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The n-Queens Problem

8 QZ0Z0Z0Z
7 Z0Z0L0Z0
6 0Z0Z0Z0L
5 Z0Z0ZQZ0
4 0ZQZ0Z0Z
3 Z0Z0Z0L0
2 0L0Z0Z0Z
1 Z0ZQZ0Z0

a b c d e f g h

This problem was first posed by a German
chess player in 1848.
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a b c d e f g h

This problem was first posed by a German
chess player in 1848.

Gauss (1777–1855) had knowledge of this
problem and found 72 solutions.
He claimed later that the total number of so-
lutions is 92.

The proof that there is no more solutions was
published in [E. Pauls, 1874].

The n-queens problem is a generalization of the above problem, consisting
of placing n non attacking queens on n × n chessboard.

E. Pauls also proved in 1874 that the n-queens problem has a solution for
every n ≥ 4.
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Chessboard and Queens’ Graph

Q(n) and Tn
Queen’s Graph, Q(n), associated to n×n chessboard Tn has n×n vertices,
corresponding to each square of the n × n chessboard.
Two vertices of Q(n) are adjacent if and only if they are in the same row
or column or diagonal of the chessboard.
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Chessboard and Queens’ Graph

Q(n) and Tn
Queen’s Graph, Q(n), associated to n×n chessboard Tn has n×n vertices,
corresponding to each square of the n × n chessboard.
Two vertices of Q(n) are adjacent if and only if they are in the same row
or column or diagonal of the chessboard.

The squares of Tn and the correspond-
ing vertices in Q(n) are labeled from
the left to the right and from the top
to the bottom. For instance, T4 is la-
belled as in the figure.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
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Queens’ Graph

1 2 3
4 5 6
7 8 9

Table: Tn - Chessboard
for n = 3.

1 2 3

4 5 6

7 8 9

Figure: Q(3) - Queen’s Graph for n = 3.
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Queens’ Graph

1 2 3
4 5 6
7 8 9

Table: Tn - Chessboard
for n = 3.

1 2 3

4 5 6

7 8 9

Figure: Q(3) - Queen’s Graph for n = 3.

Since two vertices are connected by an edge if and only if they are in the
same row, column or diagonal, we have

e(Q(n)) = 2(n+1)

(
n

2

)
+4

((
2

2

)
+ · · ·+

(
n − 1

2

))
=

n(n − 1)(5n − 1)

3
.
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Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of Q(n) can
be obtained from its structure.
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Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of Q(n) can
be obtained from its structure.

Let P = {Vi : i ∈ {1, 2, . . . , bn+1
2 c}} be a partition of V (Q(n)), such that

V1 is the subset of vertices corresponding to
the more peripheral squares of Tn;
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be obtained from its structure.

Let P = {Vi : i ∈ {1, 2, . . . , bn+1
2 c}} be a partition of V (Q(n)), such that

V1 is the subset of vertices corresponding to
the more peripheral squares of Tn;

V2 is the subset of vertices corresponding to
the more peripheral squares of Tn without V1;
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Combinatorial Properties

A closed formula, in terms of n, for the degrees of the vertices of Q(n) can
be obtained from its structure.

Let P = {Vi : i ∈ {1, 2, . . . , bn+1
2 c}} be a partition of V (Q(n)), such that

V1 is the subset of vertices corresponding to
the more peripheral squares of Tn;

V2 is the subset of vertices corresponding to
the more peripheral squares of Tn without V1;
. . .

Vb n+1
2
c is the subset of vertices corresponding

to the more peripheral squares of Tn without
V1 ∪ V2 ∪ · · · ∪ Vb n+1

2
c−1.
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Combinatorial Properties

Theorem

Considering the above partition of the vertices of Q(n) into,
V1,V2, . . . ,Vb n+1

2
c, the degrees of the vertices are

d(v) = 3(n − 1) + 2(i − 1), ∀v ∈ Vi ,∀i = 1, 2, . . . , bn + 1

2
c. (1)
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Combinatorial Properties

For all vertices v of Q(n),

3n − 3 = δ(Q(n)) ≤ d(v) ≤

{
4n − 5 if n is even,

4n − 4 otherwise.
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Combinatorial Properties

For all vertices v of Q(n),

3n − 3 = δ(Q(n)) ≤ d(v) ≤

{
4n − 5 if n is even,

4n − 4 otherwise.

Since e(Q(n)) = n(n−1)(5n−1)
3 , it follows that the average degree of Q(n) is

dQ(n) =
2e(Q(n))

n2
=

2(n − 1)(5n − 1)

3n
.
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Combinatorial Properties

Some combinatorial properties of Q(n) are immediate.
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Combinatorial Properties

Some combinatorial properties of Q(n) are immediate.

diam(Q(n)) = 2diam(Q(n)) = 2diam(Q(n)) = 2
The diameter of any Q(n) with n ≥ 3 is 2. Any square of the n × n
chessboard is achieved from any other square with a row movement
followed by a column movement.
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The diameter of any Q(n) with n ≥ 3 is 2. Any square of the n × n
chessboard is achieved from any other square with a row movement
followed by a column movement.

α(Q(n)) = n, n ≥ 4α(Q(n)) = n, n ≥ 4α(Q(n)) = n, n ≥ 4
The stability number of Q(n) is equal to n, for n ≥ 4, since every solution
of n-queens a maximum stable set.
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Some combinatorial properties of Q(n) are immediate.

diam(Q(n)) = 2diam(Q(n)) = 2diam(Q(n)) = 2
The diameter of any Q(n) with n ≥ 3 is 2. Any square of the n × n
chessboard is achieved from any other square with a row movement
followed by a column movement.

α(Q(n)) = n, n ≥ 4α(Q(n)) = n, n ≥ 4α(Q(n)) = n, n ≥ 4
The stability number of Q(n) is equal to n, for n ≥ 4, since every solution
of n-queens a maximum stable set.

ω(Q(n)) = n, n ≥ 5ω(Q(n)) = n, n ≥ 5ω(Q(n)) = n, n ≥ 5
Since all the vertices of a row (column or any of the two larger diagonals)
produce a maximum clique with size n, for n ≥ 5.
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Combinatorial Properties

The domination number of Queens’
Graph, γ (Q(n)), is the most studied
problem about combinatorial proper-
ties of this graph.

Some values of γ (Q(n)) are already
known but the problem remains open.

8 QZ0Z0Z0Z
7 Z0Z0Z0Z0
6 0ZQZ0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZQZ0Z
3 Z0Z0ZQZ0
2 0Z0Z0ZQZ
1 Z0Z0Z0Z0

a b c d e f g h

n 1 2 3 4 5 6 7 8 9 10 11 12 13

γ (Q(n)) 1 1 1 2 3 3 4 5 5 5 5 6 7
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Spectral Properties

The spectrum of the adjacency matrix of Q(n) is the multiset σ(Q(n)) =

{µ[m1]
1 , . . . , µ

[mp ]
p }, where µ1 > · · · > µp are the p distinct eigenvalues and

mi is the multiplicity of the eigenvalues µi for i = 1, . . . , p. When necessary
these eigenvalues are also denote by µ1(Q(n)), . . . , µp(Q(n)).
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p }, where µ1 > · · · > µp are the p distinct eigenvalues and

mi is the multiplicity of the eigenvalues µi for i = 1, . . . , p. When necessary
these eigenvalues are also denote by µ1(Q(n)), . . . , µp(Q(n)).

As it is well known, the largest eigenvalue of a graph G is between its average
degree, dG , and its maximum degree, ∆(G ).
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Spectral Properties

The spectrum of the adjacency matrix of Q(n) is the multiset σ(Q(n)) =

{µ[m1]
1 , . . . , µ

[mp ]
p }, where µ1 > · · · > µp are the p distinct eigenvalues and

mi is the multiplicity of the eigenvalues µi for i = 1, . . . , p. When necessary
these eigenvalues are also denote by µ1(Q(n)), . . . , µp(Q(n)).

As it is well known, the largest eigenvalue of a graph G is between its average
degree, dG , and its maximum degree, ∆(G ).

Therefore, we may conclude

2(n − 1)(5n − 1)

3n
= dQ(n) ≤ µ1(Q(n)) ≤ ∆(Q(n)) =

{
4n − 5, if n is even,

4n − 4, otherwise.
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Spectral Properties

In this section, the n2 entries of vec-
tors are displayed in the n×n chess-
board in the same sequence as the
labelling of the vertices in the last
section.
Therefore an entry of a vector is ref-
erenced by the chessboard coordi-
nates, i.e., v(i , j) with (i , j) ∈ [n]2.

v =



2
4
6
8

10
12
14
16
18



1 2 3
1 2 4 6
2 8 10 12
3 14 16 18

Table: Vector v
displayed on 3 × 3
chessboard with the
coordinates indi-
cated on the outside
of the chessboard.
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Spectral Properties

Spectrum of Queens’ Graph, σ(Q(n)).

n σ(Q(n))

2 {3,−1[3]}

3 {5+
√
57

2 , 1, (−1 +
√

2)[2],−1[2], 5+
√
57

2 , (−1−
√

2)[2]}

4 {9.6, 1.8[2], 1.7, 1.3, 0.5[2], 0,−0.4,−0.8,−1.5[2],−2.8[2], 3.3,−4}
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Spectral Properties

Spectrum of Queens’ Graph, σ(Q(n)).

n σ(Q(n))

2 {3,−1[3]}

3 {5+
√
57

2 , 1, (−1 +
√

2)[2],−1[2], 5+
√
57

2 , (−1−
√

2)[2]}

4 {9.6, 1.8[2], 1.7, 1.3, 0.5[2], 0,−0.4,−0.8,−1.5[2],−2.8[2], 3.3,−4}

From the computations, we detected some similarities in the spectrum of
Q(n) for different values of n.
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Spectral Properties

In the table below, the distinct integer eigenvalues are presented for Q(n)
when 4 ≤ n ≤ 11.

n Distinct integer eigenvalues

4 -4, 0

5 -4, -3, 0, 1

6 -4, 2

7 -4, -3, -2, 1, 2, 3

8 -4, 4

9 -4, -3, -2, -1, 2, 3, 4, 5

10 -4, 6

11 -4, -3, -2, -1, 0, 3, 4, 5, 6, 7

Conjecture:
if n is even -4, n − 4

if n is odd {−4,−3, . . . , n−112 } ∪ {
n−5
2 , . . . , n − 5, n − 4}
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Spectral Properties

Lemma

Let X = x(i ,j) ∈ Rn2 be an eigenvector of AQ(n) associated with the
eigenvalue µ. Then

(µ+ 4) ||X ||2 =
n∑

k=1

 n∑
j=1

x(k,j)
2

+
n∑

k=1

(
n∑

i=1

x(i ,k)
2

)
+

+
2n∑
k=2

 ∑
i+j=k

x(i ,j)
2

+
n−1∑

k=−(n−1)

 ∑
i−j=k

x(i ,j)
2

 .
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Spectral Properties

As a corollary of this lemma, we have the following result.

Theorem

If µ is an eigenvalue of AQ(n), then µ ≥ −4.

This lower bound is not attained for n = 1, 2, 3 but for n ≥ 4, -4 is a
eigenvalue of Q(n) with multiplicity (n − 3)2, as it will stated later.
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Spectral Properties

Let X4 be the vector represented bellow.

0 1 -1 0

-1 0 0 1
1 0 0 -1
0 -1 1 0

We define a new family of vectors, Fn = {X (a,b)
n ∈ Rn2 : (a, b) ∈ [n− 3]2},

for n ≥ 4, where

[
X

(a,b)
n

]
(i ,j)

=

{[
X4

]
(i−a+1,j−b+1)

, if (i , j) ∈ A× B

0, otherwise.

where A = {a, a + 1, a + 2, a + 3} and B = {b, b + 1, b + 2, b + 3}.
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Spectral Properties

F5

0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0
0 0 0 0 0

Table: X
(1,1)
5

0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0
0 0 0 0 0

Table: X
(1,2)
5

0 0 0 0 0
0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0

Table: X
(2,1)
5

0 0 0 0 0
0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0

Table: X
(2,2)
5
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Spectral Properties

Theorem

For n ≥ 4, -4 is an eigenvalue of Q(n) with multiplicity (n − 3)2.
Futhermore, Fn is a basis for EQ(n)(−4).

F5

0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0
0 0 0 0 0

Table: X
(1,1)
5

0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0
0 0 0 0 0

Table: X
(1,2)
5

0 0 0 0 0
0 1 -1 0 0
-1 0 0 1 0
1 0 0 -1 0
0 -1 1 0 0

Table: X
(2,1)
5

0 0 0 0 0
0 0 1 -1 0
0 -1 0 0 1
0 1 0 0 -1
0 0 -1 1 0

Table: X
(2,2)
5
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Spectral Properties

Definition

We define row vector Ri , column vector Cj , sum vector Sa and difference
vector Da of dimension n2 for some n ∈ N as

Ri (x , y) =

{
1, if x = i

0, otherwise.
Cj(x , y) =

{
1, if y = j

0, otherwise.

Sa(x , y) =

{
1, if x + y = a

0, otherwise.
Da(x , y) =

{
1, if x − y = a

0, otherwise.

(2)

0 0 0
0 0 0
1 1 1

Table: R3.

0 1 0
0 1 0
0 1 0

Table: C2.

0 1 0
1 0 0
0 0 0

Table: S3.

1 0 0
0 1 0
0 0 1

Table: D0.
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Spectral Properties

Theorem

n-4 is eigenvalue of Q(n), for n ≥ 4, with multiplicity at least n−2
2 if n even

and n+1
2 if n odd.

Futhermore, {Y n
i = Ci + Cn−i+1 − Ri − Rn−i+1 : i ∈ {2, . . . , n−22 }} and

{Y n
i = Ci +Cn−i+1−Ri −Rn−i+1 : i ∈ {2, . . . , n+1

2 }}∪ {Z
n = D0−Sn+1}

are sets of linearly independent vectors of EQ(n) (n − 4) when n is even and
n is odd, respectively.
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Equitable partitions

Definition[Equitable partition]

Given a graph G , the partition V (G ) = V1∪̇V2∪̇ . . . ∪̇Vk is an equitable
partition if every vertex in Vi has the same number of neighbours in Vj ,
for all i , j ∈ {1, 2, . . . , k}. An equitable partition of V (G ) is also called
equitable partition of G and the vertex subsets V1,V2, . . . ,Vk are called
the cells of the equitable partition.
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for all i , j ∈ {1, 2, . . . , k}. An equitable partition of V (G ) is also called
equitable partition of G and the vertex subsets V1,V2, . . . ,Vk are called
the cells of the equitable partition.

Every graph has a trivial equitable partition, in which each cell is a
singleton.
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Equitable partitions

Definition[Equitable partition]

Given a graph G , the partition V (G ) = V1∪̇V2∪̇ . . . ∪̇Vk is an equitable
partition if every vertex in Vi has the same number of neighbours in Vj ,
for all i , j ∈ {1, 2, . . . , k}. An equitable partition of V (G ) is also called
equitable partition of G and the vertex subsets V1,V2, . . . ,Vk are called
the cells of the equitable partition.

Every graph has a trivial equitable partition, in which each cell is a
singleton.

Definition [Divisor (or quociente) matrix]

Considering that π is an equitable partition V (G ) = V1∪̇V2∪̇ . . . ∪̇Vk and
that each vertex in Vi has bij neighbors in Vj (for all i , j ∈ {1, 2, . . . , k}),
the matrix Bπ = (bij) is called the divisor (or quociente) matrix of π.
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Equitable partitions

Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010]

Let G be a graph with adjacency matrix A and let π be a partition of
V (G ) with characteristic matrix C .

1 If π is equitable, with divisor matrix B, then AC = CB.

2 The partition π is equitable if and only if the column space of C is
A-invariante.

3 The characteristic polynomial of the divisor matrix of any equitable
partition of G divides its characteristic polynomial.
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Labeling the vertices according to the cell they belong

Considering n ≥ 3, let us assign to the squares of the chessboard Tn, corre-
sponding to the vertices of Q(n), the numbers of the cells they belong.
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Labeling the vertices according to the cell they belong

Considering n ≥ 3, let us assign to the squares of the chessboard Tn, corre-
sponding to the vertices of Q(n), the numbers of the cells they belong.
Therefore, the squares belonging to the same cell have the same number.
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Labeling the vertices according to the cell they belong

Considering n ≥ 3, let us assign to the squares of the chessboard Tn, corre-
sponding to the vertices of Q(n), the numbers of the cells they belong.
Therefore, the squares belonging to the same cell have the same number.

Labeling procedure (Part I)

We start labeling one square of each cell as follows.

(1) Assign to the first square (the top left square) the number 1;

(2) Assign to the first and second square of the second column (from the
top to bottom) the numbers 2 and 3;
...

(dn2e) Assign to the first dn2e squares of the dn2e-th column (from top to

bottom) the numbers
∑d n

2
e−1

j=1 j + 1, . . . ,
(d n

2
e+1)d n

2
e

2 .
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Example

Application of the procedure (Part I) to the 6× 6 chessboard

1 2 4
3 5

6
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Labeling the vertices according to the cell they belong

From the abobe assignment, we get a right triangle of squares assigned to
the numbers 1, 2, . . . , (dn/2e+1)dn/2e

2 .
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Labeling the vertices according to the cell they belong

From the abobe assignment, we get a right triangle of squares assigned to
the numbers 1, 2, . . . , (dn/2e+1)dn/2e

2 .

Labeling procedure (Part II)

The remainder vertices of each cell are obtained by reflections, as follows.

1 We reflect the obtained triangle using the vertical cathetus of the trian-
gle as the mirror line and after this reflection we have two right triangles
sharing the same vertical line.

2 Then we reflect both triangles each one using its hypotenuse as the
mirror line.

3 After the above reflections all the squares in the top dn2e lines are
assigned with the numbers of the cells they belong.

4 Finally we reflect the rectangle formed by the the upper bn2c lines taking
as the mirror line the horizontal middle line of the chessboard and after
that all the squares become assigned to the numbers of their cells.
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Example

Application of the procedure (Part I and Part II) to the 6× 6
chessboard

1 2 4 4 2 1
2 3 5 5 3 2
4 5 6 6 5 4
4 5 6 6 5 4
2 3 5 5 3 2
1 2 4 4 2 1
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A couple of consequences

As immediate consequence of the above procedure we have the following
results.
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A couple of consequences

As immediate consequence of the above procedure we have the following
results.

Every queens graphs Q(n), with n ≥ 3, has an equitable partition with(
dn2e
) (
dn2e+ 1

)
2

cells.
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A couple of consequences

As immediate consequence of the above procedure we have the following
results.

Every queens graphs Q(n), with n ≥ 3, has an equitable partition with(
dn2e
) (
dn2e+ 1

)
2

cells.

Considering the divisor matrix B of the obtained equitable partition and
applying Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] it follows
that the eigenvalues of B with its respective multiplicities are eigenvalues
of the adjacency matrix of Q(n).
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Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the
above example
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Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the
above example

Divisor matrix B of the obtained equitable partition for Q(6)

B =



3 4 1 4 0 2
2 4 2 2 4 1
2 4 3 2 4 2
2 2 1 4 4 2
0 4 2 4 4 3
2 2 1 4 6 3


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Example

Application of Theorem[D. Cvetković, P. Rowlinson, S. Simić, 2010] to the
above example

Divisor matrix B of the obtained equitable partition for Q(6)

B =



3 4 1 4 0 2
2 4 2 2 4 1
2 4 3 2 4 2
2 2 1 4 4 2
0 4 2 4 4 3
2 2 1 4 6 3


Characteristic polynomial of the divisor matrix B

p(x) = x6 − 21x5 + 77x4 + 89x3 − 690x2 + 720x − 245.
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Open Problems

We have some conjectures about the remaining integer eigenvalues, their
multiplicities and eigenvectors of Q(n), when n ≥ 4, as follows
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Open Problems

We have some conjectures about the remaining integer eigenvalues, their
multiplicities and eigenvectors of Q(n), when n ≥ 4, as follows

there is no other integer eigenvalues distinct from -4 and n − 4, for n
even;
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Open Problems

We have some conjectures about the remaining integer eigenvalues, their
multiplicities and eigenvectors of Q(n), when n ≥ 4, as follows

there is no other integer eigenvalues distinct from -4 and n − 4, for n
even;

−3, −2, . . ., n−11
2 , n−5

2 , . . ., n − 6, n − 5 are simple eigenvalues for n
odd;
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Open Problems

We have some conjectures about the remaining integer eigenvalues, their
multiplicities and eigenvectors of Q(n), when n ≥ 4, as follows

there is no other integer eigenvalues distinct from -4 and n − 4, for n
even;

−3, −2, . . ., n−11
2 , n−5

2 , . . ., n − 6, n − 5 are simple eigenvalues for n
odd;

there is no other integer eigenvalues distinct from −4, −3, . . ., n−11
2 ,

n−5
2 , . . ., n − 5, n − 4 for n odd.
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