Classification of
 P-oligomorphic permutation groups
 Conjectures of Cameron and Macpherson

Justine Falque
joint work with Nicolas M. Thiéry
Laboratoire de Recherche en Informatique
Université Paris-Sud (Orsay)

SLC, April 17h of 2019

Profile of a permutation group, a finite example

- Permutation group G

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0			5	
1			6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1		5	
1			6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1		5	
1			6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1		5	
1	1		6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2			7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2	3		7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2	3		7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2	3		7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2	3		7	
3			8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1		6	
2	3		7	
3	3		8	
4			>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5		
1	1	6		
2	3		7	
3	3		8	
4	6		>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5	3	
1	1		6	
2	3		7	
3	3		8	
4	6		>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5	3	
1	1		6	3
2	3		7	
3	3		8	
4	6		>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5	3	
1	1		6	3
2	3		7	1
3	3		8	
4	6		>8	

Profile of a permutation group, a finite example

- Permutation group $G \rightarrow$ induced action on subsets
- Orbit of n-subsets $=$ orbit of degree n

Profile of G

$$
\varphi_{G}(n)=\# \text { orbits of degree } n
$$

Example
The group of symmetries of the cube D_{8}

n	φ_{G}		n	φ_{G}
0	1	5	3	
1	1		6	3
2	3		7	1
3	3		8	1
4	6		>8	0

Series of the profile

$$
P_{D_{8}}(z)=1+1 z+3 z^{2}+3 z^{3}+6 z^{4}+3 z^{5}+3 z^{6}+1 z^{7}+1 z^{8}
$$

Series of the profile

$$
P_{D_{8}}(z)=1+1 z+3 z^{2}+3 z^{3}+6 z^{4}+3 z^{5}+3 z^{6}+1 z^{7}+1 z^{8}
$$

G infinite $\quad \rightarrow \quad \mathcal{H}_{G}(z)=\sum_{n} \varphi_{G}(n) z^{n}$

Series of the profile

$$
P_{D_{8}}(z)=1+1 z+3 z^{2}+3 z^{3}+6 z^{4}+3 z^{5}+3 z^{6}+1 z^{7}+1 z^{8}
$$

$$
G \text { infinite } \quad \rightarrow \quad \mathcal{H}_{G}(z)=\sum_{n} \varphi_{G}(n) z^{n}
$$

Hypothesis
G is P-oligomorphic : φ_{G} is bounded by a polynomial in n

Series of the profile

$$
P_{D_{8}}(z)=1+1 z+3 z^{2}+3 z^{3}+6 z^{4}+3 z^{5}+3 z^{6}+1 z^{7}+1 z^{8}
$$

$$
G \text { infinite } \quad \rightarrow \quad \mathcal{H}_{G}(z)=\sum_{n} \varphi_{G}(n) z^{n}
$$

Hypothesis
G is P-oligomorphic : φ_{G} is bounded by a polynomial in n
Example

$$
\mathcal{H}_{\mathfrak{S}_{\infty}}(z)=1+z+z^{2}+\cdots=\frac{1}{1-z}
$$

Series of the profile

$P_{D_{8}}(z)=1+1 z+3 z^{2}+3 z^{3}+6 z^{4}+3 z^{5}+3 z^{6}+1 z^{7}+1 z^{8}$

$$
G \text { infinite } \quad \rightarrow \quad \mathcal{H}_{G}(z)=\sum_{n} \varphi_{G}(n) z^{n}
$$

Hypothesis
G is P-oligomorphic: φ_{G} is bounded by a polynomial in n

Example

$$
\mathcal{H}_{\mathfrak{S}_{\infty}}(z)=1+z+z^{2}+\cdots=\frac{1}{1-z}
$$

Conjecture 1 - Cameron, 70's
$G P$-oligomorphic $\Rightarrow \mathcal{H}_{G}(z)=\frac{N(z)}{\prod_{i}\left(1-z^{d_{i}}\right)}$ with $N(z) \in \mathbb{Z}[z]$

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree:

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree:
or b_{1}. orb $b_{2}=$ linear combination of orbits of degree $d_{1}+d_{2}$

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: orb b_{1}. orb $_{2}=$ linear combination of orbits of degree $d_{1}+d_{2}$
- $\operatorname{dim}\left(\mathcal{A}_{n}\right)=\varphi_{G}(n)$

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree:
orb b_{1}. orb $_{2}=$ linear combination of orbits of degree $d_{1}+d_{2}$
- $\operatorname{dim}\left(\mathcal{A}_{n}\right)=\varphi_{G}(n)$, so $\mathcal{H}_{G}(z)=\sum_{n} \operatorname{dim}\left(\mathcal{A}_{n}\right) z^{n}$

Orbit algebra

Orbit algebra (Cameron, 80's)
Structure of graded algebra $\mathcal{A}_{G}=\bigoplus_{n} \mathcal{A}_{n}$ on the orbits

- combinatorial description of the product
- graded according to the orbital degree: orb b_{1}. orb $b_{2}=$ linear combination of orbits of degree $d_{1}+d_{2}$
- $\operatorname{dim}\left(\mathcal{A}_{n}\right)=\varphi_{G}(n)$, so $\mathcal{H}_{G}(z)=\sum_{n} \operatorname{dim}\left(\mathcal{A}_{n}\right) z^{n}$

Conjecture 2 (stronger) - Macpherson, 85
$G P$-oligomorphic $\quad \Rightarrow \mathcal{A}_{G}$ is finitely generated

Block systems

Block system

- Equivalence relation preserved by the group

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks $=$ the classes

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_{4}

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_{4}

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_{4}

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_{4}

Block systems

Block system

- Equivalence relation preserved by the group
- Blocks = the classes
- G acts by permutation on the blocks

Example

Block systems of C_{4}

Not a block system \rightarrow

The complete primitive P-oligomorphic groups

The complete primitive P-oligomorphic groups

Macpherson:

$G P$-oligomorphic with no non trivial blocks $\Rightarrow \varphi_{G}(n)=1$

The complete primitive P-oligomorphic groups

Macpherson:

$G P$-oligomorphic with no non trivial blocks $\Rightarrow \varphi_{G}(n)=1$

Theorem (Classification, Cameron)
Only 5 complete groups such that $\varphi_{G}(n)=1 \quad \forall n$

The complete primitive P-oligomorphic groups

Macpherson:
$G P$-oligomorphic with no non trivial blocks $\Rightarrow \varphi_{G}(n)=1$

Theorem (Classification, Cameron)

Only 5 complete groups such that $\varphi_{G}(n)=1 \quad \forall n$

- $\operatorname{Aut}(\mathbb{Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q} / \mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group
\mathfrak{S}_{∞}

The complete primitive P-oligomorphic groups

Macpherson:
$G P$-oligomorphic with no non trivial blocks $\Rightarrow \varphi_{G}(n)=1$

Theorem (Classification, Cameron)

Only 5 complete groups such that $\varphi_{G}(n)=1 \quad \forall n$

- $\operatorname{Aut}(\mathbb{Q})$: automorphisms of the rational chain
- $\operatorname{Rev}(\mathbb{Q})$: generated by $\operatorname{Aut}(\mathbb{Q})$ and one reflection
- $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$, preserving the circular order
- $\operatorname{Rev}(\mathbb{Q} / \mathbb{Z})$: generated by $\operatorname{Aut}(\mathbb{Q} / \mathbb{Z})$ and a reflection
- \mathfrak{S}_{∞} : the symmetric group
\mathfrak{S}_{∞}
Well known, nice groups (called highly homogeneous). In particular, their orbit algebra is finitely generated.

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} \mathfrak{S}_{3}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} 3$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S } _ { 3 }}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\imath \mathfrak { S } _ { 3 }}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\imath} \mathfrak{S}_{3}$

Wreath product
$\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} \mathfrak{S}_{3}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S } _ { 3 }}$

Wreath product
$\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} 3$

Wreath product
$\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$
Subset of shape 2, 3, 2 $\rightarrow x_{1}^{2} x_{2}^{3} x_{3}^{2}$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} 3$

Wreath product
$\mathfrak{S}_{\infty} / \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$
Subset of shape 2,3,2 $\rightarrow x_{1}^{2} x_{2}^{3} x_{3}^{2}$
Orbits of subsets
\leftrightarrow symmetric polynomials in x_{1}, x_{2}, x_{3}

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} 3$

Wreath product
$\mathfrak{S}_{\infty} / \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$
Subset of shape 2,3,2 $\rightarrow x_{1}^{2} x_{2}^{3} x_{3}^{2}$
Orbits of subsets
\leftrightarrow symmetric polynomials in x_{1}, x_{2}, x_{3}

$$
\mathcal{A}_{\mathfrak{G}_{\infty} \mathfrak{G _ { 3 } ^ { 3 }}} \simeq \operatorname{Sym}_{3}[X]=\mathbb{Q}[X]^{\mathfrak{G}_{3}}
$$

An infinite example: $\mathfrak{S}_{\infty} \mathfrak{\imath} \mathfrak{S}_{3}$

Wreath product
$\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3} \simeq \mathfrak{S}_{\infty}^{3} \rtimes \mathfrak{S}_{3}$
Subset of shape 2, 3,2 $\rightarrow x_{1}^{2} x_{2}^{3} x_{3}^{2}$
Orbits of subsets
\leftrightarrow symmetric polynomials in x_{1}, x_{2}, x_{3}
$\mathcal{A}_{\mathfrak{S}_{\infty}\left(\mathfrak{G}_{3}\right.} \simeq \operatorname{Sym}_{3}[X]=\mathbb{Q}[X]^{\mathfrak{G}_{3}}$

One can obtain functions counting integer partitions, combinations, P-partitions (with optional length and/or hight restrictions) as profiles of wreath products...

Lower bound

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

- $M<\infty$

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

- $M<\infty$
- $N<\infty$

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

- $M<\infty$

$$
\longrightarrow \varphi_{G}(n) \geq O\left(n^{M-1}\right)
$$

- $N<\infty$

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

- $M<\infty$

$$
\longrightarrow \quad \varphi_{G}(n) \geq O\left(n^{M-1}\right)
$$

- $N<\infty$

$$
\longrightarrow \varphi_{G}(n) \geq O\left(n^{N-1}\right)
$$

Lower bound

$$
\Longrightarrow G \leq \mathfrak{S}_{M} \backslash \mathfrak{S}_{N}
$$

Two cases if G is P-oligomorphic:

- $M<\infty$

$$
\longrightarrow \varphi_{G}(n) \geq O\left(n^{M-1}\right)
$$

- $N<\infty$

$$
\longrightarrow \varphi_{G}(n) \geq O\left(n^{N-1}\right)
$$

Better have big finite blocks and/or "small" infinite ones...

Lattices of block systems

Lattice of partitions \rightarrow structure of lattice on block systems

Lattices of block systems

Lattice of partitions \rightarrow structure of lattice on block systems

Lattices of block systems

Lattice of partitions \rightarrow structure of lattice on block systems

Non trivial fact

- $\{$ Systems with $<\infty$ blocks only $\}=$ sublattice with maximum
- $\{$ Systems with ∞ blocks only $\}=$ sublattice with minimum

Lattices of block systems

Lattice of partitions \rightarrow structure of lattice on block systems

Non trivial fact

- $\{$ Systems with $<\infty$ blocks only $\}=$ sublattice with maximum
- $\{$ Systems with ∞ blocks only $\}=$ sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite!

The nested block system

Idea

The nested block system

Idea

1. Take the maximal system of finite blocks

The nested block system

Idea

1. Take the maximal system of finite blocks

The nested block system

Idea

1. Take the maximal system of finite blocks

Action on the maximal finite blocks...

The nested block system

Idea

1. Take the maximal system of finite blocks

Action on the maximal finite blocks... that has no finite blocks.

The nested block system

Idea

1. Take the maximal system of finite blocks
2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks

Action on the maximal finite blocks... that has no finite blocks.

The nested block system

Idea

1. Take the maximal system of finite blocks
2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Action on the maximal finite blocks... that has no finite blocks.

The nested block system

Idea

1. Take the maximal system of finite blocks
2. Take the minimal system of infinite blocks of the action of G on the maximal finite blocks \rightarrow finitely many superblocks

Action on the maximal finite blocks... that has no finite blocks.

One superblock: examples

One superblock: examples

$$
\because: B \quad B \quad A \quad: \quad A \quad: \quad 0 \quad \cdots
$$

One superblock: examples

One superblock: examples

One superblock：examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty} \\
& \text { c明明㫜白 }
\end{aligned}
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mid B_{0}}=H_{0}
\end{aligned}
$$

One superblock: examples

$$
\begin{gathered}
?^{S_{\infty}} \\
G_{G_{\mid B_{0}}}=H_{0}, \operatorname{Fix}\left(B_{0}\right)
\end{gathered}
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mid B_{0}}=H_{0}, \operatorname{Fix}\left(B_{0}\right)_{\mid B_{1}}=H_{1}
\end{aligned}
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}, H_{1}
\end{aligned}
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}, H_{1}, H_{2}
\end{aligned}
$$

One superblock: examples

One superblock: examples

One superblock: examples

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5} \cdots \\
& \text { Tower of } G
\end{aligned}
$$

One superblock: examples

$$
\begin{gathered}
\mathfrak{S}_{\infty} \\
<: \stackrel{?}{0} \cdot(:) \\
H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5} \quad \cdots \quad \text { Tower of } G
\end{gathered}
$$

- $H \mathfrak{S _ { \infty }}$

$$
\rightarrow H, H, H, H, H, H
$$

One superblock: examples

$$
\begin{aligned}
& \mathfrak{S}_{\infty} \\
& H_{0}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5} \quad \cdots \quad \text { Tower of } G \\
& \text { - } \quad \mathrm{Cl}_{\infty} \\
& \text { - } " H_{0} \times \mathfrak{S}_{\infty} " \\
& \rightarrow H, H, H, H, H, H \\
& \rightarrow H_{0}, I d, I d, I d, I d, I d \ldots
\end{aligned}
$$

One superblock: examples

- $H_{\text {l }} \mathfrak{S}_{\infty}$
$\rightarrow H, H, H, H, H, H$
- $H_{0} \times \mathfrak{S}_{\infty} "$
$\rightarrow H_{0}, I d, I d, I d, I d, I d \cdots$
- $<" H_{0} \times \mathfrak{S}_{\infty} ", H \backslash \mathfrak{S}_{\infty}>$

One superblock: examples

$$
\begin{aligned}
& \text { - } H_{\text {l }} \mathfrak{S}_{\infty} \\
& \rightarrow H, H, H, H, H, H \\
& \text { - } H_{0} \times \mathfrak{S}_{\infty} " \\
& \rightarrow H_{0}, I d, I d, I d, I d, I d \cdots \\
& \text { - < " } H_{0} \times \mathfrak{S}_{\infty} ", H \imath \mathfrak{S}_{\infty}> \\
& H_{0} \triangleright H \text { w.l.o.g }
\end{aligned}
$$

One superblock: examples

- $H_{\text {l }} \mathfrak{S}_{\infty}$
$\rightarrow H, H, H, H, H, H$
- $H_{0} \times \mathfrak{S}_{\infty} "$
$\rightarrow H_{0}, I d, I d, I d, I d, I d \ldots$
- $<" H_{0} \times \mathfrak{S}_{\infty} ", H \backslash \mathfrak{S}_{\infty}>\rightarrow H_{0}, H, H, H, H, H \cdots$

$$
H_{0} \triangleright H \quad \text { w.l.o.g }
$$

Notation: $\left[H_{0}, H_{\infty}\right]$

One superblock: classification

- The tower determines G (uses the subdirect product)

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$
\rightarrow Proof in the infinite case: always some $H_{0}, H, H, H \cdots$

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$
\rightarrow Proof in the infinite case: always some $H_{0}, H, H, H \cdots$

Classification
One superblock $\Rightarrow G=\left[H_{0}, H_{\infty}\right]$

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$
\rightarrow Proof in the infinite case: always some $H_{0}, H, H, H \cdots$

Classification
One superblock $\Rightarrow G=\left[H_{0}, H_{\infty}\right]$
$\mathbb{Q}\left[\left(X_{\text {orb }}\right)_{\text {orb }}\right]$, where orb runs through the orbits of H

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$
\rightarrow Proof in the infinite case: always some $H_{0}, H, H, H \cdots$

Classification
One superblock $\Rightarrow G=\left[H_{0}, H_{\infty}\right]$
$\mathcal{A}_{G} \simeq \mathbb{Q}\left[\left(X_{\text {orb }}\right)_{\text {orb }}\right]^{H_{0}}$, where orb runs through the orbits of H

One superblock: classification

- The tower determines G (uses the subdirect product)
- Computer exploration on finitely many blocks
\rightarrow Observation: always some $H_{0}, H, H, H, \ldots, H, H_{s}$
\rightarrow Proof in the infinite case: always some $H_{0}, H, H, H \cdots$

Classification
One superblock $\Rightarrow G=\left[H_{0}, H_{\infty}\right]$
$\mathcal{A}_{G} \simeq \mathbb{Q}\left[\left(X_{\text {orb }}\right)_{\text {orb }}\right]^{H_{0}}$, where orb runs through the orbits of H
In particular, both conjectures hold.

General case: minimal subgroup of finite index

General case: minimal subgroup of finite index Normal subgroup K of G

General case: minimal subgroup of finite index

 Normal subgroup K of G- that fixes the kernel

General case: minimal subgroup of finite index

 Normal subgroup K of G- that fixes the kernel

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks

General case: minimal subgroup of finite index Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which $\operatorname{Rev}(\ldots)$ are reduced down to $\operatorname{Aut}(\ldots)$

$\operatorname{Id} \imath \operatorname{Rev}(\mathbb{Q})$

General case: minimal subgroup of finite index

 Normal subgroup K of G- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which $\operatorname{Rev}(\ldots)$ are reduced down to $\operatorname{Aut}(\ldots)$
$\operatorname{Id} \ \operatorname{Rev}(\mathbb{Q})$

General case: minimal subgroup of finite index

Normal subgroup K of G

- that fixes the kernel
- that stabilizes the superblocks
- of restrictions wreath products onto the superblocks
- in which $\operatorname{Rev}(\ldots)$ are reduced down to $\operatorname{Aut}(\ldots)$

$\operatorname{Id} \imath \operatorname{Aut}(\mathbb{Q})$

$\operatorname{Aut}(\mathbb{Q})$

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel) Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$
- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks
$\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{\text {orb }_{i}}\right)_{\text {orb }_{i}}\right]$ free algebra finitely generated by the orbits of the $H^{(i)}$'s

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks
$\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{\text {orb }_{i}}\right)_{\text {orb }_{i}}\right]$
free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks

$$
\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{o r b_{i}}\right)_{o r b_{i}}\right]
$$

free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)

- Fact: G acts by permutation on these generators

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks
$\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{o r b_{i}}\right)_{\text {orb }_{i}}\right]$
free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators
$\Rightarrow \mathcal{A}_{G}$ is the algebra of invariants of this finite action

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks
$\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{\text {orb }_{i}}\right)_{\text {orb }_{i}}\right]$
free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators
$\Rightarrow \mathcal{A}_{G}$ is the algebra of invariants of this finite action
- Hilbert's theorem:
\mathcal{A}_{G} finitely generated (and even Cohen-Macaulay)

Shape of the orbit algebra \mathcal{A}_{G}

- In K, totally independent superblocks (and kernel)

Linked to the simplicity of \mathfrak{S}_{∞} and $\operatorname{Aut}(\ldots)$, and the wreath products' being "too big, too free"
\Rightarrow direct product of the restrictions $K^{(i)}$
$\Rightarrow \mathcal{A}_{K}=\bigotimes_{i} \mathcal{A}_{K^{(i)}}$

- $K^{(i)}=H^{(i)} \imath \mathfrak{S}_{\infty}$ wreath product with finite blocks
$\Rightarrow \mathcal{A}_{K} \simeq \bigotimes_{i} \mathbb{Q}\left[\left(X_{\text {orb }_{i}}\right)_{\text {orb }_{i}}\right]$
free algebra finitely generated by the orbits of the $H^{(i)}$'s (plus some idempotents brought by the kernel)
- Fact: G acts by permutation on these generators
$\Rightarrow \mathcal{A}_{G}$ is the algebra of invariants of this finite action
- Hilbert's theorem:
\mathcal{A}_{G} finitely generated (and even Cohen-Macaulay)
Which end the proof of the conjectures!

Classification of P-oligomorphic groups

G_{0} a finite permutation group

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

$$
\begin{aligned}
& \text { - } \mathfrak{S}_{\infty} \\
& {\left[\begin{array}{ll}
0 & \mathfrak{S}_{\infty} \\
0 & \mathfrak{S}_{\infty} \\
1 & \mathfrak{S}_{\infty}
\end{array}\right.} \\
& \text { - } \quad \operatorname{Aut}(\mathbb{Q})
\end{aligned}
$$

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons

$$
\begin{aligned}
& 0 \\
& \mathfrak{S}_{\infty} \\
& {\left[\begin{array}{ll}
0 & \mathfrak{S}_{\infty} \\
0 & \mathfrak{S}_{\infty} \\
1 & \mathfrak{S}_{\infty}
\end{array}\right.} \\
& \text { - } \quad \operatorname{Aut}(\mathbb{Q})
\end{aligned}
$$

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right.} \\
& {\left[\begin{array}{ll}
B & \mathfrak{S}_{\infty} \\
0 & \mathfrak{S}_{\infty} \\
B & \mathfrak{S}_{\infty} \\
0 & \operatorname{Aut}(\mathbb{Q})
\end{array}\right.}
\end{aligned}
$$

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

2. One normal subgroup H of $H_{0}=G_{0 \mid B}$ for B in the orbit

Classification of P-oligomorphic groups

G_{0} a finite permutation group, \mathcal{B}_{0} a block system.
For each orbit of blocks, choose

1. One group of profile 1

- Has to be \mathfrak{S}_{∞} if the blocks are singletons
- Can alternatively be Id_{1} for at most one orbit of one block

2. One normal subgroup H of $H_{0}=G_{0 \mid B}$ for B in the orbit
G_{0}

Thank you for your attention!

Context

- G permutation group of a countably infinite set E
- Profile φ_{G} : counts the orbits of finite subsets of E
- Hypothesis: $\varphi_{G}(n)$ bounded by a polynomial
- Conjecture (Cameron): rational form of the generating series
- Conjecture (Macpherson): finite generation of the orbit algebra

Results

- Both conjectures hold !
- Classification of P-oligomorphic permutation groups
- The orbit algebra is an algebra of invariants (up to some idempotents)

The tower determines the group (1): "straight \mathfrak{S}_{∞} "
G contains a set of "straight" swaps of blocks

Subdirect product

Subdirect product of G_{1} and G_{2}

- Formalizes the synchronization between G_{1} and G_{2}
- Subgroup of $G_{1} \times G_{2}$ (with canonical projections G_{1} and G_{2})
- $E=E_{1} \sqcup E_{2}$ stable $\Rightarrow G$ subdirect product of $G_{\mid E_{1}}$ and $G_{\mid E_{2}}$

Synchronization in a subdirect product
Let $N_{1}=\operatorname{Fix}_{G}\left(E_{2}\right)$ and $N_{2}=\operatorname{Fix}_{G}\left(E_{1}\right)$.

$$
\frac{G_{1}}{N_{1}} \simeq \frac{G}{N_{1} \times N_{2}} \simeq \frac{G_{2}}{N_{2}}
$$

A subdirect product with explicit N_{i} 's is explicit.
Remark. N_{1} and N_{2} are normal in G_{1} and G_{2}, so the possibilities of synchronization of a group is linked to its normal subgroups.

The tower determines the group (2): Stab_{G} (blocks)
$\operatorname{Stab}_{G}($ blocks $)=\operatorname{explicit~subdirect~product~of~the~} H_{i}$

\leftarrow The tower
determines
$\operatorname{Stab}_{G}($ blocks $)$
$H_{0,1}=H_{0} H_{1} \quad H_{2} \quad H_{3} \quad H_{4} \quad H_{5} \quad H_{6} H_{7,1}=H_{7}$
$G \simeq \operatorname{Stab}_{G}($ blocks $) \rtimes$ "straight $\mathfrak{S}_{\infty} " \rightarrow$ Ok

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

$$
=0
$$

Example of a product in a finite case: back to \mathcal{C}_{5}

$$
=0+0
$$

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

Example of a product in a finite case: back to \mathcal{C}_{5}

In the end:

In the end:

Non trivial fact
Product well defined (and graded) on the space of orbits.

In the end:

Non trivial fact
Product well defined (and graded) on the space of orbits.
\longrightarrow The orbit algebra of a permutation group

Example : $G=\mathfrak{S}_{\infty} \swarrow \mathfrak{S}_{\infty}$ $\varphi_{G}(n)=?$

Example : $G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{\infty}$

$\varphi_{G}(n)=$?
An orbit of degree $n \longleftrightarrow$ a partition of n

Example : $G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{\infty}$

$\varphi_{G}(n)=$?
An orbit of degree $n \longleftrightarrow$ a partition of n

Example : $G=\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S } _ { \infty }}$

$\varphi_{G}(n)=?$
An orbit of degree $n \longleftrightarrow$ a partition of n

Example : $G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{\infty}$

$\varphi_{G}(n)=$
An orbit of degree $n \longleftrightarrow$ a partition of n

Example : $G=\mathfrak{S}_{\infty} \imath \mathfrak{S}_{\infty}$

$\varphi_{G}(n)=p(n)$
An orbit of degree $n \longleftrightarrow$ a partition of n

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=p_{3}(n)$.

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=p_{3}(n)$.
$A_{n}=$ homogeneous symmetric polynomials of degree n in x_{1}, x_{2}, x_{3}

Examples of orbit algebras (1)

Example 1
If $G=\mathfrak{S}_{\infty}, \varphi_{G}(n)=1$ for all n, and $\mathbb{Q} \mathcal{A}(G)=\mathbb{K}[x]$.
Example 2
$G=\mathfrak{S}_{\infty} \backslash \mathfrak{S}_{3}$, recall that $\varphi_{G}(n)=p_{3}(n)$.
$A_{n}=$ homogeneous symmetric polynomials of degree n in x_{1}, x_{2}, x_{3}

$\rightarrow \mathbb{Q} \mathcal{A}\left(\mathfrak{S}_{\infty} \mathfrak{\mathfrak { S }} 3\right)=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]^{\mathfrak{S}_{3}}$

Examples of orbit algebras (2)

More generally, for H subgroup of \mathfrak{S}_{m} :

- $G=\mathfrak{S}_{\infty}$ 〕 H :
$\mathbb{Q} \mathcal{A}(G)=\mathbb{K}\left[x_{1}, \ldots, x_{m}\right]^{H}$, the algebra of invariants of H
$\mathbb{Q} \mathcal{A}(G)$ is finitely generated by Hilbert's theorem.

- $G=H \imath \mathfrak{S}_{\infty}:$
$\mathbb{Q} \mathcal{A}(G)=$ the free algebra generated by the age of H

Direct product in the case of finite blocks

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

0°

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$\begin{array}{ll}0^{2} & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
$\left.\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots\end{array}\right)$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
$\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots\end{array}$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \\
& G^{\prime}=C_{3} \text { acting on (non empty) subsets } \\
& \mathbb{K}[x]^{G^{\prime}} \longleftrightarrow \text { Orbit algebra of } C_{3} \times \mathfrak{S}_{\infty} \text { ? }
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow \quad$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
ํ88288888888
$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$$
\begin{aligned}
& x_{\circ}+x_{\circ}^{\circ} \\
& \circ_{\circ} \\
& x_{\circ} \\
& \circ
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$$
\begin{aligned}
& x_{\circ}+x_{\circ}+x_{\circ} \\
& x_{\text {○ }}+x_{\circ}+x_{\circ}
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?
$\mathrm{O}\left(x_{8}\right)$
$\mathrm{O}\left(x_{\circ}{ }_{\circ}\right)$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$
\begin{aligned}
& \begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array} \\
& G^{\prime}=C_{3} \text { acting on (non empty) subsets } \\
& \mathbb{K}[x]^{G^{\prime}} \longleftrightarrow \text { Orbit algebra of } C_{3} \times \mathfrak{S}_{\infty} \text { ? } \\
& \mathrm{O}\left(x_{\mathrm{\circ}}\right) . \mathrm{O}\left(x_{\mathrm{8}}\right)
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &
\end{array} \\
& G^{\prime}=C_{3} \text { acting on (non empty) subsets } \\
& \mathbb{K}[x]^{G^{\prime}} \longleftrightarrow \text { Orbit algebra of } C_{3} \times \mathfrak{S}_{\infty} \text { ? }
\end{aligned}
$$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
แия
$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
แยห
$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
\%1\%
$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$\mathrm{O}\binom{\circ}{\circ} \cdot \mathrm{O}\binom{\circ}{\circ}$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$\mathrm{O}\binom{\circ}{\circ} \cdot \mathrm{O}\binom{\circ}{\circ}=\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$\mathrm{O}\left(\begin{array}{l}\circ \\ \circ \\ \circ\end{array}\right) \cdot \mathrm{O}\binom{\circ}{0}=\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)+\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3

$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$\mathrm{O}\left(\begin{array}{l}\circ \\ \circ \\ \circ\end{array}\right) \cdot \mathrm{O}\left(\begin{array}{l}\circ \\ \circ \\ 0\end{array}\right)=\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)+\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)+\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \circ\end{array}\right)$

Direct product in the case of finite blocks

Example 3
$C_{3} \times \mathfrak{S}_{\infty}$ acting on blocks of size 3
"
$G^{\prime}=C_{3}$ acting on (non empty) subsets
$\mathbb{K}[x]^{G^{\prime}} \longleftrightarrow$ Orbit algebra of $C_{3} \times \mathfrak{S}_{\infty}$?

$\mathrm{O}\left(\begin{array}{l}\circ \\ \circ \\ \circ\end{array}\right) \cdot \mathrm{O}\left(\begin{array}{l}\circ \\ \circ \\ \circ\end{array}\right)=\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \hline\end{array}\right)+\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \hline\end{array}\right)+\mathrm{O}\left(\begin{array}{ll}\circ & \circ \\ \circ & \circ \\ \hline\end{array}\right)+3 \mathrm{O}\binom{\circ}{\circ}$

The tower has shape $H_{0}, H, H, H \cdots$

Lemma to prove
G has tower $H_{0} H_{1} H_{2} H_{3} \Rightarrow H_{1}=H_{2}$
Proof.
An element $s \in G$ stabilizing the blocks \leftrightarrow a quadruple $g \in H_{1} \quad \rightarrow \quad \exists(1, g, h, k), \quad h, k \in H_{1}$.
Let σ be an element of G that permutes "straightforwardly" the first two blocks and fixes the other two.
Conjugation of x by σ in $G \quad \rightarrow \quad y=(g, 1, h, k)$
Then: $x^{-1} y=\left(g, g^{-1}, 1,1\right)$
By arguing that the tower does not depend on the ordering of the blocks, g^{-1} and therefore g are in H_{2}.

In the infinite case, apply to each restriction to four consecutive blocks of the fixator of the previous ones in G.

