting fi(u) = u?
and fy(u) = 2u?, respectively.

(2) It follows from the Nimmo-type formula [7, Theorem 3.2] that Ivanov’s factorial
P-function Py(z|a) and Q-function Q,(x|a) are obtained by taking fy(u) = (u|a)?
and fy(u) = 2(u|a)?, respectively.

(3) As we will see in Section 7, our generalized P-functions include the t = —1 spe-
cializations of Hall-Littlewood functions associated with the root systems of type
B, C and D.

Ikeda and Naruse [4], and Nakagawa and Naruse [17] introduced other generalizations
of factorial P- and @Q-functions from the viewpoint of Schubert calculus. In a very recent
paper [2], Foley and King give a combinatorial generalization of Schur @Q-functions in
terms of shifted tableaux and prove several Pfaffian formulas.

The organization and main results of this paper are as follows. In Section 2, we re-
late our definition of generalized P-functions (Definition 1.2) with generalizations of two
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other definitions of Schur P-/Q-functions. Namely, we prove that Py (x) is also ob-
tained by setting ¢t = —1 in the generalized Hall-Littlewood function associated with a
polynomial sequence (see Theorem 2.3), and that Py () is expressed as the Pfaffian of
the skew-symmetric matrix with entries P(i’ )\j)(m) (see Theorem 2.6). In Section 3, we

introduce the notion of generalized dual P-functions 13{ (z) and prove a corresponding
Cauchy-type identity. In Section 4, we define generalized skew P-functions Pf/ Mp(:c) in
terms of a Jozefiak—Pragacz—Nimmo-type Pfaffian and prove that Pf/mp(:c) appears as
the coefficient of P (y) in the expansion of P{ (z,y) (see Theorem 4.2). In Section 5, we
consider the modified Pieri coefficients in the expansion of the product PJ(z) - Q¢ (x)
and obtain a determinant formula for the generating function of modified Pieri coefficients
(see Theorem 5.3). Section 6 focuses on Ivanov’s factorial P-/Q-functions. We derive a
determinant formula for the factorial skew P-function in one variable (see Theorem 6.5),
and an explicit product formula for the generating function of modified Pieri coefficients
(see Theorem 6.6). In Section 7, we show that the Hall-Littlewood functions at ¢t = —1
associated with the classical root systems can be written as generalized P-functions asso-
ciated with certain polynomial sequences (see Theorem 7.2). Appendix A collects some
Schur-type Pfaffian evaluations and useful formulas.

2. SEVERAL EXPRESSIONS FOR GENERALIZED P-FUNCTIONS

In this section, we give several expressions for generalized P-functions associated with
an admissible polynomial sequence, and we study their basic properties.

2.1. Hall-Littlewood-type expression. In this subsection, we prove that our gener-
alized P-functions are obtained as the ¢t = —1 specialization of Hall-Littlewood-type
functions.

We begin with the following proposition.

Proposition 2.1. Let F be an admissible sequence of polynomials and x = (x1,...,T,).
Then we have:
(1) For the empty partition O, we have Fj (x) = 1.
(2) If X is a strict partition of length > n, then we have P{ (x) = 0.
Proof. By using the definition (1.4), we can derive (1) from the Pfaffian evaluations (A.3)
and (A.4), and (2) from Proposition A.5. O
We define a generalization of Hall-Littlewood polynomials associated with an admissible

polynomial sequence.

Definition 2.2. Let n be a positive integer and © = (z1,...,x,). Given a partition A
of length [ < n, we regard \ as a sequence (Aq,...,\;,0,...,0) of length n, and define a

polynomial v{"(t) by putting

o (t) = [Timale,

k>0



A GENERALIZATION OF SCHUR’S P- AND Q-FUNCTIONS 5

where my = {i: 1 <4 <n, A\ =k} and [m]! = [[/2,(1 —#/)/(1 —t). For an admissible
polynomial sequence F and a partition A of length < n, we define the generalized Hall-
Littlewood function P (x;t) corresponding to A by putting

Bl(eit) =y S w (H INCO| ﬁ‘_tg ) , (2.1)

Uy (t) WESn 1<i<j<n

where S, is the symmetric group acting on K (t)[x1,...,2,] by permuting variables. We
write Py(x; t) for P{(x;t) when there is no confusion.

Setting fq(u) = u? for d > 0, we recover the original Hall-Littlewood polynomials. The
following is the main theorem of this subsection.

Theorem 2.3. For an admissible sequence F and a strict partition A of length | < n, we
have

P (2) = P} (a; -1). (2.2)

Note that Equation (2.2) with fy(u) = u? is the definition of Schur P-function adopted
in [12, I11.8]. For the sake of completeness and later use, we give a proof of this theorem,
which follows the argument in [18, Appendix]. As a first step, we show the following
lemma.

Lemma 2.4. For a strict partition A of length | < n, we have

l
Pl(z:—1)= > HfAi(xi) 1T Tt (2.3)

R R
u€Sn/Sn_1 1S1‘<<J1Sn
Z_

e e T ), (2:4)

u€eSy 1<i<j<n
i<l
where S, _; is the symmetric group on the last n — | variables x;yq, ..., x,.

Proof. Since fo(u) =1 and the product [[,.;_;<, i<;(xi —tz;)/(2; — x;) is invariant under
Sp—1, we have

Py (x; 1)
1 ’ ! Z; —tl’j " ZT; —tl’j
U (t) w'€Sn/Sn_; i=1 lgi'<<]l'§n ¢ I wres, I+1<i<j<n ~° J
[

By using (see [10, Theorem 2.8])

> w”( I1 %)z[n—m!: V),

w"eS I+1<i<j< L
n—l1 > j=n
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we have
!

xr; —tx;

P . — / ) . ? J

A(mﬂf) Z w Hf)\z(l‘z) H e

w'€Sn/Sn—1 i=1 1<i<j<n J

i<1

By specializing ¢t = —1, we obtain (2.3), from which (2.4) follows. O

Proof of Theorem 2.3. Since A(x) is alternating in x1, ..., x,, it follows from (2.3) that

@) ’ =
(=peite) Z sgn(v)v (HfAl(xz) H ﬁ)

Py(x;—1) =
vESR/Sn_1 I+1<i<j<n

Since [} 1<icjen(®j — @)/ (x5 + ;) is invariant under the symmetric group S acting on
the first [ variables x4, ..., x;, we have
Px(z; —1)
n n—1 l
(_1)(2)+< 2 ) N,/ ", 1 Lj — T
— A Z )sgn(v v Z sgn(v")v HfAl(xz) H 2 o

v’eSn/(Slen_l v"eS; 1+1<i<j<n

) (g)+<n2—l) To — T
_ (UW Z sgn(vl)vl <det (f,\j (xz‘))lg,jgl H :1:; + xj) .

v/ESn/(SlXSn,l) +1<i<j<n

We take R = {u € S, : u(l) < --- < u(l),u(l +1) < --- < u(n)} as a complete
set of coset representatives of S,,/(S; x S,_;). We note that the correspondence u
{u(l +1),...,u(n)} gives a bijection between the coset representatives R and the set
(7@1) of all (n — [)-element subsets of [n] = {1,...,n}.

First we consider the case where n — [ is even. In this case, by using Schur’s Pfaffian
evaluation (A.3), we have

NGOy
Py(z; —1) = (I)W Z sgn(u)u(det Wa(zp) PfA(w[n]\[l}))a
UESn /Sy X Sp_y

where [[| = {1,..., I}, n]\[[] ={{+1,...,n}and x; = (zj,,...,2;,) for J = {j1, ..., Jm}
with j; < -+ < jp. On the other hand, by applying Proposition A.5 (a Pfaffian version
of the Laplace expansion) to the matrices Z = A(x) and W = V,(x), we obtain

Az Vi(x S (™
(i ) - PR () PE AGe,) det V(i)

where X(I) = >, ;4. Since n — [ is even, we can see that, if v € R corresponds to
I e (Tg’z]l), then the inversion number of u is given by

v (u) = (";1) - (l ! 1) _S(1) = (Z) - G) +3(1)  mod2.
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Hence we have
Pf <—1’f‘1/(j3:) VA(()‘”)) - Y (-t sgn(u)u(detVA(a:m)PfA(m[n]\m)>,
UESH /(S1xSp—1)

and

(—1)(@*(”51)*(5) Alz)  Vi(z)
sw P 6)
(";)) = l(n—1) = 0 mod 2 to complete the proof

Py(z; —1) =

Now we can use the relation (g) — (é) —

of (2.2) in the case where n — [ is even.
Next we consider the case where n — [ is odd. In this case, by using (A.4), we see that
1))+ A 1
()W Z sgn(u)u (det V() PE ( <ai[?1]\[l}) 0)) ’
UESn/(S1XSp_1)

where 1 is the all-one column vector. On the other hand, by applying Proposition A.5 to

the matrices
_[(Alz) 1 _ (Wa(=)
Z - ( _t1 0) ) W - < O )

we see that
Alxz) 1 Vy(x) -
Pf| -1 0 =" (1" PEZ(1) det W ([n + 1]\ I: [1]),
—tV)\(ZE) O

@)
@ I
where I runs over all (n + 1 —[)-element subsets of [n +1]. If n+ 1 ¢ I, then we have

det W([n 4 1]\ I; [I]) = det <VA("’g"}\1)> = 0.

Hence we have
Alx) 1 V(o) .

il -1 0 0 |= 3 (~p)Pe-(7) py (Afflf) é) det Vy (1)
~V(x) O O 1e(,™)

Since n — [ is odd, we see that, if u € R corresponds to I € (i’z]l), then we have

v (1) = (”‘2”) _ (z;1) w1 = (”;1) _ @) ~ ST U{n+1}) mod 2.

Moreover, by permuting rows/columns we have

A(tac) 1 Vi(=) z Alx)  Vio(x)
o —fi;jw)g o )~ Pf(—%(w) 0 )

Hence we have

(v 07
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- ¥ <_1)(é)+lsgn(u)u(Pf (A“”_[’;{\W (1)) detVA(w[l})),

and
)G+ )+G)+
Py(a; —1) = S 2 e Alr) - Viela))
A@) V(@) O
Now we can complete the proof in the case where n — [ is odd by using the congruence
relation (3) — (1) — (";)) =1(n —1) =l mod 2. O

By combining Theorem 2.3 and Lemma 2.4, we obtain the following corollary.

Corollary 2.5. For a strict partition A of length | < n, we have

Plw= 3 w|Ilne) I 77 (25

WES/Sn_y  \ i=1 1<i<j<n
i<l

!
1 ZT; + ZL‘j
— (z; = 0. 2.6
oo 2 |t T1 2= (26)
ueSy =1 1<i<j<n
i<l

2.2. Schur-type Pfaffian formula. In this subsection, we use the definition (1.4) and a
Pfaffian version of the Sylvester formula (Proposition A.4) to derive a Schur-type Pfaffian
formula for Py (x), which generalizes (a part of) Schur’s original definition of Schur Q-
functions [22, §35] and a similar formula for factorial @-functions [7, Theorem 9.1]. We
use the following conventions:

Py(x) =1, (2.7)
P(f,r)<w) = —P(J:,s)(w)a P(iO)(w) = _P(](;,r)(w) = P(J:)(w)7 P(Jof,o)(w) =0, (2.8)
where r and s are positive integers.
Theorem 2.6. Let F be an admissible sequence. For a sequence o« = (a, ..., ) of
nonnegative integers, let ST (x) be the r x r skew-symmetric matriz defined by
F(oy — [ pF
ST(@) = (Plap(@) . (29)

Then, for a strict partition A of length I, we have

{Pf S{(x), ifl is even,

Pl (x) = (2.10)

Pt S{(x), ifl is odd,
where X = (A,...,N) and \° = (A\q,..., )\, 0).

In order to prove this theorem, we can use the same argument as in [19, Theorem 4.1 (3)
and Remark 4.3]. As we will see in Proposition 2.7, the generalized P-functions do not
have the stability property, so we cannot reduce the proof to the case where n is even.
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Proof. By applying Proposition A.4 to the matrix X given by

;

A
B t‘/(jic) V;ém)) , if n is even and [ is even,
Alz) — Vyo(@) , if n is even and [ is odd,
—tVAO (m) O
Alxz) 1 Vi(x)
X = -1 0 O , if n is odd and [ is even,
—tV)\<IE) O O
_t —
1 0 0 L , if n is odd and [ is odd.
V() O O O
\ 0 1 O 0
If n is even, then we have
Pf X Pt X([n]U{n+i,n+j})
- _p = P, )
PEX ()~ @) PEX ([n]) 0 ()
If n is odd and [ is even, then, by permuting rows/columns, we see that
Pf X PIX(n+1U{n+1+in+1+j})
- = P, .
PEX (1) ) Pf X ([n + 1)) 02 (@)

If n is odd and [ is odd, then by expanding the Pfaffians along the last row/column, we
have
Pf X Pt X(n+1Ju{n+1+in+1+(1+1)})
PEX(n+1]) \@), Pf X ([n + 1])

and by permuting rows/columns we see that

PEX([n+1JU{n+1+d,n+1+;})
Pf X ([n + 1])

Now Theorem 2.6 follows immediately from Proposition A.4. U

= P()\i)(m)v

= P(,\W\j)(:v).

2.3. Stability. The Schur P-functions have the stability property (see [12, III, (2.5)])
Py(z1,...,2,,0) = P\(x1,...,2,).

Our generalizations Py (x) do not have the stability property in general. For example we
can show that

P(‘f)(xl, e T, 0) = P(f)(:pl, con )+ (=)™ f.(0)
for r > 1. The following “mod 2 stability property” was given by [3, Proposition 8.1] for
factorial P-functions.
Proposition 2.7. Let F be an admissible sequence, and X a strict partition.

(1) In general, we have

P (z1,...,2,,0,0) = P{ (2y,...,1,).
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(2) If F is constant-term free, then we have

Pl (xy,...,2,,0) = P (21,...,2,).
Proof. (1) Let @ = (21,...,x,) and & = (21, ...,Zp, Tpi1). It follows from the definition
(1.4) that
1 A(x) -1 V()
PA({L‘l,...,ZL‘n,ZL‘n_i_l,O) = Tpf t]_ 0 V)\*(O) s
(DA@) \ w3 -15.0) O
where \* = X or \Y according to whether n + 1 is even or odd, and V,(0) is the row vector
(fa,(0), ..., fa,(0)). Hence, if we put z,,41 = 0 in the above formula, we have
A(x) -1 -1 Vi ()
1 1 0 1 Vi (0)
P ey T, 0,0) = pf
)\(xla , L ) (_1>n+1 . (—1)"A(.’IZ) tl 1 0 V)\*<O>

“Wye(x) —W3(0) —V3e(0) O

By subtracting the (n + 1)st row/column from the (n + 2)nd row/column and then by
expanding the resulting Pfaffian along the (n + 2)nd row/column, we see that

1 Az Vi (
Py\(z1,...,2,,0,0) = CO T (1A - (=1)Pf (-tVE\*()ZB) (g )) = P\(x).

(2) By the definition (1.4), we have

P 0) = ! pf At({v ) _01 ‘9*%)
A1, )_W V- (z) =Wy (0) AZ?H |

where \* = \? or \ according to whether n + [ is even or odd. If n + [ is even, by adding
the (n 4 1)st row/column to the last row/column and then by expanding the resulting
Pfaffian along the last row/column, we see that Py(x,0) = P\(x). If n + [ is odd, then
by permuting rows/columns, we obtain Py(x,0) = Py(x). O

2.4. Relation with generalized Schur functions. We conclude this section by proving
a relation between generalized P-functions and generalized Schur functions.

Proposition 2.8. Let F be an admissible sequence and = (x1,...,x,). For a partition
w of length m < n, let p+ 6, be the strict partition obtained from (pu; +n — 1, us +n —
2, o1+ 1, ) by removing 0s, where fiy1 = -+ = p, = 0. Then we have
Pl (@)= ] (@i+=)- s (2),
1<i<j<n
where sf(:c) is the generalized Schur function given by (1.1).

Proof. Since the strict partition p + d,, has length n — 1 or n, it follows from (2.6) that

o) = 3 ([t 1 252)

e €T
WESn 1<i<j<n



A GENERALIZATION OF SCHUR’S P- AND Q-FUNCTIONS 11

- T 252 S st (T o)

1<i<j<n " J wesSh,

= ] @i+ si(@. O

1<i<j<n

3. DUAL P-FUNCTIONS AND CAUCHY-TYPE IDENTITY

In this section, we introduce the dual of generalized P-functions and prove a Cauchy-
type identity for generalized P-functions.

3.1. Dual sequences. For a nonzero formal power series g(v) = Y 2 bv" € K[[v]],
the order ordg of g is defined to be the minimum integer k£ such that b, # 0. Let
( , ):K[u] x K[[v]] = K be the non-degenerate bilinear pairing defined by

1, ifi=j=0,
(', vy =< 1/2, ifi=75>0,
0, ifi##j.

Lemma 3.1. Let F = {4}, be an admissible sequence of polynomials.

(1) Let ]: = {fd}d o be a sequence of formal power series fd( ) € K[[v]] satisfying
ordfd =d ford > 0. Then (fk,fl) = 0k, for any k, 1 > 0 if and only if

~ I+ uv
me)fk(v) - (31)
(2) There ezists a unique sequence F = {fd}d o satisfying ord fd =d ford >0 and

the equivalent conditions in (1). We call such a sequence F the dual of F.
(3) If F = {fa}y is the dual of F, then F is constant-term free if and only if fo = 1.

Proof. (1), (2) We write fa(u) = 3,5, aqu’ and ﬁl(v) = Y isobav'. Since deg fs = d
and ordﬁi =d, we have ag; = 0 for i > d+1 and by; = 0 for i« < d — 1. We define bzm- by

putting
Yo bao, ifi=0,
di = o
bd,i/27 if i > 0.
Fix a nonnegative integer NV and consider two (N+1)x(N+1) matrices A = (a; j)o<i j<n
and B’ = (b} ;)o<ij<n. Then it is easy to see that
(a) (fu, f1) = Oy for all 0 < k,1 < N if and only if A-'B' = Iyq;
(b) > iso fe(u) fr(v) = (14+uv)/(1 —uv) in the quotient ring K [[u, v]]/(u™*!, v *1) if
and only if A - B = In,;.
The claims (1) and (2) follow from this observation.
(3) If f4(0) = 0 for any d > 1, then by substituting v = 0 in (3.1) we obtain fo(v) = 1.
Conversely, if fo =1, then (f4, fo) = 040 is equal to the constant term of f,. O
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For example, if f;(u) = u? for d > 0, then the dual of F is given by

" 1, ifd=0,
fd(”)_{zvd, itd>1.

See Lemma 6.1 for the dual of the sequence {(u|a)?}5, of factorial monomials.

3.2. Generating functions of generalized P-functions. For a sequence of variables

x = (z1,...,7,) and another variable z, we put
~ 1+ Tz
I (z) = . 3.2
@) = [ (32

=1

Then the generating functions of Schur Q-functions Q(y(z) and Q, () are expressed
as

Z Q(r,s)(m)zrws = (Hz(m)Hw(m) - 1)7 (34)

z w
r,s>0 +

respectively (see [12, III, (8.1)] and [23, p. 117]). We can generalize these generating
functions in terms of the dual sequence F.

Proposition 3.2. Let F = {f4}32, be an admissible sequence of polynomials, and F=
{fa}2 the dual sequence of F. Then we have:

(1) The generating function of generalized P-functions P(f) (x) is given by

{HZ(ZE), if n is odd,

Y Ph@)fi(z) = (3.5)

r>0

IL(x) + j/’\o(z) —1, ifn is even,

under the convention (2.7).
(2) The generating function of generalized P-functions Pfs) (x) is given by

S PE (@) fo(2) fol(w)
r,s>0
Z—Ww

(I ()L, (z) — 1) + (fo(w) — DIL(z) — (fo(z) — DIL.(),

Z4w

— if n is odd, (3.6)
S (TL (), (x) — 1) if n is even
4w’ v ’ )

under the convention (2.8).

If we set fq(u) = (ula)? (factorial monomial) with ay = 0, then it follows from
Lemma 6.1 that the formulas (3.5) and (3.6) reduce to the formulas given in [7, The-
orem 8.2] and [7, Theorem 8.4] for factorial P-functions.



A GENERALIZATION OF SCHUR’S P- AND Q-FUNCTIONS 13

Proof. The idea of the proof is similar to that of [19, Theorem 4.1 (1) and (2)]. Let B,(x)
be the column vector with ith entry (1 + x;2)/(1 — x;2). By (3.1) we have

Z fr(zﬂ/(r)(w) = Bz(w>7 Z ﬁ(Z)‘/(T)(ID) = Bz<w) - f0<2)1.
r>0 r>1
(1) If n is odd, then by the definition (1.4) and the multilinearity of Pfaffians, we have
7 1 A(z)  B.(z)
P, = ——Pf
; (r) (w)fr<z) A(.’B) (—th(.’B) O )

which equals II,(x) by (A.5). Similarly, if n is even, then we have

_ ~ Afx) B.(z) — fo(2)1 1
ZPm(fB)fr(Z):fo(ZHﬁPf ~5.(a) + ()1 ) )

By adding the last row/column multiplied by ]?O(z) to the second to last row/column, and
by then using (A.6) with w = 0, we obtain

R R 1 Alxz) B.(x) 1
ZP(T)(:c)fr(z) = fo(2) + Az) Pf|—B.(x) 0 0] =fo(z)+ (Il(x)—1).

r>0 -1 0 0
(2) If n is even, then we have
S Po(@)Jo() o) = o P B 0
r,s>0 " ' ) N A(IE) —tB:(.’B) 0 0 ’
and this equals (z — w)/(z + w) - (IL, ()1, (x) — 1) by (A.6). If n is odd, then we have
= 3 P @ F ) + 3 Pro@ () o) + 3 Pos(@) () fi(w)
Alx) B.(z) = Jo(z)1 Bu(@) - fo(w)l 1
| =B+ Ren 0 0 )
A(z) —'By(z) + fo(w)1 0 0 0
-1 0 0 0
Flw) Alz) _ B.(z) = fo(2)1
Fh) 3 <—th<w> fhen o )
IS A@)  Bu(@) - fow)
fo(2) A@) pf (-th(:L‘) + folw) 0 ) .

By adding the last row/column multiplied by fo(z) (respectively ﬁ)(w)) to the third
(respectively second) to last row/column in the first Pfaffian, we see that
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A@)  Bi@) - ()1 Bu(@) - fo(w)1 1
Pt —'B,(x) + Jfg(z)tl 0 0 0
—'By(x) + fo(w)1 0 0 0
-1 0 0 0
A(x) B.(x) By(x) 1
_ pf —'B.(x) 0 0 0
- —'By(x) 0 0 0
-1 0 0 0
By using the multilinearity of Pfaffians, we have
o A@) Be) - Rt
—'B.(x) + fo(2)1 0
— Pt (_%(f;) Bzéw)) — fo(z) Pt (A_(if) é) :

_ A()  Bu(®)\ 2 Afx) 1
Hence we can use (A.7), (A.5) and (A.4) to evaluate these Pfaffians and complete the
proof. O

3.3. Dual P-functions and Cauchy-type identity. In this section, we introduce the
dual P-functions and prove a Cauchy-type identity.

Definition 3.3. Let F = {f4}3°, be an admissible sequence and F = {j/;}?lozo the dual

of F. For a sequence a = (o, ...,q,) of nonnegative integers, let V.7 (x) be the n x r
matrix given by

Vi (@) = (Jo (@)

Given a strict partition A of length [, we define the generalized dual P-functions ﬁ)\f ()
by putting

I e R

)

F
. Pt 4833) 5 (@) , ifn+11is even,

~ A(x) V7 (x) O

B@=1 Alz) Vi) (3.7
Alz) —tV/\fo(:c) O , ifn+41is odd,

where \° = (Aq,...,\;,0).

If fy(u) = u? for d > 0, then ﬁl(v) = 2v? for d > 0. Hence P{(xz) = P\(x) is the
original Schur P-function, and the dual P-function Py (x) = Qx(x) is the original Schur
@-function.
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By the same arguments as in Section 2, we obtain the following proposition.

Proposition 3.4. Suppose that F = {fa}32, is a constant-term free admissible sequence
with dual F = {fa}5>,. Then we have:
(1) For a strict partition of length | < n, we have

l
Pf@) = o Lo [ [T T 252 | (39

o
UESH 1<i<j<n
i<l
(2) For a sequence o = (v, ..., ) of nonnegative integers, let gf(m) be the r x r
skew-symmetric matriz defined by
SF () — ( BF
Sa (m) - (P(ai,aj)(m)> 1§i7j§r’

where we use the same convention as (2.8). Then, for a strict partition X of
length [, we have

~ Pf S (x), ifl is even
Pi(m)=4_ 57 ’ 3.9
i (@) {Pf SE(z), ifl is odd. (3:9)
(3) For a strict partition X\, we have
PE(xy, .. 20,0) = P (2, ..., 2). (3.10)

Proof. By Lemma 3.1 (3), we have ﬁ) = 1 for a constant-term free admissible sequence F.
Hence the proofs of Theorems 2.3, 2.6 and Proposition 2.7 (2) work literally in this dual
setting. 0

For Schur’s P- and Q-functions we have the following Cauchy-type identity (see [12,
I11, (8.13)], and [19, Theorem 5.1] for a linear algebraic proof):

n

1+ 2y,
ZPA<w)QA<y> = H ﬁ7
A i,j=1 iY;

where € = (z1,...,2,), ¥ = (Y1,...,Yn), and the summation is taken over all strict

partitions of length < n. We can use the notion of dual P-functions to formulate a
Cauchy-type identity for generalized P-functions.

Theorem 3.5. Let F be an admissible sequence of polynomials, and let x = (x1,...,xy)
and y = (Y1, .., Yn) be two sequences of indeterminates. Then we have
Y K @Pi(y =] —=
A ij=1 1 LilYj

where A runs over all strict partitions.

Proof. We use the same argument as in the proof of [19, Theorem 5.1]. Apply a Pfaffian
version of the Cauchy—Binet formula (A.16) to the matrices

A=A(x), B=Aly), S= (fk(ffz)) T = <ﬁ€(yz))

1<i<n,k>0 1<i<n,k>0
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Strict partitions A\ are in bijection with subsets of N satisfying #I = n mod 2 via the

correspondence A — I = {Ay,..., Ny} or {A1,..., N, 0}. Furthermore, we have
OB L A@) S(ngD)
R =T st "8
(-p%) A T(n: 1
=gl "6 7).

where S([n];I) and T'([n]; I) are the submatrices of S and T, respectively, obtained
by picking up the columns indexed by I. Since the (i,j) entry of ST is equal to
(1+ zy;)/(1 — zy;) by (3.1), we can complete the proof by using the Pfaffian evalu-
ation (A.5). O

4. GENERALIZED SKEW P-FUNCTIONS

In this section, we introduce generalized skew P-functions in terms of a Joézefiak—
Pragacz—Nimmo-type Pfaffian, and study their properties.

4.1. Jozefiak—Pragacz—Nimmo-type formula. First we define generalized skew P-
functions associated with an admissible sequence.

Definition 4.1. Let F = {f4}52, be an admissible sequence. For a pair of nonnegative
integers r and k, we define a symmetric polynomial Rf/k(w) by the relation

Ph(@r, -y wn,y) = Y R, w) fiy): (4.1)
k=0
For two sequences a = (a,...,a,) and § = (f1,...,0s) of nonnegative integers, let
M, 5(x) be the r x s matrix given by
F
Ma/ﬁ( ) (Rai/ﬁerl—j (m))lszynlﬁjﬁs (4'2)

For a pair of strict partitions A of length [ and p of length m and a positive integer p, we
define the generalized skew P-function P{/ (x) by putting

(
ST M,
Pf (@) )‘/“< @) , if ] = p and m = p mod 2,
— M) (@) O
M]—'
Pf i f( z) A/“O(m) , ifl=pand m # p mod 2,
Pf, (x) = MA/”O("B) © 4.3
Pf A , if I # p and m = p mod 2,
tM{})/M(m) @)
Slo(x) My ,0()
Pf A/ if d d2
\ tM)f)/H( z) O , if [ #Z p and m # p mod 2,

where S7(x) is the skew-symmetric matrix defined in (2.9), and \° = (\y,...,\;,0),
MO = (,Ul, cee 7:um70>'
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The main result of this section is the following theorem, which is a generalization of
the Jézefiak—Pragacz—Nimmo formula for Schur P/@ functions (see [21, Theorem 1] and
(18, (2.22)]).

Theorem 4.2. For two sequences of variables x = (x1,...,%,) and y = (Y1,...,Yp), We
have

P (@) = X Bl P ). (4.4

where p runs over all strict partitions.

We postpone the proof of this theorem to the next subsection. Before the proof, we
derive several properties of generalized skew P-functions from the definition (4.3). We
begin with the following property of Rf/k(:r;)

Lemma 4.3. For a positive integer r, the generalized P-function P(f)(:c,y) has degree at
most v in y. Hence we have Rf/k(:c) =0 unless r > k.

Proof. The coefficient of 2" in IL(x,y) = [[[_,(1 + z:2)/(1 — 2:2) - (1 + y2)/(1 — yz)
has degree at most r in y. On the other hand, since ordﬁ = r, the coefficient of 2"
in Zr>0P (x, )fr( ) is a linear combination of P(Jg)(az,y), . .,P(f)(:c,y) with nonzero
coefficient for P(r)( y). Hence, by using (3.5) and the induction on r, we can conclude
that P(f)(az, y) has degree at most r in y. O

This lemma can be used to prove the following vanishing property of generalized skew
P-functions. For a strict partition A\, we define its shifted diagram S()\) by putting

SN ={(i,j) €Z*:1<i<IN),i<j<N+i—1}
For two strict partitions A and u, we write A D p if S(A) D S(u).
Proposition 4.4. Let F be an admissible sequence. For two strict partitions A\ and p,
we have P/\];up( x) =0 unless A D .

Proof. Suppose that there exists an index k such that A\; < pg. Then, if ¢ > k and j < k,
we have \; < A\, < pp < pj and R,\i/w(m) = 0 by Lemma 4.3. Hence the skew-symmetric
matrices X appearing in the definition (4.3) of P)\f/u (z) are of the form

z W
“=(w o)
where W has k columns and at most (k— 1) nonzero rows. Since all the k x k minors of W

vanish, it follows from the Laplace expansion (Proposition A.5) that P)\f/u’p(w) =PI X =0.
UJ

If the polynomial sequence F is constant-term free, then the skew P-function P)\f/ p b
independent of p and some formulas have simple forms.

Proposition 4.5. Suppose that F is a constant-term free admissible sequence.
(1) Ro/o( x)=1 and Rr/o( x) = P(f)(m) for a positive integer r.
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(2) For two strict partitions A of length | and p of length m, we have

Sy M,
Pf (_A};(w) )‘/6(50) ) if | =m mod 2,

])\/u(a:)
Fop@ =1 o0 Si@)  Mis@\ o ( Sh@) M,
~'"M5, 0 () o) N "M, () o) ’
if | Zm mod 2.

In particular, Pf/up(w) is independent of p. We write P{/M(w) in this case.

Proof. (1) Substituting y = 0 in the definition (4.1), we obtain

P(r)(:c, O) = Z Rr/k(m)fk(o)
k=0

Since P,y (x,0) = Py)(x) by the stability property (Proposition 2.7 (2)), and f,(0) = 6,0
by assumption, we have R, o(x) = P(x).
(2) By using (1), we see that

(it "6) = (e ™6™

It remains to show that, if [(\) # p and {(x) # p mod 2, then

(il 5 (i )

Let T)(x) (respectively Ty /o()) be the column vector with ith entry Py,)(x) (respectively
Ry, jo(x)). Since Ryo(x) = 1 and Ryi(x) = 0 for k > 1, we have

S,\(ac) T,\(m) T,\/O(:B) M)\/M(m)

S)\o(il,‘) M)\O/uo (ZE) _ —tT)\(ZE) 0 1 O
—tM)\O/MO(m) O —:’_r)\/o(m) —1 0 O
—"My () O o) 0]

Since Th(x) = Th/o(x) by (1), we add the (I + 1)st row/column multiplied by —1 to the
(I 4+ 2)nd row/column and expand the resulting Pfaffian along the (I 4+ 2)nd row/column
to obtain

o (_tﬁiif”?(m) Mkogo<w>)zpf (_ S(x) me)), .

If x consists of a single variable, then we have the following proposition.

Proposition 4.6. Let F be an admissible sequence and x = (x) a single variable.

(1) For two strict partitions A and p, we have Pf/%p(x) =0 unless () —l(p) < 2.

(2) If F is constant-term free, then we have P)\f/u(x) =0 unless I(\) —l(pn) <1, and

P/{T/M(:c) = det (Ri/w (:c)) (4.5)

1<i, <IN
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Proof. Put [ = I[(\) and m = ().
(1) Since Py, ;) (z) = 0 for A; > A; > 0 by Proposition 2.1, we have

pr( , O Mv@))
_MA/M("E) Om

(

if | =p and m = p mod 2,

My 0
Pt . O, M (z) , if | = p and m # p mod 2,
— M0 (z) Om+1
O (@) Myyu(z)
Pap(@) = 4 PE| - —Ty(x) 0 O : if [ # p and m = p mod 2,
~"Myu(z) O O
O Ty(z) Tapl(x) Myu(x)
—Ty(x) 0 1 o) .
Pf £ 1 1
_tT)\/o(SU) -1 0 O , if [ # pand m # p mod 2,
\ —Myu(x) O O O

where T)(x) (respectively Tyo(x)) is the column vector with ith entry P, (z) (respec-
tively Ry, /o(x)). By using Proposition A.5, we see that Py/,(z) = 0 unless

[ =m, if | =p and m = p mod 2,
Il=m+1, if | = p and m # p mod 2,
l=m+1, if [ £ p and m = p mod 2,

l=morm+2, ifl# pand m # pmod 2.

Here we note that m <1 < m+2if and only if | < (I+m+2)/2 and m+1 < (I+m+2)/2.
(2) By using Proposition 4.5 (2) and Proposition A.5, we have

@) M,
pe( , @) (=)&) det My, (x), i 1=m,
F _ - MA/M(‘W) 0
P/\/uvp(x) - F
Pf “ Mg (@) _ (=)&) det My 0 (2), ifl=m+1
~Mp(@) O v |
By permuting columns of M, (z) and My 0(x), we obtain (4.5). O

4.2. Proof of Theorem 4.2. We give a proof of Theorem 4.2 by using the same idea as
in the proof of [19, Theorem 6.1] for Schur Q-functions. A key is played by the following
proposition, which interpolates the Nimmo-type formula (1.4) (n = 0 case) and the Schur-
type formula (2.10) (p = 0 case).

Proposition 4.7. Let F be an admissible polynomial sequence and x = (x1,...,x,) and
Yy = (Y1,...,Yp) two sequences of indeterminates. For a nonnegative integer sequence
a=(ay,...,q,.), let N7 (x|y) be the r X p matriz defined by

St x>
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Then, for a strict partition X of length [, we have

1 S () N{ (z|y) if l is even
P (x,y) = Aly)  \-'N{(zly) Aly) ) B | (4.6)
A\, Y Lpf Sf\';(m) Nﬁ(m|y) if |+ p is odd |
Aly)  \-'Ni(zly) Aly) )’ |

where \° = (A1, ..., \;,0), and S7 (x) and A(y) are given by (2.9) and (1.3), respectively.

We denote by P;(x|y) the right-hand side of (4.6). First we prove that P;(x|y) satisfies
a Schur-type Pfaffian formula.

Lemma 4.8. For a strict partition A of length [, we have
pf (P(’)\MJ_)(:E\y)> i’ if 1 is even,
Pf (P(’AMJ_)(:My)) . if s odd,

1<ij<l+1

Py(x|y) =

where A1 = 0 if | is odd, and we use a convention similar to (2.8).

Proof. The proof is similar to that of Theorem 2.6, so we omit the details. We apply a
Pfaffian analogue of the Sylvester formula (Proposition A.4) to the following matrix X
(after permuting rows/columns):

([ i) Nx<w|y>>
—Na(zly) Aly) )
Swo(@) NAo<w|y>>
—Nyo(zly)  Aly) )’
Sx(@)  Ti(z) Ni(zly)
X = —'T\(x) 0 q , if [ is even and p is even,
—MNi(zly) -1 Ay)
Sx(x) Th(x) O
—T\(x) 0 1 O
0

if [ is even and p is even,

if [ is odd and p is even,

if [ is odd and p is odd,

0 -1 q ’
(\-Mi(zly) O -1 Ay)
where T () is the column vector with ith entry Py,)(x). O

Proof of Proposition 4.7. By comparing Theorem 2.6 with Lemma 4.8, the proof is re-
duced to showing

/

P(T)(w7 y) = P(/r) (:C\y), P(T,S)(w7 y) = P(r,s)(‘r'c‘y)

By considering the generating functions and using Proposition 3.2, it is enough to prove

, ~ I, (x,y), if n + p is odd,
SRy (aly)f ) = { (:9)

N 4.7
r>0 I (x,y) + fo(z) =1, ifn+piseven, (4.7)

and
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S Bl (@ly) () folw)

r,s>0
zZ—w ~ ~
U ()l y) — 1) + (o) ~ DIL(2,) — (o() — DlTu(a, ),
= if n 4+ p is odd,
Z_w(H (z, y),(x )—1) if n + p is even
Z+w z 7y w 7y b p *

(4.8)

First we prove (4.7). We put

~

F.(x) =Y Pu(@)fi(z), Fi(z)=> Py@)f(x)="F.(x)— fo(2).

r>0 r>1

Let U, (x|y) (respectively U (x|y)) be the row vector with jth entry > -, P (z, yj)ﬁ(z)
(res'pectively > st Py (z, yj)ﬁ(z)). Then, by the definition of F(,(x) and the multilin-
earity of Pfaffians, we have

(1 0 U.(z|y) L
|Ew" (—m<w|y> Ay ) | Trsedd
> Py(zly) fo(z) = R ] 0 Fi(z) Uf(=ly)
>0 fo(2) + Aly) Pt | —Ff(x) 0 fq . if p is even.
~Utz(zly) -1 Aly)

\

By adding the 2nd row/column multiplied by j/g(z) to the 1st row/column, we see that

0 Fi(z) Uf(x|y) 0 Fi(z) U.(z|y)
Pt —Ff(x) 0 1 =Pf| —Ff(x) 0 1
—Utz(zly) -1 A(y) ~U.(xly) -1 A(y)

By Proposition 3.2, we have

_ J1L(2)'B.(y), if n is even,
velely) = {Hz(m)tBZ(y) + (folz) = D)1, if nis odd. (4.9)
) I(x) — 1, if n is even,
Fle) = {Hz(w) - T)(z), if n is odd, (4.10)

where B, () is the column vector with ith entry (14 x;2)/(1 — z;2). Now we distinguish
four cases according to the parity of p and n.
If p is odd and n is even, then, by using (A.5), we have

SRl 0= 5 TP (g ) ) = e



22 SOICHI OKADA

If p is odd and n is odd, then, by using the multilinearity of Pfaffians and (A.5), (A.4),
we have

S P el = 5y |17 (Ll )+ BO 0P ()]

r>0
= IL(z.y) + fo(2) -

If p is even and n is even, then, by using the multilinearity and the expansion of Pfaffians,
(A.5) (with w = 0) and (A.4), we have

> P (xly) fi(2)
r>0
fo(2)
. 0 1 © 0 0 'B.(y)

0 -1 Ay) —B.(y) -1 A(y)
= Hz<w7y> + J/CE](Z) -

If p is even and n is odd, then similarly we have

, . . 1

QZOP(T)($|y)fr(Z) = fo(z) + Aly) (IL.(x) — fo(2)) Pf _1 A
0 B, ( )
0 0 l

—B.(y) -1 A(y)

+ I, (x) Pt

Next we prove (4.8). We put

=2 Pea@F(fw), GHi@) =3 Pry@) () fuw

r,s>0 r,s>1

\_/

By the definition of P(’T S)(w) and the multilinearity of Pfaffians, we see that, if p is even,
then

S° P @ly) () fo(w) = —— Pi T S S0
rs\L|Y) Jr(Z) Js\W) = 7 —Go (T w(T|Y
e AW\ Ul(aly) —Uulaly) Aly)

and, if p is odd, then

N Py (@ly) ] () fulw)

Y

r,s>0
- ZPrs .’B|y fr( fS _'_ZP(TO .’B|y f?“ fO _'_ZPOS w‘y ) ( )
r,s>1 r>1

s>1



A GENERALIZATION OF SCHUR’S P- AND Q-FUNCTIONS 23

0 Gii(x) Fi(z) Uf(z|y)
_ L | G 0 Ef(z) Uf(z|y)
A(y) —Fi(x) —Ff(x) 0 f

~Uf(zly) -Uf(zly) -1 Aly)

o1 0 U (z|y)
+Jolw) Zy H (_tzﬁ(w\y) Aly) )
- 1 Uy (x]y)
—h@) Z B (—W*(wly) Aly) )

Here we note

and
Udzly) = U (z|y) + fo(2)1, Ud(zly) = U (2ly) + folw)1.

By adding the 3rd row/column multiplied by fo(z) (respectively fo(w)) to the 1st (re-
spectively 2nd) row/column in the first Pfaffian, we see that

0 Glao(@) Ff(z) Uf(z|y)
o | —Gii@ 0 Ei@) Ulaly)
—Ff(z) —Ff(x) 0 q
~Ul(=ly) -Uj(zly) -1 Aly)
0 G.w(@) Ff(x) U.(z|y)
| Gnle) 0 File) Unlely
—Ff(x) —-Ff(x) 0 q
~U.(zly) —Uu(zly) -1 Aly)
By Proposition 3.2, we have
Gow(x)
- zIZ(Hz(w)Hw(w) - 1), if n is even,
z;z}](nz(w)nw(w) — 1) + (fo(w) = DIL(2) — (folz) — DIL,(x), if n is odd.

(4.11)

Now we distinguish four cases according to the parity of p and n, and in each case we
evaluate Pfaffians by using (4.9), (4.10) and (4.11) together with Propositions A.1 and A.2.
The rest of the proof is done by straightforward computation, so we omit it. OJ

Now we are in the position to give a proof of Theorem 4.2.
Proof of Theorem 4.2. We put [ = [()).

First we consider the case where [ = p mod 2. Then we apply the Pfaffian analogue of
the Cauchy—Binet formula (A.15) to the matrices given by

A=S(x), S= (Rki/k(w))gigl,kzo’
B=Ay), T= (fk(xi))gzgp,kz(r
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Strict partitions p are in bijection with subsets of N satisfying #/ = p mod 2 via the
correspondence i — I = {pi1, ..., fyuy} or {1, ..., pugu), 0}, and we see that

Pf( 55(2) sm;n) _ by a)

=Sz o
Pt <—tzfl(([?;]); I T([Z())]; I)) = (=) AP (y).

By (4.1), the (i, j) entry of ST is equal to
Z By i(@) fr(y5) = Py (@, y;)-
k>0

Hence, by applying (A.15), we have
1 Sx(z) Nz, y)
P, P = ——Pf ’ .
; A/u,p(iﬂ) u(y) A(y) (—tNA(iE, y) A(y)
If [ # p mod 2, then we apply (A.15) to the matrices given by
A=Syp(x), S= (R)‘i/k<w))1§i§l+l,k20’

B=Ay), T= (fk<yi))1§i§p,k20'

Then, by an argument similar to above, we obtain
1 Syo(x) Nyo(x y))
P P = ——Pf ! :
EM Mo () Bu(Y) A(y) (-tN)\O(ma y) Ay

Now the proof of Theorem 4.2 can be completed by using Proposition 4.7. U

5. PIERI-TYPE RULE

In this section, we give a Pieri-type rule for the product of any generalized P-function
P (x) with a Schur Q-function Q. (x) corresponding to a one-row partition.

5.1. The ring of Schur P- and @Q-functions. Let I'™ be the subring of the ring of
symmetric polynomials A®™ = K[z,...,x,]° defined by

'™ ={fec Klxy,...,x,)% : f(t,—t,x3,...,2,) is independent of t}.
Then it is known that Schur P-functions {Py(z) : A € S™} form a basis of '™, where
S™ is the set of all strict partitions of length < n (see [20, Theorem 2.11]).

We give a relation between two families of generalized P-functions associated with
different admissible sequences.

Proposition 5.1. Let F = {f4}32, and G = {ga}32, be two admissible sequences. For
a strict partition \ of length | < n, the generalized P-function P{ (x) associated with F
can be written as a K-linear combination of the generalized P-functions Pf(m) associated
with G in the following form:

PY(x) = anPi(2) + ) ay. P (),

BHEA
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where ax\ # 0, and p runs over all strict partitions satisfying 1 C A.

Proof. We write f, = >"° ag,g; for k > 0. Then by the assumption (1.2) we have a; =0
for k <1, apr # 0, and ago = 1.
If n + [ is even, then by using the multilinear and alternating property of Pfaffians we

have
Alx V9(x
P)\ Z Axrpan - - - Oyop PE <—tv(g(2n) O( ))
aeN! “
= Z det (a,\wj)lgmglpug(w)a
pH1>>p >0

where p runs over all strict partitions of length [ — 1 or [. Similarly, if n + [ is odd, then
we have

Alw)  Vi(x)
f e
P Z Axp,ar - - - Axyyeg Q0,004 PF (—t‘/f(a:) 0 .

aeNl‘H

Since ap; = 0 for [ > 0, we see that

Py (z) = Z det (aki,w)gi,jgzpug(m)’

1> >0

where p runs over all strict partitions of length [. For a strict partition p of length [ — 1
or [, we put

axp = det (aAivuj)lgﬁjﬁl’
where py = 0 if I(1) =1 — 1. We prove that ay # 0 and ay, = 0 unless A D p. Since
the matrix (a)‘iv)‘j)lgi7j§l is upper-triangular, we have ay \ = H2:1 ay,, 7 0. If there is
an index k such that A\x < py, then we have A\; < Ay < pp < pj and ay, ,; =0 for: >k
and j < k and thus ay, = 0. Hence we obtain the desired result. O

Corollary 5.2. The generalized P-functions {P{ (z) : A € S™} associated with a fived
sequence F form a basis of TV,

5.2. Pieri-type rule. Let ¢.(x) = Q¢)(x) be the Schur Q-function corresponding to
a one-row partition (r), and set go(x) = 1. It is known (see [12, IIL.(8.5)]) that '™
is generated by ¢.(x) (r > 1). Thus the algebra structure of I'™ is governed by the
multiplication rule for g,.(x)s.

Theorem 5.3. Let F = {fa}32, be an admissible sequence. We define formal power
series bi(z) by the relation

Fu(u) H“Z_st ) f(w). (5.1)

1 —wuz
We define the modified Pieri coefficients c .+ by the relation

Pl(z Z e Pl (x (5.2)



26 SOICHI OKADA

where the summation is taken over all strict partitions. Then the generating function of
modified Pieri coefficients is given by

(det Bﬁ‘é if n+41(p) is even and (X)) = 1(u),
det By, if n+1(u) is even and I(\) = I(u) — 1,
i N, det Bﬁ‘o, if n+1(p) is even and I(N\) = 1(pn) + 1, (5.3)
o, 2 = :
o det B;‘g, if n+1(p) is odd and I(N) = I(p),
det B;)A\O’ if n+1(p) is odd and I(\) = 1(p) + 1,
L0, otherwise,
where B = (bg;(z))lgmgr fora=(ay,...,a.) and B = (B1,...,05;).
If we put
= Z Cl>;7rzr,
r=0
then it follows from (3.3) and (5.2) that
PI(:) ML) = 3 AR ). 5.4

A

In order to prove the above theorem, we derive a Nimmo-type expression for the product
P7(x)-1I.(x) in terms of a Pfaffian.

Lemma 5.4. For a sequence o = (aq, ..., ) of nonnegative integers, we put
1+ 22
Wala) = (fo o) 12 ) .
— Tit /) 1<i<n1<j<r

Then, for a strict partition p of length m, we have

( Alz) Wu(x) We(z) 1
L —W.(x) 0 0 0 . _
P]: II B A(.’E) Pt —tW(O)<w) 0 0 1]’ an + m 18 even,
iz (33) : z(m) - 4 0 L .
L Alz) W) | |
\ A(x) Pt —Wo(x) 0 ) ’ if n+m is odd.

Proof. The method of the proof is the same as in the proof of Theorem 2.3, so we will
only give a sketch of the proof.

Since I, (x) = [T, (1 + z;2)/(1 — x;2z) is invariant under the symmetric group S, it
follows from Corollary 2.5 that

By(x) - 1L (z)

1_'_@ i T
SR ey

wWESR/Sn—m i=1 1<i<j<n v
i<m
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Ap(z)
= 1+ 22 - 1+ 22 T; — x;
X Z sgn(w)w (H (f‘“(xi)l—xiz) H 1 — a2 H m> .
wESn/Sn—m i=1 i=m+1 m+1<i<j<n
By using (A.5) with p =2, y1 = z, yo = 0, or p = 1, y; = z, we obtain
—yE)+(2")
P, (x) -, (x) = ()W Z sgn(w)w(det W () Pt X),

’LUESn/Sm ><Sn,m

where the skew-symmetric matrix X is given by

(

A@ppm)  Wo (@pppm) 1
—t[/V(O) (a:[n]\[m]) 0 11, ifn+miseven,
X = 1 1 0
A@ppen) — Wol@emm)) 4 s odd.
L\ = W0 (®ppm) 0

Now we can use a Pfaffian analogue of Laplace expansion (Proposition A.5) to complete
the proof. O

Proof of Theorem 5.3. The argument is similar to that in the proof of Proposition 5.1.
First we consider the case where n+m is even. In this case, by using the multilinearity
and the expansion along the last row/column, we have

A(x) Wu(x) W(z) 1

Pf _Wu(m) @) O O
~We(z) O 0 1
-1 O -1 0
Al)  Wp(z) 1
—Pf | -Wo(x) O O+ (1Pt ( tzéém) Wu@)) .
-1 O 0 —Wu(x) 0
Since Wiy (x) = > ooy bi(2)V(s)(x) by (5.1), we can use the multilinear and alternating

property to obtain
A(x) Wyo(x) 1

Pf —tWH()(.’,U) O @)
-1 @) 0
m+1 Alx) Vo(x) 1
= > J]wEP| Vo) O O
aeNmHL i=1 -1 O 0
A(x) Vy(z) 1
= > det(0(2) e PE[ =M@ O O

>\1>"'>)\m+120 _tl O O
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If A1 = 0, then the last column of V) (@) coincides with 1, so the corresponding Pfaffian
vanishes. Hence we have

A(x) Wy(x) 1

1 1%
—Pf| -Wyp(x) O O] =) det BYP\(x),
Af) —%1 @] 0 A .

where A runs over all strict partitions of length m + 1. Similarly we have

N Alz)  Wulx)\ _ ot BV P (a2
st )—;dtlﬁ Pi(@),

where A runs over all strict partitions of length m — 1 or m, and A* = \° or \.

The case where n + m is odd can be treated in a similar manner. O

If F is constant-term free, then we have a simpler formula.

Corollary 5.5. If F is constant-term free, then we have
det BY, if U(N) = 1(s),
cp(2) = det By, if I(A) = 1(p) + 1,
0, otherwise,

under the same notation as in Theorem 5.3.

Proof. By substituting ¢ = 0 in (5.1) and using the assumption f;(0) = 040, we see that
b2(z) = 6,0. Hence we have
det Bﬁg = det B;;\, det B;)O =0,

and we obtain the corollary. OJ

6. APPLICATIONS TO FACTORIAL P- AND ()-FUNCTIONS

In this section, we focus on Ivanov’s factorial P- and @-functions.

6.1. Factorial P- and (-functions. Recall the definition of Ivanov’s factorial P- and
Q-functions. Let a = (ag, a1, ...) be parameters, called factorial parameters. We define
the factorial monomial (u|a)? by putting

d—1

(ula)® = T[(u = a).

i=0
Then the factorial P-function Py(x|a) is defined to be the generalized P-function Py (x)
associated with F = {(u|a)?}3, (see Definition 1.2). The factorial Q-function Qx(x|a)
is defined by

Qr(z|a) = 2"V Py (xz|a).

The factorial Q-function Q,(z|a) is also the generalized P-function Py (z) associated
with the sequence F' = {f}}32, given by

N it it d =0,
AW%—{%MM{ itd>1.
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Note that the sequence F = {(u|a)?}3%, is constant-term free if and only if ag = 0.

Since the factorial P- and Q-functions are special cases of our generalized P-functions,
we can recover some formulas in [6] and [7] from the results of Section 2. For example,
we recover [7, Theorem 9.1] without assumption ag = 0:

Qx(z|a) = Pf (Q()‘iy)‘j)(w‘a’))lgi,jgr ’
where r = () if I(A) is even and [(A) + 1 if I(A) is odd, and A1 = 0. (We use the
convention (2.8).)
Next we compute explicitly the dual of F = {(t|a)?}3, introduced in Section 3.
Lemma 6.1. Let F = {ﬁl}?lio be the dual of F = {(u|a)?}5,. Then we have
1+ apv

~ 1 —agv’
fd<v) = %Ud

H?:o(l —a;v)

Proof. Put fy(u) = (u|a)?. The sequence {ﬁl}?lio is uniquely determined by the rela-

ifd=0,

Cifd> 1.

tion (3.1). Since fy = 1, we see that fy(v) is determined by substituting u = ag in (3.1),
and we obtain fo(v) = (1 + agv)/(1 — apv). Let r > 0. Since fx(a,) = 0 for k > r and

-~

fr(a,) # 0, we see that f,(t) is determined inductively by the relation

Y 1+ a,v
> F©) filar) = a0
k=0
Hence it is enough to show
T k—1
14+av 1+ agv 20"
= _ r—aj). 6.1
1—a,v 1—(101)JFZ k H(a %) (6:1)

o Hiso(1 = aw) 3=0

By using
Il+av 1—av 2v(a, — ap)

l—av l1—aw (1—aw)(l—aw)
and cancelling the common factor 2z(a, —ap)/(1 — apz), we see that (6.1) is equivalent to

1 r ’Uk_l k—1
=> ——[](ar — ). (6.2)
1-awv k=1 Hizl(l - aﬂ)) j=1
We proceed by induction on r to prove (6.2). The case r = 1 is trivial. If » > 1, then
by the induction hypothesis with factorial parameters (as, ..., a,), we have
1 T ’Uk72 k—1
= —— @ —a).
L=av Il - aw) j=2

Hence we have

Zr: vkl lﬁ 1 v(a, — ay) i vk 2 ]ﬁ
|| (@ —a) = + 7 (ar —a;)
i i (1= aw) 55 1—aw 1=aw FTlL(1 - av) =2
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1 v(a, —ay) 1
_1—a1v+ 1—av '1—arv
1
Cl—aw

This completes the proof. O]

We denote by Py(x|a) the dual P-function ﬁf(m) associated with F = {(ula)?}52,. If
the first parameter a is equal to 0, then we can recover Korotkikh’s dual P-function (see
8, Definition 2] and (3.8)) given by

2 xf" T; +
Pi(@la) = n_l,Z e 1 .=
WESn i=1 k Lol — agz;) 1<i<j<n " J

i<l

and the Cauchy-type identity (see [8, Theorem 8])

5 - 14z
> Pr(l)Piata) = T 570

6.2. Factorial skew P-functions. For two strict partitions A and p and a positive
integer p, we denote by Py/,p(x|a) the generalized skew P-functions P)\f/ ,.p(@) associated

with F = {(u]a)?}52,, and call it the factorial skew P-function (see Definition 4.1). Since
(ula)” depends only on ag, ai, . .., ar_1, it follows from the definition (1.4) that Py)(x|a)
also depends only on ag, a1, ..., a,_1. So we write Pyy(x|ag,a1,...,a,—1) for Py, (:L'\a)

Proposition 6.2. We define R, ,(x|a) by the relation

Poy(z,yla) = Z R, je(x|a)(yla)".

Then we have we have
P(r)(w|—a0,a1,...,ar_1), szzO,
P(r—k)(w|07ak+17'"7ar71)7 Zfl Skg'f’—l,

R, = 6.3
i) = 3| o (63)
07 Zf k >r.
In particular, if ag = 0, then we have
R, ji(z|a) = Py_py(x]0, agprs - - -, ap_r). (6.4)

If £ = () consists of a single variable, then P,y(x|a) = (z|a)". Hence we obtain

Corollary 6.3. If x = () consists of a single variable, then we have

(@+a) IS (@ ~a), k=0,
z][_ k+1< a;), if1<k<r-—1,
1, ifk=r,
0, if k> r.

R, )(z|la) =
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In the proof of Proposition 6.2, we need the following relations for elementary symmetric
polynomials e, ().

Lemma 6.4. (1) If k > 0 and | > 0, then we have

r—1
Z €mfk(£1717 cee 7xm)erfmfl(xm+27 cee ,SUr) = erfkfl<x17 S 737r)-
m=1

2) If1 >0, then we have
1

r—

2 em(xla s al‘m)er—m—l(xm-{—% s 7xr) + er—l(_l‘lax% s 7x7") = er—l(xla Loy .- 7xr)~
m=1
Proof. For 1 <a <b<r, weput [a,b] ={a,a+1,...,b} and denote by ([al’)b]) the set of
p-element subsets of [a, b]. If we put x; = [[,.; z; for I C [a,b], then we have
ep(a:a, Ce ,.ﬁL’b) = Z xIr.
re(*”)

(1) We define a map

r—1
' [1,m] [m + 2, 7] 1, 7]
(p.n|1_|1 (m—k) 8 (r—m—l) - (r—k—l)
by ¢(I,J) =1TUJ. Given K € (r[_ll’il), let m + 1 be the (k + 1)st smallest element in
the (k + [)-element subset [r] \ K and put I = K N[1,m] and J = K N [m + 2,7]. Then
the correspondence K > (I,.J) gives the inverse map of ¢, and we obtain the desired
identity.
(2) Since we have

€r71(—$1,5€2,---737r) = — Z rr+ Z xr,
re(hl) - re(R)
1€l 1¢1

it is enough to show that

r—1

Z€m<xl7...7$m)er—m71(ﬂjm+27...,xr> = Z Tk

m=1 Ke([l,g])
1€K

Y g <£m_;2_r]l) = {K c <£1’_TD e K}

by ¥(J) = [1,m|U J. Given K € (Ej}) with 1 € K, let m be the maximum integer m
satisfying [1,m] C K, and put J = K\ [1,m]. Then the correspondence K — J gives the
inverse map of v, and we obtain the desired identity. O

We define a map

Now we prove Proposition 6.2.
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Proof of Proposition 6.2. We need to show that

P(r)(%ZJ‘CLOa cee 7(17“71) = P(T')<w| — Qo, a1, - - '7a7’71)

r—1
+ Z P(T*k)(m|07 Q415 -+ ar—l)(y|a'07 SR ak—l)k
k=1
+ (yl|ag, . - -, a,—1)". (6.5)

We compare the coefficients of Py)(2)y’ in the expansions of both sides, where Py (z) is
the Schur P-function. We denote by ay; and by the coefficients of Py, (:I:)yl on the left-
and right-hand sides, respectively.

Plugging (ula)” = > _,(=1)"""e,_m(ag,...,a,—1)u™ into the definition (1.4) and
using the multilinearity of Pfaffians, we have

Yoo =) er_p(ag, - . ., ar—1) Py (), if nis odd.

m=0

P (la) = {anl(—l)rmer_m(ao, oy @r1) Py (), if n s even, (6.6)

Since Q(y(x) = 2P (x), it follows from (3.3) that

> , "1tz 1+yz = -
1+22P(r)($>?/)2 :Hl—x',z 1—yz (1+2ZP )(1+2Z?/2>-
r=1 i=1 ! r=1

Equating coefficients of 2", we get

Py (z,y) = Poy(x +QZP(7» (@)Y +y" (6.7)

Using (6.6) and (6.7), we have

P(r)(ma y|a’)
er(ag, .., ar_1)

+ 3 (1) (ao, - - -y ar1) (P () + 2 Z;Zl Py (x)y' +y™)

= if n is even,

Z:nzl(_l)rimer—m(aoa ey Qrot) (P ( )+ 22 Pl ( )y +y )
if n is odd.

Hence the coefficient ax; of Py, (x)y' on the left-hand side of (6.5) is given by

er(ag, ..., a,_1), if t=0,1=0 and n is even,
)0, if k=0,1=0 and n is odd,
WEZN (20 eyi(ag, - ary), if k=0 and >0,
2(=1)""* e, _ry(ag,...,a,_1), ifk>0.

In a similar manner, we can compute the coefficient by; on the right-hand side of (6.5)
and see that
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(a) if k =1=0, then

— er(ag,...,a,_1), if nis even,
0,0 = e
0, if n is odd,

(b) if k=0 and [ > 0, then

by, = (—1)r’ler71(a07 ey rl1),

(c) if k> 0and ! =0, then

er—k(_a07 ag, ... 7a'r—1)
b _ _1 r—k r—1
.0 ( ) + Z er—m—k(oa Am+1y -+ ar—l)em(a07 ey am—l) ’
m=1

(d) if £ >0 and ! > 0, then

r—1
bk,l = (—1)rikil Z €r,m,k(0, A1y .- - ,ar,1)6m71<a0, cey am,l).
m=1
Now, by using Lemma 6.4, we see that aj; = by; and obtain (6.5). O

By an argument similar to the one in the proof of Proposition 4.6, we can derive a
determinant formula for Py, ,(x|a) for a single variable z.

Theorem 6.5. Let a = (ag, aq,...) be factorial parameters. For two strict partitions \ of
length | and p of length m, the factorial skew P-function Py, ,(z|a) in a single variable
x s given as follows:

(1) We have Pyjup(z|a) =0 unless A D pand m =1 orl—1.
(2) If \D pandm =1 orl—1, then we have

P)\/M,p(x|a) = det (R/\i/uj <x|a’))1§i7jﬁl )

Proof. Tt follows from Proposition 4.4 that Py, ,(x|a) = 0 unless A D p. By an argument
similar to the one in the proof of Proposition 4.5, we can show:

(a) if [ = p and m = p mod 2, then

det (Ry.,,. (z|la L ifl=m,
P)\/M7p(;p|a) — ( Al/“]( | ))1§Z,j§l .

0, otherwise,
(b) if I = p and m # p mod 2, or if [ # p and m = p mod 2, then

det (R, (a:\a))lgmgl, if l =m+1,
0, otherwise,

Pyjup(zla) = {

where 1, = 0.
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It remains to consider the case where [ # p and m # p mod 2. By the definition (4.3) and
the multilinearity of Pfaffians we have

tTOl Ta(x) Tho(x) Myu(z)
—"T\(x 0 1 @)
P)\/Myp(x|a’) =Pt —T;/\(E(m)) -1 0 0]
My (z) O 0 Om
Ol T)\(Jf) TA/Q(Jf) MA/M(Jf)
- —Tyo(z) 0 0 0
My, (z) O o) Om

M, O O O,

where T (z) and T) () are the column vectors with ith entry P,,)(z|a) and Ry, o(x|a),
respectively. Since Py (z|a) = (x—ao) [, (x—a;) and R, jo(z|a) = (z4ao) [11—; (z—a;)
by Corollary 6.3, we see that T)(x) and T} o(z) are linearly independent. Hence the first
Pfaffian vanishes. By expanding the second Pfaffian along the (I + 2)nd row/column, we
have

Oy M, (x)) det (R, (2)) 2y s i l=m
P = Pf H = 7 1<4,5<
() (—tMA/M(iU) Om 0, otherwise.

This completes the proof. O

We can use this theorem to provide a lattice path proof of the tableau description of
factorial P- and Q-functions given in [1, Theorem 2.1] and [7, Theorem 4.3] (the case
where ag = 0).

6.3. Modified Pieri coefficients. In this subsection, we give a combinatorial description
of the modified Pieri coefficients for factorial P-functions. Recall that the skew shifted

diagram S(A/u) = S(A) \ S(p) is called a border strip if it is connected and contains no
2 x 2 block of cells.

Theorem 6.6. Let a = (ag, a1, ... ) be factorial parameters. We define the modified Pieri
coefficient ¢ .(a) by the relation

P.(z|a) - ch )P\(z|a), (6.8)

where ¢-(x) = Q) (x) is Schur’s Q-function, and X runs over all strict partitions. For two
strict partitions A\ and p, we consider the generating function of modified Pieri coefficients

cﬁ(z|a) = A (a)2".

Then we have:
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(1) If the skew shifted diagram S(\/u) contains a 2 x 2 block of cells, then we have
ay(zla) = 0.
(2) Suppose that S(\/p) contains no 2 x 2 block of cells. Let

S\ p) = |_|S (Am(iys - s AM(i)) / (Bamgiy, - - > Bar(ay)
be the decomposition ofS()\/u) into a disjoint union of border strips, where m(1) <
M(1)<m(2) <M(2) <---<m(r) < M(r). Then we have

9 »Am (i) “HM ()

1+a d
er(zla) =[] — e H — , (6.9)

keK g | P uM()(l—ajz)
where
o {{k 1<k<I(p), \e = px}, if n+1(p) is even,
{k:1<k<Il(p)+1, N\ =}, ifn+1l(p) is odd.

(3) In particular, the modified Pieri coefficient cl’)’r(a) is a polynomial in the factorial
parameters ag, ay, ... with nonnegative integer coefficients.

Example 6.7. Let A = (8,6,4,3,2) and pu = (6,5,4,2,1). Then the skew shifted diagram
S(M\/p) is decomposed into a disjoint union of border strips as follows:

L T R [l
' ' ' ' ' '
' '
' ' f
| '
' '
' '

,,,,,,,,,,,,,,

S(A/n) = E
= 5((8,6)/(6,5)) U5((3,2)/(2,1)).
Since we have
~J{3},  ifnis even,
] {3,6}, if nis odd,
we obtain
1+ ayz 22875 22371 TIN
. . , if n is even,
(876747372) (Z‘a;) — 1 — a4z H28=5<1 - aiz) H?:l(l - aiz)
(6,542, l+asz 1+apz 22875 22371 it mis odd
. if n is odd.
1—agz 1—a0z H 5(1—a;2) Hj’:l(l—aiz)’
Setting ag = a1 = --- = 0, we recover the Pieri rule for Schur P-functions.

Corollary 6.8 (MORRIS [15, Theorem 1]). For a strict partition p and a nonnegative
integer k, we have
P,(x) - g (x) = Z 20 P, (¢
A

where X runs over all strict partitions such that |A|—|p| = r and S(A\/p) contains no 2 x 2
block, and where a(\, ) is the number of connected components of S(A/ ).
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Now we use Theorem 5.3 to give a proof of Theorem 6.6. Let b(z|a) be the coefficient
in the expansion

1
(u|a)” rue_ st zla)(ula)’. (6.10)

1 —uz
s>0

The following lemma gives an explicit formula for b%(z|a).

Lemma 6.9. For two nonnegative integers r and s, we have

1
+ arz’ if s=r,
1—a,z
blela) =1 22 ipssy
HJ (1 —a;2)
0, otherwise.
Proof. We need to prove
I+uz  1+au
(ula)" (u]a)®. (6.11)
1—uz 1—au 8;1]_[]7,1—%)

By dividing both sides of (6.11) by H;& (u— a;) and then shifting the indices of factorial
parameters, we may assume r = 0. The latter case follows from Lemma 6.1. O]

We prove Theorem 6.6 by computing the determinant given in (5.3) of Theorem 5.3.

Proof of Theorem 6.6. By (5.3), we see that a nonzero ¢)(z|a) is equal to the determinant
whose (i, j) entry is equal to b;/); = bﬁ;(z|a)

Claim 6.10. We have c)(z|a) = 0 unless S(X) D S(u).

Proof. If there exists an index k such that A\, < py, then we have \; < A\, < py, < p; for
1>k and j < k. By Lemma 6.9, we have bﬁ; =0 fori >k and 57 <k, thus cf; =0. O

In what follows we assume that S(A) D S(u). In this case, by Theorem 5.3, we have
det Bﬁ‘é if n+1(u) is even and I(\) = I(p),

det Bﬁo, if n+4 () is odd and (X)) = I(u),

det B;)A\O’ if {(\) =1(p) +1

0, otherwise.

ci‘L(z|a) =

If n 4 I(p) is odd and I(A) = I(p) = I, then bgj =0 for 1 < j <[ by Lemma 6.9. By
expanding the determinant along the last row, we have
det By = b - det B).

Hence it is enough to compute the determinant det Bﬁ*, where p1* = p or u°. By abuse of
notation, we write simply B, for B} and Bﬁo in the following.

First we assume that S(A/p) is not connected. In this case, there exists an index k
such that A1 < g or Ap = pig.

Claim 6.11. Suppose that S(A\) D S(u).
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(1) If there exists an index k such that Ay < g, then we have
det B) = det B)) - det B)y,,
where
"= (A1, AR, W= (g, ),
No= Moty N)s 1= (lgrrs o 1)
(2) If there exists an index k such that A\, = py > 0, then we have
det B) = det B)y - b)* - det By,
where
= (A, A1), o= (e ),
N=Negts M)y 1= (aaty - 1)
Proof. (1) If i > k+ 1 and j < k, then we have \; < A1 < pp < pj and bf;ﬂ = 0, thus

A Bfl,\’l * b\ PN
det B;, = det O B;),’,’ = det By, - det B,
(2) By a similar consideration, we have
BY  x *
N = O b = det B), - b)* - det B, O
det BN = det i *// = de w o Ou (§] W
O 0 B

Now we consider the case where S(A/u) is connected.

Claim 6.12. Suppose that S(\) D S(u) and S(N\/u) is connected. If S(\/p) contains a
2 X 2 block of cells, then we have det B};\ = 0.

Proof. If S(A/p) contains a 2 x 2 square, then there exists an index k such that Agyq > py.
We take the smallest such index k. Then we have

)\1>u1:)\2>,u2:)\3>--->uk_1:)\k>)\k+1>uk.

(Since S(A/p) is connected, we have ;11 > p; if Aiy1 > 0.) It follows from Lemma 6.9
that, if £ > s > r, then

ths

(1 —as12) - (1 —as2)

We proceed by induction on k. If £ = 1, then the first row of B;) is a scalar multiple
of the second row by (6.12), and det By = 0. If k& > 1, then by subtracting the (k + 1)st
row multiplied by 2 *+1/(1 —ay,, 412) --- (1 — ay,2) from the kth row in det B, and
then expanding the resulting determinant along the kth row, we have

A k+(k—=1)pA by
det B} = (—1)"*=Dph det By,

b= b -

(6.12)

where X' (respectively p') is the strict partition obtained from A (respectively u) by re-
moving A (respectively pp_1), i.e.,

N = <)\17 SERE) )\kfla )\k+17 SRR )\l)7 :ul = (:uh s M2y Mk - - 7”[)'
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Since det Bﬁ,' = 0 by the induction hypothesis, we obtain det Bﬁ‘ = 0. 0
Now it remains to compute det B when S(\/p) is a border strip.
Claim 6.13. If S(A\/u) is a border strip, i.e.,
AL >y =X > o =A3 > - > 1 = N > [,

then we have
Dz~

A1 '
L2, (1= a2)

Proof. We proceed by induction on [. A direct computation verifies the cases [ = 1 and
[l =2. So we assume [ > 3. By Lemma 6.9, we have

det B;) =

ZHI—1—

i = by (1<i<i—1)
w -1 - =t= )
LIS —a) T
N ZHI—1— 2 A\
I . 1
T ) _ p
: o (1—ajz) 1—ay 7 v

Factor out the common term zt1-17#/ H?;{l(l — a;z) from the last column of det Bj),

and then subtract the /th column from the (I — 1)st column. Since we have

2 A
o W =L

by —
Hi—1 1 — a}\l

we expand the resulting determinant along the (I — 1)st column to see

ZHI—1—H ,
det B), = — -det B,
Hi—1 K
J=H (1 B ajz)
where N = (Aq,..., 1) and ¢/ = (p1,...,4—1). Using the induction hypothesis, we
obtain Claim 6.13. 0
Combining the above claims together completes the proof of the theorem. O

Based on Theorem 6.6 (3) and some experimental evidence, we propose the following
conjecture.

Conjecture 6.14. We define f;, (a) by the formula
P.(z|a)P ngy )P\(z|a), (6.13)

where \ runs over all strict partitions. Then the coefficient fﬁ\w(a) s a polynomial in a =
(ag,ay, . ..) with nonnegative integer coefficients. More generally, if we expand the product
of factorial P-functions corresponding to different factorial parameters a = (ag,aq, ... )
and —b = (=by, —b1,...) as a linear combination of P\(x|a)s,

P.(x|a)P, (x| - b) =) f1,(a,b)P\(z|a), (6.14)
A

then the coefficient f;i\7u<av b) is a polynomial in a and b with nonnegative integer coeffi-
cents.
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Cho and Ikeda [1, Theorem 4.6] gave a combinatorial formula for the Pieri-type coeffi-
cients f}f (r)( a), which implies that f (T)( ,—a) is a polynomial in a; &+ a; with i > j
with nonnegative integer coefficients.

Remark 6.15. Let s)(x|a) be the factorial Schur function with factorial parameters a,
and expand

su(xla)s, (x| — Zm (a,b)s)(x|a).

Then Molev and Sagan [14, Theorem 3.1] gave a combinatorial formula for the coefficient
mf;l,(a, b), which implies that mf;l,(a, b) is a polynomial in @ and b with nonnegative
integer coefficients.

7. P-FUNCTIONS ASSOCIATED WITH CLASSICAL ROOT SYSTEMS

In this section, we show that the Hall-Littlewood functions at t = —1 associated with
the classical root systems can be written as generalized P-functions associated with certain
polynomial sequences.

7.1. Hall-Littlewood function associated with root systems. Macdonald [13] gen-
eralized the definition of Hall-Littlewood functions to any root system. Let ® be a root
system in a Euclidean vector space V' and fix a positive system ®*. We denote by A and
AT the weight lattice and the set of dominant weights, respectively. Let K = Q(¢) be the
rational function field in an indeterminate ¢, and let K[A] be the group algebra of A with
basis {e* : A € A} over K. Let W be the Weyl group of ®. Then the Hall-Littlewood
functions associated with the root system ® are defined as follows.

Definition 7.1. The Hall-Littlewood function P$ € K[A] corresponding to a dominant
weight A € A is defined by

5 1 1 —te @
= wm 2w (6A 11 ﬁ) ! (7.1)

weWw acdt

where Wi(t) = e, ') is the Poincaré polynomial of Wy, with Wy = {w € W : wA =
A} being the stabilizer of A in WW.

In this section, we consider the root systems of types X,, = B,, C, and D,,. Let V
be the n-dimensional Euclidean vector space with orthonormal basis €4,...,c,. We put
z; = € for 1 < i < n and write Py = PY(x;t). Let ®(X,) C V be the root system of
type X, with the positive system ®*(X,,) given by

O (B,) ={eite; 1<i<j<npU{g:1<i<n},
OH(Ch) ={eite; 1 <i<j<n}uU{2e:1<i<n},
(D) ={e;te;:1<i<j<n}

Then the set AT (X,,) of dominant weights is given by

A (B,) = {Zm W €ZTUE ALY M2 2202 “},
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where Z +1/2 = {r +1/2:
dominant weight \jeq + - - -

SOICHI OKADA

it (Ni)im €EZ", M > M >

+ Nep € A+(Xn)

A

T EZMU(Z 12" M > A S A > w} ,

r € Z}. We identify a partition A of length | < n with a

We note that a reciprocal Laurent polynomial g(z) = 2%, a;2* with a; = a_; and
aq # 0 can be written as g(z) = f(z + z!) for some polynomial of degree d. We use the
notation  + ! = (v; +7',..., 7, +2;'). The following is the main theorem of this
section.

Theorem 7.2. (1) Let FB = {fP}32, be the sequence of polynomials defined by
VLIS

F=1 fil+at)=(a —w_d)m (d=1).

For a strict partition A of length | < n, we have

Py (@ —1) = PE (@ + 27 Y). (7.2)
(2) Let F€ = {f$}, be the sequence of polynomials defined by
=1 s =@ - @z,
For a strict partition A of length | < n, we have
Py (g —1) = P{ (x + 2 Y). (7.3)

(3) Let FP = {fPY%, be the sequence of polynomials defined by
=1 flla+zH=a+2"% (d>1).
For a strict partition A of length | < n, we have
PYP (1) = P (@ + &7V, (7.4)
and, for a strict partition A of length n, we have
Py (z; —1) + PP (@ —1) = PT (2 + 2 7Y), (7.5)
where N = ey + -+ Mp_16n1 — Mnn-

The first few terms of the sequences FZ, F¢ and FP are

fPw) =u+2, ng()=u2+2u, FBu) = +2u? —u—2,
fE(w) =, f5 (w) =2, 18 (u) = u® —u,
P w) = u, fPw)=u® =2,  fPu)=u®—3u.

See Lemma 7.7 for the generating functions of f7*(z + z71).
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Definition 7.3. Let © = (z1,...,x,) be indeterminates and A a strict partition of length
[ < n. We define symmetric Laurent polynomials P{X(x) and Q¥ (x) of type X,,, where
X € {B,C, D}, by putting

P¥(x) =P (z+a"), Q¥(x)=2"P (x+x"),
where FX is the polynomial sequence given in Theorem 7.2. We call Q%(x), Q¥ (x)

and QP (zx) the odd orthogonal Q-function, symplectic Q-function and even orthogonal
Q-function, respectively.

Note that Q¥ () is obtained as the generalized P-function P{(x+x~!) associated with
the sequence G* = {g}3, given by

1 it d =0
X o ’ 9
9a (W) = {QfX(u), itd>1.

In order to prove Theorem 7.2, we recall the structure of the Weyl groups of type B,
C, and D,. Let T, be the abelian group of order 2" generated by ti,...,%, subject to
the relations ¢ = 1 (1 < i < n) and t;t; = t;t; (1 < 4,5 < n), and W,, = T,, x S, the
semidirect product of 7T}, with the symmetric group S,,, where .S,, acts on 7}, by permuting
by, ooty Put T = {¢" ...t 2 3" w; = 0mod 2} and W, = T), x S, the semidirect
product of T/ with S,,. Then W,, is isomorphic to the Weyl groups of type B,, and C,,
and W/ is isomorphic to the Weyl group of type D,,. The natural action of S,, on V' and
K[:clil, ..., 2] is extended to W, by

b —g;, if k=1, ; vt if k=i,
i€k = . . ilk = . .
g ep, if k F#1, g T, ifk#1.

If X\ is a strict partition of length [, then the stabilizer W) of A\je; +- - -+ \jg; is isomorphic
to W, for types B, and C,,, and to W/ _, for type D,,.

Lemma 7.4. For a strict partition X of length [, we have

o(B, : . . tx (1 —tz; 'z;)(1 — t:fl:fl)
P}\( )(w7t> = Z w HZL’ H H (1 — $;1x])(1 1 _1) )

WEWy /Wi i=1 i=1 i <ici<n
i<l

l l _1 1 1
1 —tx;? (1 =tz w;)(1 —to; "z, )
wWEWR/Wh_; i=1 =1 1 - 'IZ 1<i<j<n (]- - l’ l’])(]_ — l’ ,I‘J )
1<l

! A (1-— t:z:i_lxj)(l — tx;lxj_l)
(1= a7 ) (1 — a7 ey )

weW, /W, _, i=1  1<i<j<n
i<l

Proof. For a general root system ® with Weyl group W, we have (see [10, Theorem 2.8])

S M) - 2

weWw acdt weWw
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We can use the same argument as the one in the proof of Lemma 2.4 to prove this lemma.
O

Proof of Theorem 7.2. (1) We can take {wu : w € S,,/S,—,u € T;} as a complete set of
coset representatives of W, /W,,_;, where T; = (t1,...,1;). Since the product

I (1 +a; ) (1 + a2yt

\<i<j<n (1— x;lxj)(l - x;lxj_l)

i<l

is invariant under 7;, we see that

l

v+t (1+ 2 ay) (L + a7 2 )
Zw H'xz 1 -1 H 1 —1.. 1 1 1
weT i=1 — L 1§i<j§n( - xj)( T T )
i<l

paley 1 —x; 1—x Cisi<n (T —a; ') (1 — a2 )
i<l
By using
(o a)(Ataah) (o) + (@ +a57)
(1—372 11’])<1—.T2 13:] 1) ('r2+'rz 1)—(.TJ+.TJ 1)
we have

Py (@5 1)

l — _ _
I S ) (S 2w SRR CRY
o i i 1/2 —1/2 —1 —1

weSn TS ey :L‘Z-/ — / I<ici<n (zi+x;) — (x5 + ;)

i<l

Comparing this with (2.5), we obtain (7.2).
(2) can be shown in the same manner as (1).
(3) Suppose that [ < n. Since W,, =W, uW/t,,, W,_, =W/ ,uW/ t, and

1 (147 ) (14 a7 2y )
1<i<j<n (1- x;lxj)(l - xille)
i<l

is invariant under t,, we see that

zi+ a7t + (o + ;!

1 -1
weW, /Wy _, i=1 1<i<j<n (@i +2;7) = (2 + L )
!
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If [ = n, then the stabilizer W, is trivial and we have

Py (a5 1) + Py (@ 1)

_ e (1+ a7 "ay)( 47w )
m 01 11 u—%%m—%%ﬂ>

wewy, 1<i<j<n
n—l -1 —1
: 1+ '2)(1 + z; )
Ai = A ( J
+ w rtw, " S
wezw' (zll 1<g< (1—a7'ey)(1—a7'e 1)
xl +x; X
- Y w Hx 11 : D+ (a4t .
wEWn, 1<i<j<n (@i + ; - (z; + )
The rest of the proof is the same as in the proof of (1). O

7.2. Generating functions. Since the Q-functions Q5 () of type X are special cases
of generalized P-functions, we have a Schur-type Pfaffian formula.

Proposition 7.5. For a strict partition X of length |, we have
QX (@) = P (QF ()

where r = [ or I+ 1 according to whether [ is even or odd, and where we use the convention
(2.8).

)
1<i j<r

Hence, in order to obtain Q{(x) for a general strict partition A\, we need to know
A &
in)(:c) and Q(XT s(®@). We compute the generating functions for them. In order to state

formulas, we introduce formal power series p*(2) and 1~ (z) by putting

2 2
(1+Z) : le:B, 727 le:B,
1+ 22 1+ 22
() =11, it X =0C, ¢¥(z)=10, it X =C,
_ 52 952
== ¥x-p % iX=D
1+ 22 1+ 22

Furthermore, we put

~ o Ut z) (1 +a'2)
() = 11 (1—z2)(1 —a;'2)

Then we have the following formulas.

Proposition 7.6. (1) The generating function for in) (x) is given by

ZQ{i)(;c)z” = ¢X ()L (m) — (=1)"v¥(2).
(2) The generating function for Q(m (x) is given by

> Qe = I X ) ) (@) () - 1)
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(1) (¢ ¥ @)) —  (w) ¥ (2) ()
+9%(2) = o7 (w).
By a straightforward case-by-case computation, we can show the following lemma.
Lemma 7.7. We have

1+ 2ifrx(:c by = X (2) - (14 22)(1 + 2-12)

(1—22)(1—2"12) ().

Proof of Proposition 7.6. By Theorem 7.2 and (1.4), we see that the Q-function Q5 (x)
corresponding to a strict partition A of length [ is expressed as

X () — 1 %(w) ‘7,\X<w)
O (@) A(:::)Pf<—tv§f<w> 0 )

where \* = X\ or A\ according to whether n + [ is even or odd, and
(ZL‘j + ;L‘;l) + ({L‘Z + x*;l) \<ijen (.I‘Z + SL’])<1 + in.Tj) 1<ij<n

A= ] (2 +a;') = (ri+a7h) I (i — ;) (1 — miw;)

(mj+ ;") + (i +a7h) (zi + ;) (1 + m25)’

1<i<j<n

X _ NFX (o o] _
V(@ = ()X @it a)) L x(d) {

1<i<j<n
1, ifd=0,
2, ifd>1.

Now, by an argument similar to the one in the proof of Proposition 3.2, we can estab-
lish this proposition by using the Pfaffian evaluations in Proposition A.3 together with
Lemma 7.7 and the relation ¢*(2) — 1% (2) = 1. The details are left to the readers. [

APPENDIX A. PFAFFIAN FORMULAS
In this appendix, we collect several useful Pfaffian identities.

A.1. Pfaffians. Recall the definition and some properties of Pfaffians (see [5] for an
exposition). Let X = (xij)Kiij be a skew-symmetric matrix of order 2m. The Pfaffian

of X, denoted by Pf(X), is defined by

PE(X) = ) sgn(o) [[ oo, (A1)
=1

UGFQm

where Fy,, is the set of permutations o € Sy, satisfying o(1) < o(3) < --- < o(2m — 1)
and 0(2i — 1) < 0(2i) for 1 <i < m.

Pfaffians are multilinear and alternating in the following sense. Let X = (a:ij)l <ij<n
be an even-sized skew-symmetric matrix and fix a row/column index k. If the entries of
the kth row and kth column of X are written as x;; = ax;; + B, for i = k or j =k,
then

PfX =aPf X'+ BPfX",
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where X' (respectively X”) is the skew-symmetric matrix obtained from X by replacing
the entries x;; for i = k or j = k with xj; (respectively z7;). Moreover, for a permutation
o € S,, we have

bt (:L‘O'(i)vo'(j))lgi,jgn = sgn(o) Pf(xivj)lgi,jﬁn'
It follows that, if Y is the skew-symmetric matrix obtained from X by adding the kth
row multiplied by a scalar « to the (th row and then adding the kth column multiplied
by « to the lth column, then we have PfY = Pf X.

We use the following notations for submatrices. For a positive integer n, we put [n| =
{1,2,...,n}. Given a subset I C [n], we put X(I) = >, ;4. For an M x N matrix
X = (x’?j)lgigM,lgjgN and subsets I C [M] and J C [N], we denote by X(I;J) the
submatrix of X obtained by picking up rows indexed by I and columns indexed by J. If
X is a skew-symmetric matrix, then we write X (I) for X (I;7). We use the convention
that det X (0;0) =1 and Pf X(0) = 1.

For an n x n skew-symmetric matrix X = (x”) we have the following expansion

1<i,j<n’
formula along the kth row/column:

k—1 n
PEX = (1) gy PEX ([ \ {6, k}) + Y (1) Lay, PEX([n] \ {k,i}). (A.2)
i=1 i=k+1

A.2. Schur’s Pfaffian evaluation and its variations. Recall that

Alz) = (xf“xi) L A= [ EEE
Tj+Ti ) 1<ij<n 1<idj<n T3 T T
for a sequence & = (z1,...,x,) of indeterminates. The evaluation of the Pfaffian in (A.3)

below originates from [22], and its simple proof can be found in [9]. Equation (A.4) is
derived from (A.3) by specializing the last indeterminate to 0.

Proposition A.1. Ifn is even, then we have

PfA(x) = A(x). (A.3)
If n is odd, then we have
Pf (Affl”) é) — Aw), (A4)
where 1 is the all-one column vector.
For two sequences = (x1,...,%,) and y = (y1, .. .,Yy,) of indeterminates, we put
14+ 2y b B L4 2y,
B(x;y) = (ﬁ) s M(x;y) = 111—[1 ﬁ

Let B,(x) = B(x;(z)) be the column vector with ith entry (1 + x;2)/(1 — x;2) and set
I (x) = I(x; (2)) = [[_,(1 + z;2) /(1 — 2;z). Then we have the following variations of
Schur’s Pfaffian evaluation.

Proposition A.2. (1) If n+p is even, then we have

A@) B} _ e aie
et (L P8 = Coa@amne ). (A5)



46 SOICHI OKADA

(2) If n is even, then we have

A(x)  B.(x) Bu(x) Y w
Pf | —'B.(z) 0 0 = A(x) - n (I (&) (x) — 1). (A.6)
—'By(x) 0 0 srw

i, 20 mo
PRl @) 0 0 0
-1 0 0 0
= Ax)- { o (M(@)Tu(2) 1) ~ () + Hw<w>} (A7)
Proof. (1) Apply (A.3) to the indeterminates (x1,...,2,, —1/y1,..., —1/y,).

(2) By applying (1) with p = 2 and (y1,¥y2) = (2, w), we have

Alw)  Bix) Bu@

_t zZ—w
pr| —B:(x) 0 e AL ()T, () - .
. 2 —w z+w
— Bw(m) —
zZ+w
By using the multilinearity of Pfaffians, we obtain
A(x) B.(x) By(x)
Z—w
pr | ~B:(@) 0 Z4w
B (z) Y 0
z+w
A(x) B.(x) By(x) I A(x) B.(xz) 0
=Pf | —'B.(x) 0 0 + -Pf | —'B.(x) 0 1].
—B,(z) 0 0 2w 0 -1 0

The last Pfaffian is shown to be equal to A(x) by expanding along the last row/column
and using (A.3). Thus we obtain (A.6).

(3) Applying (1) with p = 3 and (y1, y2,y3) = (2, w,0), we obtain

A(x) B.(x) By(x) -1
z) 0 zZ—w

zZ—w z—i(—)w 4 IA(w)Hz(w)Hw(w)-Z+w
Z+w

gl 1 1 0

Z—w

Pf

(-1,

_th(
_th(

x) —
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By using the multilinearity we see that
A(x) B.(x) By(x) -1

“Bxz) o Y
Pf P zZ4+w
~Bu(z) - z4w 1
q 1 1 0
A(x) B.(x) By(x) 1 A(xz) B.(xz) 0 1
_ _pt —'B,(x) 0 0 ol W —'B.(x) 0 10
—'By(x) 0 0 0 Z4w —"By(x) -1 0 0
-1 0 0 0 -1 0 0 0
A(x) B.(x) By(x) 0 A(x) B.(x) By(x)
B 0 Y B x) o Y
— Pt rmw © tw — Pt rmw © tw
—'By(x) — 0 0 —'By(x) — 0 1
z+w z+w
0 -1 0 0 0 0 -1 0

The last three Pfaffians can be evaluated by expanding them along a row/column and
then using (A.4) and (A.5) with p = 1 as follows:

A(x) B.(xz) 0 1
—'B,(x) 0o 1 0] Alx) 1\
P p@) -1 0 o =T < Tyog) =A@
| 0 00
A(x) B.(x) By(x) 0
_th(CE) 0 v 1 A(.’B) B (IE)
bt ew © +w — _Pf <—tB (@) wO ) = —A(z),(z),
—'By(x) — 0 0 w
Z 4w
0 -1 0 0
A(x) B.(x) By(x) 0
By o %o
P\ Alx B.(x
—'By(x) — 0 1 z
Z 4w
0 0 -1 0
If these evaluations are combined, the proof of (A.7) is completed. U
The following Pfaffian evaluations are used in Section 7. For & = (zy,...,z,) and

y=(v1,.-.,Yp), we put
g(;c) _ (l‘]+l‘]_1) —(IL'Z+IL'Z_1) _ <(I‘Z—ZL‘j)(1—l‘ZfL‘J)>
({L‘j + :L‘J_l) + (ZL‘Z + 1‘2_1) <t jen (.IZ —+ ZL’])<1 + .T}Z‘.Tj) 1<i,j<n

~ (2 + ;") = (mi+a;h) (zi — x;)(1 — wizy)
e = 11 (@ + o)+ (wi+ 2" 11 (@i + ;) (1 + ziz;)”

1<i<j<n 1<i<j<n
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(1 +zy;) (1 + 27 yj))
(1 —2y;) (1 — y]) 1<i<n,1<j<p
1

)
=51 izurcse
-1

=1

9

Bla:y) = (

+ zy;) (1 + 27 yj)
1—2) (1 — a7 yy)

7j=1
We write B.(z) = B(x; (z)) and I (x) = (x; (z)). Then we have the following result.

Proposition A.3. (1) If n is even, then we have

Pf A(z) = Ax). (A.8)
(2) If n is odd, then we have
Pf <A< 1) é) _ A(a). (A.9)
(3) If n+p is even, then we have
A@)  B@Y) _ X ()X ()i
(g V)~ A@Awi ) (A.10)

(4) If n is even, then we have

%IE) Ez(a:) §w<w) ~ (z=w)(1 - zw) =~ ~
Pf _t§Z<w) 0 0 = A(x) (z+ w)(1 + zw)
—'B,,(x) 0 0

(5) If n is odd, then we have

SO O =

— A(z) { Ez . Z;g . zzi (T ()T (x) — 1) — TL.(2) + ﬁw(w)} . (A12)

Proof. (1) and (2) are obtained by replacing x; by z;+z; ' in (A.3) and (A.4), respectively.

(3) is obtained by applying (A.3) with (zy+z1 ", ... zo+a, b, =ity ), - — ().
(4) and (5) are derived from (3) by an argument similar to the ones in the proof of (A.6)
and (A.7), respectively. O

A.3. Useful formulas for Pfaffians. The following propositions are Pfaffian analogues
of the Sylvester identity, the Laplace expansion formula, and the Cauchy-Binet formula
for determinants.

Proposition A.4 ([9, (2.5)]). Let n and m be even integers. If X is an (n+m) X (n+m)
skew-symmetric matriz such that Pf X ([n]) # 0, then we have

Pt X([n] U{n+i,n+j}) _OPEX
Pf( PTX () )m = P () (A.13)
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Proposition A.5 ([19, Corollary 2.4 (1)]). Let m and n be nonnegative integers with the
same parity. If Z is an m x m skew-symmetric matriz and W an m X n matriz, then we

have

(—1)E(I)+(7§) Pt Z(I)det W ([m]\ I;[n]), if m>n,
Z 1%,% T
Pf (_tw On,n) ) (=% det W, fm—n, (A.14)
0, if m<n,

where I runs over all (m — n)-element subsets of [n].

Proposition A.6 ([19, Theorem 3.2]). Let m and n be nonnegative integers with the
same parity. Let A and B be m X m and n X n skew-symmetric matrices, and let S and

T be m X [ and n x | matrices, respectively. Then we have

#1 A S(Iml; T B T(n|; 1
D‘”(”Pf(—tsqm];f) % )>Pf<—fT<[n];f> o ))

1

where I runs over all subsets of [I] with #I = m = n mod 2.
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