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GENERALIZED MATRIX POLYNOMIALS OF TREE LAPLACIANS INDEXED BY
SYMMETRIC FUNCTIONS AND THE GTS POSET

MUKESH KUMAR NAGAR AND SIVARAMAKRISHNAN SIVASUBRAMANIAN

ABSTRACT. Let T be a tree on n vertices with Laplacian matrix LT and q-Laplacian LqT . Let
GTSn be the generalized tree shift poset on the set of unlabelled trees on n vertices. Inequalities
are known between coefficients of the immanantal polynomial of LT and LqT as one moves up the
poset GTSn. Using the Frobenius characteristic, this can be thought as a result involving the Schur
symmetric function sλ. In this paper, we use an arbitrary symmetric function to define a generalized
matrix function of an n×n matrix. When the symmetric function is the monomial and the forgotten
symmetric function, we generalize such inequalities among coefficients of the generalized matrix
polynomial of LqT as one moves up the GTSn poset.

1. INTRODUCTION

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn denote the symmetric group on the
set [n]. We denote partitions λ of the number n as λ ` n. We write partitions using the exponential
notation, with multiplicities of parts written as exponents. For λ ` n, let χλ be the irreducible
character of Sn over C indexed by λ. We think of χλ as a function χλ : Sn 7→ Z. With respect to
an irreducible character χλ, define the immanant of the n× n matrix A = (ai,j)1≤i,j≤n as

(1) dλ(A) =
∑
ψ∈Sn

χλ(ψ)
n∏
i=1

ai,ψ(i).

Let Λn
Q denote the vector space of degree n symmetric functions with coefficients from Q. The

set of monomial symmetric functions {mλ}λ`n is one of the well known bases of Λn
Q. We refer the

reader to the books by Stanley [14] and by Mendes and Remmel [9] for background on symmetric
functions. Λn

Q actually has an inner product structure as well. Another inner product space often
studied is CFn, the space of class functions from Sn 7→ Q. Further, there is a well known isometry
between these two spaces called the Frobenius characteristic, denoted ch : CFn → Λn

Q (see Stanley
[14] for more details).

Let γ ∈ Λn
Q and consider Γγ = ch−1(γ) its inverse Frobenius image. Clearly, Γγ ∈ CFn is a

class function indexed by γ. Define the generalized matrix function (GMF henceforth) of an n×n
matrix A with respect to γ as

(2) dγ(A) =
∑
ψ∈Sn

Γγ(ψ)
n∏
i=1

ai,ψ(i).
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Define the generalized matrix polynomial ζAγ (x) of A in a new variable x with respect to a
symmetric function γ as follows: ζAγ (x) = dγ(xI−A). It is well known that the inverse Frobenius
image ch−1(sλ) of the Schur symmetric function sλ is χλ, the irreducible character of Sn over C
indexed by λ (see [14]). Thus, from (1) and (2), we can see that dsλ(A) = dλ(A) and ζAsλ(x) =
dλ(xI − A).

Csikvári in [5] defined a poset on the set of unlabelled trees with n vertices that we denote
in this paper as GTSn. Among other results, he showed that if one moves up along the GTSn
poset, all coefficients of the characteristic polynomial of the Laplacian matrix LT of a tree T
decrease in absolute value. This result was generalized by Nagar and Sivasubramanian in [12] to
immanantal polynomials of LqT indexed by any λ ` n, where LqT is the q-Laplacian matrix of T
(see Theorem 7).

Let R+ denote the set of non-negative real numbers and R+[q2] denote the set of polynomials in
q2 with coefficients in R+. Letmλ ∈ Λn

Q be the monomial symmetric function indexed by λ ` n. In
Section 4 of this paper, we prove the following result which shows monotonicity of the coefficient
of (−1)rxn−r for 0 ≤ r ≤ n in ζL

q
T

mλ(x) when we move up along GTSn.

Theorem 1. Let T1 and T2 be two trees with n vertices such that T2 covers T1 in GTSn. Let LqT1
and LqT2 be the q-Laplacians of T1 and T2 respectively. For λ ` n, let

ζ
LqT1
mλ (x) = dmλ(xI − LqT1) =

n∑
r=0

(−1)rc
LqT1
mλ,r(q)x

n−r and

ζ
LqT2
mλ (x) = dmλ(xI − LqT2) =

n∑
r=0

(−1)rc
LqT2
mλ,r(q)x

n−r.

Then for all λ ` n, we have c
LqT1
mλ,r(q) − c

LqT2
mλ,r(q) ∈ R+[q2], where 0 ≤ r ≤ n. Further if

λ 6= 2k, 1n−2k ` n, then, dmλ(xI − LqT1) = dmλ(xI − LqT2) = 0.

Recall that for γ ∈ Λn
Q, Γγ = ch−1(γ). For the proof of Theorem 1, we show the following

lemma involving Γmλ = ch−1(mλ) and binomial coefficients. Let Γγ(j) denote the class function
Γγ(·) evaluated at a permutation ψ ∈ Sn with cycle type 2j, 1n−2j . For 0 ≤ i ≤ bn/2c, define

(3) αi(γ) =
i∑

j=0

(
i

j

)
Γγ(j).

In Section 4, we prove the following lemma which we believe is of independent interest.

Lemma 2. For all λ ` n and for 0 ≤ i ≤ bn/2c, αi(mλ) = 2i if λ = 2i, 1n−2i and 0 otherwise.

In Section 5 we consider the generalized matrix polynomial of LqT with respect to the forgot-
ten symmetric function. Our main result of that section is Theorem 20, where we show similar
monotonicity results as we move on the GTSn poset.
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2. PRELIMINARIES

We now give some motivational background for our results and place it in its context. The

normalized immanant of a matrix A corresponding to a partition λ is defined as dλ(A) =
dλ(A)

χλ(id)
.

Here, χλ(id) equals the dimension of the irreducible representation of Sn over C indexed by λ.
Schur [13] showed that among normalized immanants, the determinant is the smallest normal-

ized immanant for any positive semidefinite Hermitian matrix. This shows that for any positive
semidefinite Hermitian matrix A, all its normalized immanants (and hence immanants) are non-
negative. Though the immanant dλ(A) is non-negative, (1) is not a non-negative expression for
dλ(A) as χλ(ψ)

∏n
i=1 ai,ψ(i) is not necessarily non-negative for all ψ ∈ Sn that contribute to dλ(A).

Recall that the Laplacian matrix LG of a graph G is defined as LG = D − A, where D is
the diagonal matrix with degrees of G on the diagonal and A is the adjacency matrix of G. It is
well known that LG is positive semidefinite for all graphs G (see [8]). When the matrix A is the
Laplacian LT of a tree T , then Chan and Lam in [4] gave the following two results which give an
alternate positive expression for the immanant dλ(LT ).

We denote the number of parts of a partition λ of n as l(λ). For λ ` n, let χλ(j) denote the
character value χλ(·) evaluated at a permutation ψ ∈ Sn with cycle type 2j, 1n−2j . For 0 ≤ i ≤
bn/2c and λ ` n, define

(4) αi,λ =
i∑

j=0

(
i

j

)
χλ(j).

Lemma 3 (CHAN AND LAM, [3]). For all λ ` n and for 0 ≤ i ≤ bn/2c, the quantity αi,λ is
a non-negative integral multiple of 2i. Moreover for 1 ≤ i ≤ bn/2c, αi,λ = 0 if and only if
l(λ) > n− i.

Theorem 4 (CHAN AND LAM, [4]). Let LT be the Laplacian matrix of a tree T on n vertices.
Then, for all λ ` n, dλ(LT ) =

∑bn/2c
i=0 αi,λai(T ), where ai(T ) equals the number of vertex orien-

tations with exactly i bidirected edges (and is hence a non-negative integer for all i).

Lemma 3 and Theorem 4 make it clear that all immanants of LT are non-negative. Similar
results are known for the q-Laplacian of T (see Theorem 5). Define LqG = I + q2(D − I) − qA
as the q-Laplacian of a graph G, where D and A are as before and I is the identity matrix. Here q
is a variable. It is easy to see that setting q = 1 in LqG gives us the usual combinatorial Laplacian
LG. The matrix LqG has appeared in the contexts of Ihara–Selberg zeta functions of graphs G (see
Bass [2] and Foata and Zeilberger [7]). When the graph G is a tree T , LqT has connections with the
inverse of the exponential distance matrix of T (see Bapat, Lal and Pati [1] and Nagar [10]). Nagar
and Sivasubramanian in [11] gave the following q-analogue of Theorem 4 involving LqT . To state
it, we need a q-analogue of the term ai(T ). We describe it briefly and refer the reader to [11] for
more details. Let Oi(T ) denote the set of vertex orientations in T with i bidirected edges, and let
ai(T ) = |Oi(T )|. A statistic Lexaway : Oi(T ) 7→ Z≥0 was defined in [11]. Using it, when i ≥ 1,
the following q-analogue ai(T, q) of ai(T ) was defined (see [11, Corollary 9]):

(5) ai(T, q) =
∑
O∈Oi

qLexaway(O).
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In [11], we had also defined a0(T, q) = 1 − q2. It turns out that for all i ≥ 0, the ai(T, q)
is a polynomial in q2 (see [11, Remark 15]). With this definition, we can state a q-analogue of
Theorem 4.

Theorem 5 (NAGAR AND SIVASUBRAMANIAN). Let LqT be the q-Laplacian matrix of a tree T on
n vertices. Then, for all λ ` n, dλ(LqT ) =

∑bn/2c
i=0 αi,λai(T, q), where the ai(T, q) is defined in (5).

Clearly, setting q = 1 in LqT gives LT and setting q = 1 in ai(T, q) gives ai(T ) for i with
0 ≤ i ≤ bn/2c. Extensions of Theorem 5 to the bivariate q, t-Laplacian denoted as Lq,tT were also
given in [11]. Later, in [12], the following more general result about the coefficient of (−1)rxn−r

in the immanantal polynomial dλ(xI−LqT ) was proved. To state it, we need polynomials ai,r(T, q)
which generalize ai(T, q). Let B ⊂ V (T ) be a subset of the vertex set of T with |B| = r, where
r ≤ n. Let OTB,i be the set of vertex orientations of vertices in B that have i bidirected edges.
There is a statistic AwTB : OTB,i 7→ Z≥0 with respect to which we define

(6) ai,r(T, q) =
∑

B⊆V (T ),|B|=r

∑
O∈OTB,i

qAw(
T
B(O).

With this definition, we have the following [12, Lemma 7, Corollary 12].

Lemma 6 (NAGAR AND SIVASUBRAMANIAN). Let T be a tree on n vertices with q-Laplacian
LqT . For λ ` n, let dλ(xI − LqT ) =

∑n
r=0(−1)rc

LqT
λ,r(q)x

n−r. Then for 0 ≤ r ≤ n, we have

c
LqT
λ,r(q) =

∑br/2c
i=0 αi,λai,r(T, q).

In Lemma 6, one can get the immanant dλ(LTq ) as the constant term of the immanantal polyno-
mial (that is, by looking at the special case when r = n). Thus, Lemma 6 generalizes Theorem 5.
Using Lemma 6, the following result about monotonicity for the coefficients of all immanantal
polynomials of LqT along GTSn was proved in [12, Theorem 1].

Theorem 7 (NAGAR AND SIVASUBRAMANIAN). Let T1 and T2 be two trees with n vertices such
that T2 covers T1 in GTSn. Let LqT1 and LqT2 be the q-Laplacians of T1 and T2 respectively. For
λ ` n, let

ζ
LqT1
sλ (x) = dλ(xI − LqT1) =

n∑
r=0

(−1)rc
LqT1
λ,r (q)xn−r and

ζ
LqT2
sλ (x) = dλ(xI − LqT2) =

n∑
r=0

(−1)rc
LqT2
λ,r (q)xn−r.

Then for all λ ` n, we have c
LqT1
λ,r (q)− c

LqT2
λ,r (q) ∈ R+[q2], where 0 ≤ r ≤ n.

The proof of Theorem 7 required to give a combinatorial expression for the coefficients c
LqT1
λ,r (q)

and c
LqT2
λ,r (q) (see Lemma 6) and then to give an injection between the objects counting c

LqT2
λ,r (q) and

those counting c
LqT1
λ,r (q) (see Lemma 11).
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3. GMF OF q-LAPLACIANS ARISING FROM SYMMETRIC FUNCTIONS

Let Γγ = ch−1(γ) be the inverse Frobenius image of the symmetric function γ ∈ Λn
Q. Note that

Γγ is a class function of Sn over C indexed by γ. Plugging the matrix LqT = (lqi,j)1≤i,j≤n in (2), we
get

(7) dγ(LqT ) =
∑
ψ∈Sn

Γγ(ψ)
n∏
i=1

lqi,ψ(i).

For the matrix LqT , it is very easy to show the following counterpart of Theorem 5, where we
change the Frobenius inverse of the Schur symmetric function to the Frobenius inverse of an arbi-
trary symmetric function. We recall the polynomial ai(T, q) from (5) and αi(γ) from (3). We start
with the following result. As its proof is a verbatim copy of the proof of Theorem 5, with the only
change being that we replace αi,λ by αi(γ), we omit it.

Theorem 8. Let LqT be the q-Laplacian matrix of a tree T on n vertices. Then, for all γ ∈ Λn
Q,

dγ(LqT ) =
∑bn/2c

i=0 αi(γ)ai(T, q).

It is very simple to show the following counterpart of Lemma 6. Recall the polynomial ai,r(T, q)
from (6). Since the proof is identical, we omit it and merely state the result.

Lemma 9. Let T be a tree on n vertices with q-Laplacian LqT . Then for all γ ∈ Λn
Q, we have

dγ(xI − LqT ) =
∑n

r=0(−1)rc
LqT
γ,r(q)xn−r, where cL

q
T

γ,r(q) =
∑br/2c

i=0 αi(γ)ai,r(T, q) for 0 ≤ r ≤ n.

Every element γ ∈ Λn
Q is written as a linear combination of basis vectors of Λn

Q. The vector
space Λn

Q has six standard bases. We use standard terminology to denote each of the usual bases
of Λn

Q. Thus, sλ, pλ, eλ, hλ, mλ and fλ denote the Schur, power sum, elementary, homogeneous,
monomial and forgotten symmetric functions respectively. The inverse Frobenius map of each of
these will be denoted by the same letter, but in capital font and with the partition λ as a superscript
rather than a subscript. Thus, Eλ = ch−1(eλ), χλ = Sλ = ch−1(sλ) and so on.

As mentioned earlier, the inverse Frobenius image ch−1(sλ) of the Schur symmetric function sλ
is χλ, the irreducible character of Sn over C indexed by λ. Therefore the identity given in (4) is a
special case of the identity given in (3) when γ = sλ. Thus, if any symmetric function γ ∈ Λn

Q is
Schur-positive (that is, γ =

∑
λ`n aλsλ where aλ ∈ R+ for all λ ` n), then, by linearity, Lemma 3

will be true with χλ replaced by ch−1(γ) in (4). Unfortunately, the monomial symmetric function
mλ indexed by λ is not Schur-positive. Thus, if Mλ = ch−1(mλ), it is not clear that Lemma 3 with
χλ replaced by Mλ in (4) is true.

For γ ∈ Λn
Q, let Γγ = ch−1(γ). Thus, if Γγ(j) ≥ 0 for all j, then from (3), we get αi(γ) ≥ 0.

Since the inverse Frobenius image Γpλ of pλ is a scalar multiple of the indicator function of the
conjugacy class Cλ indexed by λ (see [14]), it follows that αi(pλ) ≥ 0 for all λ ` n and for all
i = 0, 1, . . . , bn/2c.

As mentioned earlier, if γ ∈ Λn
Q is Schur-positive, then αi(γ) ≥ 0. Since hλ is Schur-positive

(see [14, Corollary 7.12.4]), it follows from Lemma 3 that αi(hλ) ≥ 0 for all λ ` n. Similarly, it
is well known that eλ is also Schur-positive. Thus αi(eλ) ≥ 0 for all λ ` n. We record these facts
below for future use.

Lemma 10. For all λ ` n and for 0 ≤ i ≤ bn/2c, we have αi(γ) ≥ 0 for γ ∈ {pλ, hλ, eλ}.
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Let the tree T have n vertices and, for 0 ≤ i, r ≤ n, let ai,r(T, q) = aTi,r(q) be the polynomial
in q2 with non-negative real coefficients, defined by Nagar and Sivasubramanian in [12, page 7].
They showed the following result (see [12, Lemma 19, 23 and Corollary 22]).

Lemma 11 (NAGAR AND SIVASUBRAMANIAN). Let T1 and T2 be two trees with n vertices such
that T2 covers T1 in GTSn. Then for all 0 ≤ i, r ≤ n, we have ai,r(T1, q)− ai,r(T2, q) ∈ R+[q2].

With Lemma 10 and Lemma 11 in place, we can get the following Corollary. Its proof mimics
the proof of Theorem 7.

Corollary 12. Theorem 7 is true when we replace the immanantal polynomial dλ(xI−LqTj) by the
generalized matrix polynomials dγ(xI − LqTj) for γ ∈ {pλ, hλ, eλ} and for j = 1, 2.

By Theorem 7 and Corollary 12, we thus have monotonicity results about four of the six standard
bases, as we move up on GTSn. This paper plugs the gaps left by considering the generalized
matrix polynomials of LqT arising from the last two bases mλ and fλ. In other words, we consider
the cases when we replace the immanantal polynomial dλ(xI − LqTj) by dg(xI − LqTj) when g ∈
{mλ, fλ} in Theorem 7.

4. GMF OF TREE LAPLACIANS ARISING FROM mλ, THE MONOMIAL SYMMETRIC FUNCTION

We prove Theorem 1 in this section. We need the notion of λ-brick tabloids of shape µ which is
used to give a combinatorial interpretation of the quantity Γmλ(ψ) = Mλ(ψ), where λ, µ ` n and
ψ ∈ Sn. We recall the following definition of λ-brick tabloid of shape µ defined by Eğecioğlu and
Remmel in [6].

Definition 13. Let λ ` n with λ = λ1 ≥ λ2 ≥ · · · ≥ λl(λ). Let µ ` n and let Fµ be its Ferrers
diagram. A λ-brick tabloid Bλ,µ of shape µ is a filling of Fµ with bricks b1, b2, . . . , bl(λ) of size
λ1, λ2, . . . , λl(λ) respectively such that brick bi covers exactly λi squares of Fµ all of which lie in a
single row of Fµ and no two bricks overlap. Here, bricks of the same size are indistinguishable.

We refer the reader to the book by Mendes and Remmel [9, Chapter 2] for an introduction to
λ-brick tabloids. Given a brick b in Bλ,µ, let |b| denote the length of b. Define wtBλ,µ(b) to be |b| if
b is at the end of a row in Bλ,µ and 1 otherwise. We next define a weight w(Bλ,µ) for each λ-brick
tabloid Bλ,µ of shape µ as follows:

w(Bλ,µ) =
∏

b∈Bλ,µ

wtBλ,µ(b).

In other words, w(Bλ,µ) is the product of the lengths of the rightmost brick in each row of
Bλ,µ. For λ, µ ` n, let BTλ,µ be the set of all λ-brick tabloids of shape µ. For λ ` n and for
ψ ∈ Sn, Eğecioğlu and Remmel in [6, Theorem 1] gave the following combinatorial interpretation
of Mλ(ψ) which we need.

Theorem 14 (EĞECIOĞLU AND REMMEL). For λ ` n, let Mλ = ch−1(mλ). When a permutation
ψ ∈ Sn has cycle type µ, then

Mλ(ψ) = (−1)l(λ)−l(µ)
∑

Bλ,µ∈BTλ,µ

w(Bλ,µ).
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We say λ is a refinement of µ if the parts µi of µ can be obtained as a disjoint union of the
parts λj of λ. From the definition of Bλ,µ, it is easy to see that if λ is not a refinement of µ, then
BTλ,µ = ∅. Thus Mλ(ψ) = 0, unless when λ refines the cycle type µ of ψ. Let Mλ(j) denote the
value of the function Mλ(·) evaluated at a permutation ψ ∈ Sn with cycle type 2j, 1n−2j . We start
with the following simple consequence of Theorem 14,

Corollary 15. Let λ ` n and let ψ ∈ Sn be a permutation with cycle type µ = 2j, 1n−2j . Then,

Mλ(j) =

{
(−1)j−k2k

(
j
k

)
, if λ = 2k, 1n−2k and k ≤ j,

0, otherwise.

Proof. We divide the proof into two cases when λ is a refinement of µ and when it is not. If λ
is a refinement of µ, then we must have λ = 2k, 1n−2k for some k with 0 ≤ k ≤ j. In this case,
all the k bricks of length 2 must be placed in some of the k rows from the first j rows of Fµ.
Thus, the number of such λ-brick tabloids Bλ,µ of shape µ is

(
j
k

)
, and each Bλ,µ contributes the

weight 2k in the summation of Theorem 14. Thus, the total contribution in Mλ(j) is 2k
(
j
k

)
and

l(λ)− l(µ) = j − k. Hence Mλ(j) = (−1)j−k2k
(
j
k

)
.

When λ is not a refinement of µ, by Theorem 14, Mλ(j) = 0, completing the proof. �

We next prove Lemma 2 which says that for all λ ` n and for 0 ≤ i ≤ bn/2c, the quantity
αi(mλ) is a non-negative integral multiple of 2i. We will need the following very easy identity
involving binomial coefficients

(
j
k

)(
i
j

)
=
(
i−k
j−k

)(
i
k

)
.

Proof of Lemma 2. By Corollary 15, when λ 6= 2k, 1n−2k, Mλ(j) = 0 for all j. Thus, from (3),
αi(mλ) = 0 for 0 ≤ i ≤ bn/2c. When λ = 2k, 1n−2k ` n for some k with 0 ≤ k ≤ bn/2c, by
Corollary 15, we see that

αi(mλ) =
i∑

j=0

Mλ(j)

(
i

j

)
=

i∑
j=0

(−1)j−k2k
(
j

k

)(
i

j

)

= 2k
(
i

k

) i∑
j=k

(−1)j−k
(
i− k
j − k

)
=

{
2i, if i = k,

0, otherwise.

The proof is complete. �

Using Lemmas 2 and 11, we can now prove Theorem 1.

Proof of Theorem 1. From Lemmas 2 and 9, for 0 ≤ r ≤ n and for j = 1, 2, it is simple to see that
the coefficient of (−1)rxn−r in dmλ(xI − LqTj) is given by

(8) c
LqTj
mλ,r(q) =

br/2c∑
i=0

αi(mλ)ai,r(Tj, q) =

{
2kak,r(Tj, q), if λ = 2k, 1n−2k and k ≤ br/2c,
0, otherwise.

By Lemma 11 and (8), we get c
LqT1
mλ,r(q) − c

LqT2
mλ,r(q) ∈ R+[q2] for all λ ` n and for 0 ≤ r ≤

n. Furthermore, if λ 6= 2k, 1n−2k ` n for all k, then from (8), the coefficient of (−1)rxn−r in
dmλ(xI − LqTj) is zero for 0 ≤ r ≤ n and j = 1, 2. The proof is complete. �
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Thus, for all λ ` n and for all q ∈ R, moving up on GTSn decreases the coefficient of (−1)rxn−r

in dmλ(xI − LqT ), where 0 ≤ r ≤ n. Consequently, for all positive integers n, this monotonicity
result on GTSn shows that the max-min pair of these coefficients is (Pn, Sn), where Pn and Sn
are the path tree and the star tree on n vertices respectively. The following example illustrates
Lemma 2.

Example 16. Let n = 15. For all λ ` n and for all i ∈ {0, 1, 2, 3, 4, 5, 6, 7}, the values of the
quantity αi(mλ) are tabulated in Table 1.

λ ` n = 15 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

λ = 115 1 0 0 0 0 0 0 0
λ = 2, 113 0 2 0 0 0 0 0 0
λ = 22, 111 0 0 4 0 0 0 0 0
λ = 23, 19 0 0 0 8 0 0 0 0
λ = 24, 17 0 0 0 0 16 0 0 0
λ = 25, 15 0 0 0 0 0 32 0 0
λ = 26, 13 0 0 0 0 0 0 64 0
λ = 27, 1 0 0 0 0 0 0 0 128
λ 6= 2k, 1n−2k 0 0 0 0 0 0 0 0

TABLE 1. The value of αi(mλ).

5. GMF OF TREE LAPLACIANS ARISING FROM fλ, THE FORGOTTEN SYMMETRIC FUNCTION

Let fλ denote the forgotten symmetric function indexed by λ ` n and let F λ = ch−1(fλ) denote
its inverse Frobenius image. This section is devoted to show monotonicity of the coefficient of
(−1)rxn−r in ζ

LqT
fλ

(x) = dfλ(xI − LqT ) when we move up along GTSn. For this, we need the
following combinatorial interpretation of F λ(ψ) by Eğecioğlu and Remmel in [6, Theorem 8].

Theorem 17 (EĞECIOĞLU AND REMMEL). Let λ ` n and let ψ ∈ Sn be a permutation with
cycle type µ. Then,

F λ(ψ) = (−1)n−l(µ)
∑

Bλ,µ∈BTλ,µ

w(Bλ,µ).

For λ ` n, let F λ(j) denote the value of the function F λ(·) evaluated at a permutation ψ ∈ Sn

with cycle type 2j, 1n−2j . By Theorem 17, the proof of the following corollary is identical to the
proof of Corollary 15, we omit it and merely state the result.

Corollary 18. For λ ` n and for 0 ≤ j ≤ bn/2c, we have

F λ(j) =

{
(−1)j2k

(
j
k

)
, if λ = 2k, 1n−2k and k ≤ j,

0, otherwise.

For a fixed λ ` n, let γ = fλ in (3). We next calculate the quantity αi(fλ) in the following lemma
which will be used later in the determination of the coefficient of (−1)rxn−r in dfλ(xI − LqT ).
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Lemma 19. Let λ ` n. Then for 0 ≤ i ≤ bn/2c, we have

αi(fλ) =

{
(−1)i2i, if λ = 2i, 1n−2i,

0, otherwise.

Proof. By Corollary 18 when λ 6= 2k, 1n−2k, F λ(j) = 0 for all j. By (3), αi(fλ) = 0 for 0 ≤
i ≤ bn/2c. We next assume λ = 2k, 1n−2k ` n for some k with 0 ≤ k ≤ bn/2c. In this case, by
Corollary 18, we see that

αi(fλ) =
i∑

j=0

F λ(j)

(
i

j

)
=

i∑
j=0

(−1)j2k
(
j

k

)(
i

j

)

= 2k
(
i

k

) i∑
j=k

(−1)j
(
i− k
j − k

)
=

{
(−1)i2i, if i = k,

0, otherwise.

All equalities above follow by simple manipulations and hence the proof is complete. �

Theorem 20. Let T be a tree on n vertices with q-Laplacian matrix LqT . Then for 0 ≤ r ≤ n, the
coefficient of (−1)rxn−r in dfλ(xI − LqT ) is given by

c
LqT
fλ,r

(q) =

{
(−1)k2kak,r(T, q), if λ = 2k, 1n−2k with k ≤ br/2c,
0, otherwise.

Furthermore, for all λ ` n and all q ∈ R, moving up on GTSn decreases cL
q
T

fλ,r
(q) in absolute value.

Proof. From Lemmas 9 and 19, it is simple to see that

c
LqT
fλ,r

(q) =

br/2c∑
i=0

αi(fλ)ai,r(T, q) =

{
(−1)k2kak,r(T, q), if λ = 2k, 1n−2k and k ≤ br/2c,
0, otherwise.

Let T1 and T2 be two trees with n vertices such that T2 covers T1 in GTSn. By Lemma 11,∣∣∣∣cLqT1fλ,r
(q)

∣∣∣∣− ∣∣∣∣cLqT2fλ,r
(q)

∣∣∣∣ ∈ R+[q2] completing the proof. �

Thus, for all λ ` n when 0 ≤ r ≤ n, by Theorem 1, Theorem 20 and Corollary 12, we get that
the coefficient of xr in dγ(xI − LqT ) decreases as we move up along GTSn in absolute value for
each γ ∈ {mλ, sλ, pλ, hλ, eλ, fλ}. Plugging in q = 1, we get the following corollary of Theorem 1,
Theorem 20 and Corollary 12.

Corollary 21. For all λ ` n and for all γ ∈ {mλ, sλ, pλ, hλ, eλ, fλ}, moving up on GTSn decreases
the coefficient of xr in dγ(xI − LT ) in absolute value, for 0 ≤ r ≤ n. Here LT is the usual
combinatorial Laplacian of the tree T .
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