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DETERMINANTAL ELLIPTIC SELBERG INTEGRALS

HJALMAR ROSENGREN

Dedicated to Christian Krattenthaler on his 60th birthday

Abstract. The classical Selberg integral contains a power of the Vandermonde de-
terminant. When that power is chosen to be a square, it is easy to prove Selberg’s
identity by interpreting it as a determinant of one-variable integrals. We give similar
proofs of summation and transformation formulas for continuous and discrete elliptic
Selberg integrals. In the continuous case, the same proof was given previously by
Noumi. Special cases of the resulting identities have found applications in combina-
torics.

1. Introduction

In 1944, Selberg proved the integral evaluation [S2]∫ 1

x1,...,xn=0

∏
1≤j<k≤n

|xj − xk|2c
n∏

j=1

xa−1j (1− xj)b−1 dxj

=
n∏

j=1

Γ(a+ (j − 1)c) Γ(b+ (j − 1)c) Γ(1 + jc)

Γ(a+ b+ (n+ j − 2)c) Γ(1 + c)
, (1.1)

which had appeared in slightly different form in his earlier paper [S1]. Here, Γ is the
classical gamma function, not the elliptic gamma function that will appear below. The
integral is subject to the convergence conditions

Re(a) > 0, Re(b) > 0, Re(c) > −min

(
1

n
,
Re(a)

n− 1
,
Re(b)

n− 1

)
. (1.2)

The Selberg integral plays a fundamental role in random matrix theory and analysis on
classical groups, and has been generalized in many directions [FW].

The general case of (1.1) is quite deep. It is instructive to note that in 1963 Mehta
and Dyson [MD] conjectured that∫ ∞

x1,...,xn=−∞

∏
1≤j<k≤n

|xj − xk|2c
n∏

j=1

e−x
2
j/2 dxj = (2π)n/2

n∏
j=1

Γ(1 + jc)

Γ(1 + c)
. (1.3)

Although this was republished as a conjecture several times, no proof was found until
it was recognized as a degenerate case of (1.1) in the late 1970s, see [FW].

Mehta and Dyson could prove (1.3) for c = 1/2, 1 and 2, which are the most important
cases in random matrix theory. As was pointed out by the anonymous referee, the case
c = 1/2 was proved much earlier by Hsu in a journal of “highly dubious repute” [H].
The discussion of the case c = 1 in (1.3) is just one sentence (in their notation, β = 2c):
“The case β = 2 is the easiest; one needs only to introduce Hermite polynomials and
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exploit their orthogonality properties”. For our purpose, it is useful to explain this
starting from the algebraic identity [A] (see [F] for the history of this result)

det
1≤j,k≤n

(∫
fj(x)gk(x) dµ(x)

)
=

1

n!

∫
det

1≤j,k≤n
(fj(xk)) det

1≤j,k≤n
(gj(xk)) dµ(x1) · · · dµ(xn), (1.4)

which holds for any linear functional h 7→
∫
h(x) dµ(x). (In the examples of interest to

us, this functional is given by integrating h against a measure.) If fj and gj are monic
polynomials of degree j − 1, j = 1, 2, . . . , n, then the determinants on the right are
column-equivalent to Vandermonde determinants, and we obtain

det
1≤j,k≤n

(∫
fj(x)gk(x) dµ(x)

)
=

1

n!

∫ ∏
1≤j<k≤n

(xj − xk)2 dµ(x1) · · · dµ(xn). (1.5)

If we now choose fj = gj as orthogonal with respect to dµ, then the left-hand side
of (1.5) reduces to the product of the squared norms of the first n monic orthogonal
polynomials. The identity (1.5) is then a classical result known to Heine [I, Cor. 2.1.3].
The case of Jacobi and Hermite polynomials give the case c = 1 of (1.1) and (1.3),
respectively.

There is a less well-known but even more elementary proof of the case c = 1 of (1.1),
based on varying the parameters a and b. This proof is more relevant to the present
work, so we will explain it in detail. Let Ijk denote the one-variable case of (1.1), after
replacing (a, b) by (a+ j − 1, b+ n− k). By Euler’s beta integral evaluation,

Ijk =

∫ 1

0

xa+j−2(1− x)b+n−k−1 dx =
Γ(a+ j − 1) Γ(b+ n− k)

Γ(a+ b+ n+ j − k − 1)
.

Consider the determinant D = det1≤j,k≤n(Ijk), where we need to assume the conver-
gence conditions

Re(a) > 0, Re(b) > 0. (1.6)

It can be identified with the left-hand side of (1.5), where fj(x) = xj−1, gj(x) =
(1− x)n−j and ∫

f(x) dµ(x) =

∫ 1

0

f(x)xa−1(1− x)b−1 dx.

Although gj is not monic of degree j − 1, the sign changes resulting from replacing
(x − 1)j−1 by (1 − x)n−j cancel, so (1.5) still holds. Thus, the case c = 1 of (1.1)
can be expressed as n!D. This is another instance of the Vandermonde determinant.
The gamma functions in the numerator can be pulled out, and the denominator can be
expressed as

1

Γ(a+ b+ n+ j − k − 1)
=

pk−1(j)

Γ(a+ b+ n+ j − 2)
,

where

pk(x) =
k−1∏
j=0

(x+ a+ b+ n− k − 2 + j)
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is a monic polynomial of degree k, so that

det
1≤j,k≤n

(pk−1(j)) =
∏

1≤j<k≤n

(k − j) =
n∏

j=1

(j − 1)! .

We conclude that

n!D =
n∏

j=1

Γ(a+ j − 1) Γ(b+ j − 1) j!

Γ(a+ b+ n+ j − 2)
.

Since (1.2) reduces to (1.6) when c = 1, this proves the case c = 1 of (1.1) for general
admissible values of the other parameters.

The same method works for many variations of the c = 1 Selberg integral; the measure
of integration may be continuous or discrete, and the integrands may live at the rational,
trigonometric or elliptic level. (In the most common notation, c = 1 corresponds to t = q
at the trigonometric and elliptic level.) One can also prove transformation formulas,
stating that two Selberg-type integrals are equal. The purpose of the present note is
to illustrate this method with two examples: an elliptic Selberg integral conjectured
by van Diejen and Spiridonov [DS1] and a transformation formula for discrete Selberg
integrals conjectured by Warnaar [W]. Both these identities were first proved by Rains
[R1, R3]; the second one was proved independently by Coskun and Gustafson [CG].

We are not claiming that our proofs are new, and the present paper should be viewed
as expository. It is clear from our correspondence with Rains that he is aware of similar
proofs. Moreover, Noumi [N] gave a determinantal proof of the transformation formula
stated as (2.9) below. This generalizes the proof of the continuous integration formula
given below and is completely parallel to our proof of the discrete transformation for-
mula. The main motivation for writing the present note is that we have seen several
recent papers where the case t = q of Warnaar’s identities for discrete Selberg integrals
are applied [BK, BKW, FKX, KS], but the reader is referred to work on the general
case [CG, R1, Ro1] for the proof. Even though it is known to some experts in the field,
it seems useful to point out to the wider community that much easier proofs exist. We
also hope that the same method can be used to find new results. In particular, we
think of quadratic and cubic transformation formulas for c = 1 Selberg-type integrals,
which may possibly admit extensions to general c. In this direction, we mention that
several quadratic transformations of elliptic Selberg integrals are given in [R4, R5].
Quadratic summations for c = 1 discrete Selberg integrals appear in connection with
tiling problems [CEKZ, Ro2].

Acknowledgement. It is a pleasure to dedicate this piece to Christian Krattenthaler,
a virtuoso of determinants, hypergeometry and much more. I am very grateful for
his patience and support over the years. I thank Masatoshi Noumi, Eric Rains and
Ole Warnaar for useful correspondence. Finally, I thank the anonymous referee for an
unusually careful reading, leading to many improvements.

2. Continuous Selberg integrals

We recall some standard notation of elliptic hypergeometric functions. We fix two
parameters p and q with |p|, |q| < 1, which we suppress from the notation. Ruijsenaars’
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elliptic gamma function [Ru] is given by

Γ(z) =
n∏

j,k=1

1− pj+1qk+1/z

1− pjqkz
.

It satisfies the functional equation

Γ(qz) = θ(z)Γ(z) (2.1)

and, more generally,

Γ(qkz) = (z)k Γ(z), (2.2)

where the theta function and elliptic shifted factorials are given by

θ(z) =
∞∏
j=0

(1− pjz)

(
1− pj+1

z

)
, (z)k =

k−1∏
j=0

θ(zqj).

Repeated variables in each of these functions is a short-hand for products. For instance,

Γ(z1, . . . , zm) = Γ(z1) · · ·Γ(zm),

Γ(z±w±) = Γ(zw) Γ(z/w) Γ(w/z) Γ(1/wz).

For introductions to elliptic hypergeometric series, we refer to [GR, Ro3]. We will make
heavy use of elementary identities that can be found in these sources.

The elliptic Selberg integral refers to the evaluation

Cn

2nn!

∫ ∏
1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n∏
j=1

∏6
k=1 Γ(tkz

±
j )

Γ(z±2j )

dzj
2πi zj

=
n∏

m=1

(
Γ(tm)

Γ(t)

∏
1≤j<k≤6

Γ(tm−1tjtk)

)
, (2.3)

where the parameters satisfy the balancing condition

t2n−2t1t2t3t4t5t6 = pq (2.4)

and

C =
∞∏
j=1

(1− pj)(1− qj).

If |t| < 1 and |tj| < 1 for all j, the integration is over |z1| = · · · = |zn| = 1; this condition
may be relaxed if the contour is deformed appropriately. The evaluation (2.3) contains
the classical Selberg integral (1.1) as a limit, see [R2].

The case p = 0 of (2.3) is due to Gustafson [G] and the case n = 1 to Spiridonov [Sp1].
The general case was conjectured by van Diejen and Spiridonov [DS1] and first proved
by Rains [R3]. Another proof follows by combining the results of [DS2, Sp2], and a
third proof is given in [IN2]. For a quantum field theory interpretation of (2.3), see
[SV, §12.3.2].

The parameter c in (1.1) corresponds to logq t in (2.3). In particular, c = 1 corre-
sponds to t = q. We proceed to give a simple proof of this special case of (2.3). Let Ijk
denote the case n = 1 of (2.3), after the substitutions

(t1, t2, t3, t4) 7→ (t1q
j−1, t2q

n−j, t3q
k−1, t4q

n−k).
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The balancing condition for all these integrals is

q2n−2t1t2t3t4t5t6 = pq, (2.5)

which agrees with the case t = q of (2.4). By (2.2),

Ijk =
C

2

∫
(t1z

±)j−1 (t2z
±)n−j(t3z

±)k−1 (t4z
±)n−k

∏6
j=1 Γ(tjz

±)

Γ(z±2)

dz

2πi z
.

Let D = det1≤j,k≤n(Ijk). Then (1.4) gives

D =
Cn

2nn!

∫
∆(t1, t2)∆(t3, t4)

n∏
k=1

∏6
j=1 Γ(tjz

±
k )

Γ(z±2k )

dzk
2πi zk

,

where

∆(a, b) = det
1≤j,k≤n

(
(az±k )j−1 (bz±k )n−j

)
. (2.6)

By Warnaar’s determinant evaluation [W, Lemma 5.3],

∆(a, b) = b(
n
2)q(

n
3)

n∏
j=1

(qj−na/b, qn−jab)j−1
∏

1≤j<k≤n

z−1k θ(zkz
±
j ). (2.7)

Note also that ∏
1≤j<k≤n

(
z−1k θ(zkz

±
j )
)2

=
∏

1≤j<k≤n

Γ(qz±j z
±
k )

Γ(z±j z
±
k )

.

This gives

D = (t2t4)
(n
2)q2(

n
3)

n∏
j=1

(qj−nt1/t2, q
n−jt1t2, q

j−nt3/t4, q
n−jt3t4)j−1

× Cn

2nn!

∫ ∏
1≤j<k≤n

Γ(qz±j z
±
k )

Γ(z±j z
±
k )

n∏
j=1

∏6
k=1 Γ(tkz

±
j )

Γ(z±2j )

dzj
2πi zj

, (2.8)

where we recognize the integral as the case t = q of (2.3).
On the other hand, the case n = 1 of (2.3) (that is, Spiridonov’s elliptic beta integral)

gives

Ijk = Γ(t1t2q
n−1, t1t3q

j+k−2, t1t4q
n+j−k−1, t1t5q

j−1, t1t6q
j−1)

× Γ(t2t3q
n−j+k−1, t2t4q

2n−j−k, t2t5q
n−j, t2t6q

n−j, t3t4q
n−1)

× Γ(t3t5q
k−1, t3t6q

k−1, t4t5q
n−k, t4t6q

n−k, t5t6).

Most of the factors are independent of either j or k and can thus be pulled out of the
determinant. Again using (2.2), we are left with

D = Γ(t1t2q
n−1, t3t4q

n−1, t5t6)
n

n∏
m=1

∏
1≤j<k≤6

(j,k) 6=(1,2), (3,4), (5,6)

Γ(tjtkq
m−1)

× det
1≤j,k≤n

(
(t1t3q

k−1, t1t4q
n−k)j−1 (t2t3q

k−1, t2t4q
n−k)n−j

)
.
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The final determinant is of the form (2.6), with a = t1
√
t3t4qn−1, b = t2

√
t3t4qn−1 and

zk = qk−1
√
q1−nt3/t4. Using (2.7) and also (2.5) to write (qn−jab)j−1 = (t5t6)j−1, we

obtain after simplification

D = (t2t4)
(n
2)q2(

n
3)Γ(t1t2q

n−1, t3t4q
n−1)n

n∏
m=1

∏
1≤j<k≤6

(j,k)6=(1,2), (3,4)

Γ(tjtkq
m−1)

×
n∏

j=1

(q, qj−nt1/t2, q
j−nt3/t4)j−1.

Comparing this with (2.8) yields the case t = q of (2.3).
Essentially the same proof works for the case t = q of Rains’ integral transforma-

tion [R3]

∫ ∏
1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n∏
j=1

∏4
k=1 Γ(tkz

±
j , ukz

±
j )

Γ(z±2j )

dzj
2πi zj

=
n∏

m=1

∏
1≤j<k≤4

Γ(tm−1tjtk, t
m−1ujuk)

×
∫ ∏

1≤j<k≤n

Γ(tz±j z
±
k )

Γ(z±j z
±
k )

n∏
j=1

∏4
k=1 Γ(tkvz

±
j , ukv

−1z±j )

Γ(z±2j )

dzj
2πi zj

, (2.9)

where v2 = pq/tn−1t1t2t3t4 = tn−1u1u2u3u4/pq. The details can be found in [N], where
the integrals are interpreted as tau functions for the elliptic Painlevé equation.

3. Discrete Selberg integrals

The integral evaluation (2.3) and transformation (2.9) have analogues for finite sums,
which were conjectured by Warnaar [W] prior to the discovery of the continuous ver-
sions. Warnaar’s summation can be obtained from the integral evaluation (2.3) through
residue calculus [DS1] (presumably, a similar argument applies to the transformations).
The conjectured summation was proved in [Ro1], see also [IN1], and the more general
transformation in [CG, R1].
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As one would expect, the case t = q of Warnaar’s identities also admits a simple
determinantal proof. We will focus on the transformation, which can be written as [S]∑

0≤x1<x2<···<xn≤N

∏
1≤j<k≤n

(
qxjθ(qxk−xj)θ(aqxj+xk)

)2
×

n∏
j=1

(
θ(aq2xj)

θ(a)

(a, b, c, d, e, f, g, q−N)xj

(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)xj

qxj

)

=
(a
λ

)(N+1−n)n (aq)nN
(λq)nN

n∏
j=1

(b, c, d)j−1 (λq/e, λq/f, λq/g)N+1−j

(λb/a, λc/a, λd/a)j−1 (aq/e, aq/f, aq/g)N+1−j

×
∑

0≤x1<x2<···<xn≤N

∏
1≤j<k≤n

(
qxjθ(qxk−xj) θ(λqxj+xk)

)2
×

n∏
j=1

(
θ(λq2xj)

θ(λ)

(λ, λb/a, λc/a, λd/a, e, f, g, q−N)xj

(q, aq/b, aq/c, aq/d, λq/e, λq/f, λq/g, λqN+1)xj

qxj

)
, (3.1)

where bcdefg = q4+N−2na3 and λ = a2q2−n/bcd. When aq = cd, the factor (λb/a)xn =
(q1−n)xn on the right-hand side vanishes unless xn ≤ n − 1, so the sum reduces to the
term with (x1, . . . , xn) = (0, 1, . . . , n − 1). After a change of variables, this gives the
case t = q of Warnaar’s discrete elliptic Selberg integral, namely,∑

0≤x1<x2<···<xn≤N

∏
1≤j<k≤n

(
qxjθ(qxk−xj)θ(aqxj+xk)

)2
×

n∏
j=1

(
θ(aq2xj)

θ(a)

(a, b, c, d, e, q−N)xj

(q, aq/b, aq/c, aq/d, aq/e, aqN+1)xj

qxj

)
= bn(N+1−n)q

1
3
n(n−1)(3N+1−2n)(aq)nN

×
n∏

j=1

(q, b, c, d, e, q−N)j−1 (aq2−j/bc, aq2−j/bd, aq2−j/be)N+1−n

(aq/b, aq/c, aq/d, aq/e)N+1−j
, (3.2)

which holds for bcde = qN+3−2na2.
We will give a simple proof of (3.1), which is parallel to the continuous case. We

need the case n = 1, which is the one-variable elliptic Bailey transformation. It first
appeared (rather implicitly and with some restrictions on the parameters) in the work
of Date et al. on Baxter’s elliptic solid-on-solid model [D] and was proved in general by
Frenkel and Turaev [FT], see [GR, Ro3] for more elementary proofs.

Let Sjk denote the case n = 1 of (3.1), after the substitutions

(b, c, e, f) 7→ (bqj−1, cqn−j, eqk−1, fqn−k).

Some elementary manipulation gives

Sjk =
N∑

x=0

θ(aq2x)

θ(a)

(a, b, c, d, e, f, g, q−N)x
(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)x

q(2n−1)x

× (bqx, bq−x/a)j−1 (cqx, cq−x/a)n−j (eqx, eq−x/a)k−1 (fqx, fq−x/a)n−k
(b, b/a)j−1 (c, c/a)n−j (e, e/a)k−1 (f, f/a)n−k

.
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Let D = det1≤j,k≤n(Sjk). We expand D using the Cauchy–Binet identity

det
1≤j,k≤n

(
N∑

x=0

ajxbkx

)
=

∑
0≤x1<x2<···<xn≤N

det
1≤j,k≤n

(aj,xk
) det
1≤j,k≤n

(bj,xk
).

This is a special case of (1.4), where symmetry is used to restrict the range of summa-
tion. It follows that

D =
1∏n

j=1(b, b/a, c, c/a, e, e/a, f, f/a)j−1

×
∑

0≤x1<x2<···<xn≤N

n∏
k=1

(
θ(aq2xk)

θ(a)

(a, b, c, d, e, f, g, q−N)xk
qxk(2n−1)

(q, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aqN+1)xk

)
× ∆̃(b, c)∆̃(e, f),

where
∆̃(b, c) = det

1≤j,k≤n

(
(bqxk , bq−xk/a)j−1 (cqxk , cq−xk/a)n−j

)
.

This determinant is of the form (2.6), with (a, b, zk) replaced by (b/
√
a, c/
√
a,
√
aqxk).

Using (2.7) and simplifying, we find that D equals the left-hand side of (3.1) times(
cf

a2

)(n
2)
q2(

n
3)

n∏
j=1

(qj−nb/c, qn−jbc/a, qj−ne/f, qn−jef/a)j−1
(b, b/a, c, c/a, e, e/a, f, f/a)j−1

. (3.3)

Repeating the same computation but starting from the alternative expression

Sjk =
(a
λ

)N (aq, λq2−k/e, λq1−n+k/f, λq/g)N
(λq, aq2−k/e, aq1−n+k/f, aq/g)N

×
N∑

x=0

θ(λq2x)

θ(λ)

(λ, λb/a, λc/a, λd/a, e, f, g, q−N)x
(q, aq/b, aq/c, aq/d, λq/e, λq/f, λq/g, λqN+1)x

qx(2n−1)

× (λbqx/a, bq−x/a)j−1 (λcqx/a, cq−x/a)n−j (eqx, eq−x/λ)k−1 (fqx, fq−x/λ)n−k
(λb/a, b/a)j−1 (λc/a, c/a)n−j (e, e/λ)k−1 (f, f/λ)n−k

,

we obtain after simplification the same prefactor (3.3) times the right-hand side of (3.1).
This completes the proof of (3.1).
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204.

[GR] G. Gasper and M. Rahman, Basic Hypergeometric Series, Second edition, Cambridge University
Press, 2004.

[G] R. A. Gustafson, Some q-beta integrals on SU(n) and Sp(n) that generalize the Askey–Wilson and
Nasrallah–Rahman integrals, SIAM J. Math. Anal. 25 (1994), 441–449.

[H] P. L. Hsu, On the distribution of roots of certain determinantal equations, Ann. Eugenics 9 (1939),
250–258.

[I] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge
University Press, 2005.

[IN1] M. Ito and M. Noumi, Derivation of a BCn elliptic summation formula via the fundamental
invariants, Constr. Approx. 45 (2017), 33–46.

[IN2] M. Ito and M. Noumi, Evaluation of the BCn elliptic Selberg integrals via the fundamental
invariants, Proc. Amer. Math. Soc. 145 (2017), 689–703.

[KS] C. Krattenthaler and M. Schlosser, The major index generating function of standard Young
tableaux of shapes of the form “staircase minus triangle”, in Ramanujan 125, Contemp. Math.,
vol. 627, Amer. Math. Soc., 2014, pp. 111–122.

[MD] M. L. Mehta and F. J. Dyson, Statistical theory of the energy levels of complex systems. V. J.
Math. Phys. 4 (1963), 713–719.

[N] M. Noumi, Remarks on τ -functions for the difference Painlevé equations of type E8, in Represen-
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