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Frieze patterns



Definition

Let R be a subset of a commutative ring.
A frieze pattern over R is an array F of the form

0 1 c¢o1i41 G142 Ci—1,n+i 1 0
0 1 Cii+2 Ci,i+3 200 Ci n+i+l 1 0

0 1 Cit1,i+3 Citl,it4a Citintiv2 1 0

where ¢; j are numbers in R, and such that every (complete) adjacent
2 x 2 submatrix has determinant 1. We call n the height of the frieze
pattern F. We say that the frieze pattern F is periodic with period
m > 0 if Cij = Ci+mj+m for all I,j

A frieze pattern is called tame if every adjacent 3 x 3-submatrix has
determinant 0.



(1) Frieze patterns over N are called Conway-Coxeter frieze patterns.

(2) The array

0 1 i+ 0
2 -2i+1 —i+41 1 0
1 —i+1 1 i+1 1 0
0 1 i+1 2i+41 2 1 0
0 1 2 —2i+1 —-i+1 1 O

repeated infinitely many times to both sides, is a frieze pattern over the
Gaussian integers Z[i]; it is periodic with period 6.



(3) For every sequences (a;)iez and (b;)iez we have a non-periodic frieze
pattern of the form

01 dai -1 b1 1 0
01 0 -1 0 1 O
0 1 a -1 b 1 O
0 1 0 -1 0 1 O
0 1 as -1 b3 1 0
0 1 0 -1 0 10



For ¢ in a commutative ring, let

Notice that up to a transposition, 77(c) may be viewed as a reflection:

w039 e (¢ De- (2 %)




Let F = (cij) be a tame frieze pattern over R.

Consider an adjacent 3 x 3-submatrix M of F. The first two columns of M
cannot be linearly dependent because the upper left 2 x 2-submatrix has
determinant 1.



Let F = (cij) be a tame frieze pattern over R.

Consider an adjacent 3 x 3-submatrix M of F. The first two columns of M
cannot be linearly dependent because the upper left 2 x 2-submatrix has
determinant 1. But then since F is tame, the determinant of M is zero, so

a b sa+tb
M=|c d sc+td
e f se-+tf

for suitable a, b,c,d, e, f,s, t.



Let F = (cij) be a tame frieze pattern over R.

Consider an adjacent 3 x 3-submatrix M of F. The first two columns of M
cannot be linearly dependent because the upper left 2 x 2-submatrix has
determinant 1. But then since F is tame, the determinant of M is zero, so

a b sa+tb
M=|c d sc+td
e f se-+tf

for suitable a, b, c,d, e, f,s,t. Now the fact that all adjacent
2 x 2-determinants are 1 implies

1 = b(sc + td) — d(sa + tb) = s(bc — ad) = —s,

sos=—1.



We see that for fixed i/, there is a ¢; such that
n(ci) _],I'-‘ftl _ i " PG+l J',I.+2
G Gri+1 Gi+1

Extend the frieze:

for all j.

-1 0 1 «ci1iv1 -+ Ci—in+i 1 0
-1 0 1 Gii+2 Cinti+l 1

-1 0 1 cit1ie3 e Citl,ntit2

So in Fact, ¢; = ¢j 4.
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Proposition

Tame frieze patterns over a commutative ring R correspond bijectively to
sequences (ci, ..., Cm) € R™ with

lﬂ[ n(ck) = (_01 _01) :

k=1



Definition
Let R be a subset of a commutative ring and \ € {+1}.
A \-quiddity cycle over R is a sequence (ci,...,cn) € R™ satisfying

ﬁn(ck) - (3 §> — Aid. (2)

A (—1)-quiddity cycle is called a quiddity cycle for short.



Example

Consider the commutative ring C and R = C.
(0,0) is the only A-quiddity cycle of length 2, for

o) = (1 73) - +ia

implies a = b = 0.



Example

Consider the commutative ring C and R = C.
(0,0) is the only A-quiddity cycle of length 2, for

o) = (1 73) - +ia

implies a = b = 0.
(1,1,1) and (—1,—1,—1) are the only A-quiddity cycles of length 3
for

wa@e(e) = (5777 TP ) - 4ia

implies b= +1, a=b=c.



Example

Consider the commutative ring C and R = C.
(0,0) is the only A-quiddity cycle of length 2, for

o) = (1 73) - +ia

implies a = b = 0.
(1,1,1) and (—1,—1,—1) are the only A-quiddity cycles of length 3
for
abc—a—c —ab—+1 .
waneno) = (525 ¢ ") — i
implies b= +1, a=b=c.

(t,2/t,t,2/t), t a unit and (a,0,—a,0), a arbitrary, are the only
A-quiddity cycles of length 4.



Let D, be the dihedral group with 2n elements acting on {1,...,n}. If
c=(c,...,cn) is a A-quiddity cycle, then we write

= (C17 coo0g Cn)a = (Ca'(l)7 000g Ca(n))
for o € D,,.

Proposition

Let ¢ = (c1,...,cm) be a A-quiddity cycle. Then for any o € D,, the cycle
c? is a A-quiddity cycle as well.



Lemma
Let (a1,...,ak) be a N-quiddity cycle and (bs, ..., by) be a \'-quiddity
cycle. Then

(81,...,ak)®(b1,.-.,b£) = (31 +b£7a27"'7ak—17ak+ b17b27"')b£—1)
is a (=N \")-quiddity cycle of length k + ¢ — 2 which we call the sum.

Proof
We use the identities n(a + b) = —n(a)n(0)n(b) and n(0)* = —id:

n(a1 + b)n(az) - - m(ak—1)n(ak + br)n(b2) - - - n(be-1)

= ( 0)n(0)n(a1)n(az) - - - m(ak—1)n(ak)n(0)n(b1)n(b2) - - - n(be-1)
= Nn(b))n(0)n(0)n(b1)n(b2) - - - n(be-1)

= = Nn(bo)n(bi)n(bz) - --n(be—1) = =N'N'id.

N
I



Quiddity cycles

0 a—1
0
1
-1> -1
—a _1

Fovre (a,0,—a,00®(-1,-1,-1) = (a—1,0,—a,—1,-1).
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Definition (C., 2019)

Let R be a subset of a commutative ring.
A \-quiddity cycle (c1,...,¢m) € R™, m > 2 is called reducible over R if
there exist a \'-quiddity cycle (ay,...,ax) € R¥, a \"-quiddity cycle
(by,...,bs) € R, and o € Dy, such that A\ = =\ )\, k,£ > 2 and

(Cl,...,Cm)U = (31+bg,32,...,ak_1,ak+b1,b2,...,bg_1)
= (a1,.--,3k) ® (by, ..., by).

A \-quiddity cycle of length m > 2 is called irreducible over R if it is not
reducible.

Tame frieze patterns are reducible/irreducible if their quiddity cycles are.



Lemma

Let R be a commutative ring. A \-quiddity cycle is reducible over R if and
only if the corresponding tame frieze pattern contains an entry 1 or —1.




(a1,...,ak) a N-quiddity cycle, and (b, ...

, by) a \’-quiddity cycle.

(317...,ak)@(b17...,bg)=(81+bg732,..

., ak—1,ak + b1, by, ..., bi_1)



Lemma

Let (c1,...,cm) € C™ such that [, n(c;) is a scalar multiple of the
identity matrix. Then there is an index j € {1,..., m} with |¢;| < 2.




Lemma

Let (c1,...,cm) € C™ such that [, n(c;) is a scalar multiple of the
identity matrix. Then there is an index j € {1,..., m} with |¢;| < 2.

Let a, b € C with |a| = |b| and |c| = 2. Then

|ac — b| = [ac| — |b| = |al(le[ = 1) + |a] — |b] = |a[(Je] = 1) = [a].



Lemma

Let (c1,...,cm) € C™ such that [, n(c;) is a scalar multiple of the
identity matrix. Then there is an index j € {1,..., m} with |¢;| < 2.

Proof.
Let a, b € C with |a| = |b| and |c| = 2. Then

|ac — b| = [ac| — |b| = |al(le[ = 1) + |a] — |b] = |a[(Je] = 1) = [a].

The claim follows from this inequality and from

9(5)=(G ) () -(27)



The only irreducible A\-quiddity cycles over Z=q are (0,0,0,0) and (1,1,1).

Theorem

Let (xj)ij be a (tame) frieze pattern with entries in N~q and c its quiddity
cycle. Then (up to a rotation) there exists a quiddity cycle ¢’ such that
c=(1,1,1) @ and such that the frieze pattern of ¢’ has entries in N~g.



Corollary

The set of frieze patterns with entries in N~ is in bijection with the set of
triangulations of convex polygons by non-intersecting diagonals.

01 1 3210 1 2
01 43210
0 111110
012341 0 4 2
0123110 \
0121 10




Theorem (C., Holm, 2019)

The set of irreducible A-quiddity cycles over Z is

{(1,1,1),(-1,-1,-1),(a,0,—4a,0),(0,a,0,—a) | a € Z\{£1}}.



Let ke Nog andi=+/—1. Then

c=(2,—-1+1,2,...,2,i+1,-2i,i—1,-2,...,—2,—i— 1)
———— 7
2k-times 2k-times

is an irreducible quiddity cycle over Z][i].



Proposition
Let ke Nog andi=+/—1. Then

c=(2,—-1+1,2,...,2,i+1,-2i,i—1,-2,...,—2,—i— 1)
———— 7
2k-times 2k-times

is an irreducible quiddity cycle over Z][i].

Corollary

There are infinitely many irreducible A-quiddity cycles over the Gaussian
integers Z|i].



Open Problem

Classify irreducible quiddity cycles for “interesting” sets R.
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Every triangulation of an n-gon by non-intersecting diagonals has an ear:




Every triangulation of an n-gon by non-intersecting diagonals has an ear:

Every quiddity cycle over N contains an entry 1.



Every triangulation of an n-gon by non-intersecting diagonals has an ear:

Every quiddity cycle over N contains an entry 1.

Every quiddity cycle over N contains a subsequence
(1,1), (1,2), (2,1), or (1,3,1).



Every triangulation of an n-gon by non-intersecting diagonals has an ear:

Every quiddity cycle over N contains an entry 1.

Every quiddity cycle over N contains a subsequence
(1,1), (1,2), (2,1), or (1,3,1).

Every quiddity cycle over N except (1,1,1) contains a subsequence
(1,2), (2,1), or (1,3,1).
e



Theorem (C., 2018)

For any £ € N we may compute finite sets of sequences E and F, where
the elements of F have length at least ¢, and such that every quiddity
cycle over N not in E has an element of F as a (consecutive) subsequence.

In other words, this theorem gives a local description of quiddity cycles.



For example if £ = 4:

Corollary

Every quiddity cycle (considered up to the action of the dihedral group)
c¢{(0,0),(1,1,1),(1,2,1,2)} contains at least one of

1,2,2,1),(1,2,2,2),(1,2,2,3),
17273737 17274717 17274737

( ) ( ) ( ):(1,2,2,4),
( ) ( ) ( )
(1,3,1,3),(1,3,1,4),(1,3,1,5),
( ) ( ) ( )
( ) ( ) ( )

)
1,2,5,1),
1,3,1,6),
2,1,3,2),

1,2,3,1),
1,2,5,2),
1,3,4,1),
2,1,3,3),

1,2,3,2),
1,2,6,1),
1,4,1,2),
2,2,1,4),

~
T e
T e

1’571727 1’6’1727 1’7’1’27
2,2,1,5),(3,1,2,3),(3,1,2,4).



Frieze patterns and arrangements

Frieze patterns over R correspond to arrangements of lines in R2.
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Arrangements of hyperplanes



A finite set A := {Hy, ..., Hp} of linear hyperplanes in a vector space
V = K" is called an arrangement of hyperplanes.



A finite set A := {Hy, ..., Hp} of linear hyperplanes in a vector space
V = K" is called an arrangement of hyperplanes.

Example







A free arrangement




A torsion subgroup of an elliptic curve







Simplicial arrangements



Simplicial arrangements

Let A := {H1,...,Hp} be a finite set of hyperplanes in V = R".
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Let A := {Hi,..., H,} be a finite set of hyperplanes in V = R".

Let IC(A) be the set of connected components (chambers) of
V\ UHeA H.



Let A := {Hi,..., Hy} be a finite set of hyperplanes in V = R".

Let IC(A) be the set of connected components (chambers) of
V\UHGA H.
Definition (Melchior, 1941)

If every chamber K is an open simplicial cone, i.e. there exist
Bi,..., B € V such that

r

K={Za,ﬂ;|a;>0 for all i=1,...,r},
i=1

then A is called a simplicial arrangement.






/

\

Source: Griinbaum, A catalogue of simplicial arrangements in the real projective plane.




Simplicial arrangements

Theorem (Deligne, 1972)

The complement of a complexified finite simplicial arrangement is K(m,1).
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Theorem (C., 2012)

We have a complete list of simplicial arrangements in the real projective
plane with at most 27 lines.




0

77




H. S. M. Coxeter:

“[...] the diagrams which profess to portray these known polygrams are
strangely unintelligible.”
]



Definition
The product (A; x Ay, V4 @ V,) of two arrangements (Az, V1), (A2, V2)
is defined by

AlX.A2={H16—)V2|H1€A1}U{V1(—BH2|H2€A2}.

If an arrangement (A, V) can be written as a non-trivial product

(A, V) = (A1 x A2, V1 @ V2), then A is called reducible, otherwise
irreducible.

The rank of an arrangement (A, V) is rank A := dim(V) — dim(()yc4 H)-



Reducibility — Near pencil

\\//
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Definition
Let K be a field, re N, V := K", and H a hyperplane in V.

A reflection on V at H is a 0 € GL(V), o # id of finite order
which fixes H.

Notice that the eigenvalues of ¢ are 1 and ( for some root of unity ¢ € K.

In this lecture we always have ( = —1.



Example

Let W be a real reflection group acting on V = R", i.e. a finite group
generated by reflections on V.

Let R < V* be the set of roots of W.
Then A = {kerar | & € R} is a simplicial arrangement.

The reflection arrangement is the most symmetric type of simplicial
arrangement, one cannot “distinguish” the chambers, they all look the
same.






Lemma

Let A be a simplicial arrangement and K a chamber, i.e. there is a basis
BY ={ay,...,a)} of V such that K = (B )~¢. Let K be the chamber
with

KnK={(a,...,a))s0.

Then there is a unique 3~ € V with
K={(B")~0, BY={BY,ay,...,a’}, and |Bn—B|=1,

where B := (BY)* and B := (B")* denote the dual bases.



Choose 3Y € V such that K = BY,05,...,00)50. Let p1,...,ureR
be such that ¥ = >7_; pjay (notice py # 0).




Proof.

Choose 3Y € V such that K = BY,05,...,00)50. Let p1,...,ureR
be such that ¥ = >7_; pjay (notice py # 0).

Let B = {B1,...,5,} be the dual basis of {8¥,ay,...,a)}, and
B ={ai,...,a,} be dual to BY.



Proof.

Choose 3Y € V such that K = BY,05,...,00)50. Let p1,...,ureR
be such that ¥ = >7_; pjay (notice py # 0).

Let B = {B1,...,5,} be the dual basis of {8¥,ay,...,a)}, and
B ={ai,...,a,} be dual to BY.

Then 8 = ﬁal and 3; = _%al + aj for j > 1.



Proof.

Choose 3Y € V such that K = BY,05,...,00)50. Let p1,...,ureR
be such that ¥ = >\7_; pja¥ (notice pq # 0).

Let B = {B1,...,5,} be the dual basis of {8",ay,...,a’}, and
B ={ai,...,a,} be dual to BY.

Then 8 = ial and §; = _%al +aj for j > 1.

To obtain |[B n —B| = 1 we need —a; = 1 € B and hence i3 = —1,
51 = —oy and ﬁj = pjon + o forj > 1.

Thus a 8Y as desired exists and is unique.



Corollary

Using the notation of the proof of the Lemma, the map

o: V¥ = V* qaj—f;

is a reflection. With respect to B = (BY)*, it becomes the matrix

1o o
0 1 0
0 O 1



Let R = {(1,0),(0,1),(1,2)} € (R?)*, A= {a' | a€ R}.




Example
Let R = {(1,0),(0,1),(1,2)} € (R?)*, A= {at | a € R}.

Then K = (BY )~ is a chamber if BY = {a1 = (1,0),a5 = (0,1)},
K" =(BY )~ with BY = {Y = (—=2,1),ay = (0,1)} is an adjacent
chamber.



Example
Let R = {(1,0), (Oal)a (172)} € (RZ)*v A= {aJ_ | a€ R}
Then K = (BY)~q is a chamber if BY = {ay = (1,0), a5 = (0,1)},

(
K" = (B )~ with BY = {5¥ = (=2,1),ay = (0,1)} is an adjacent
chamber.
To obtain 3 = —1, we need to choose 8Y = (-1, %), hence pp = % The
unique reflection o is

with respect to B = (BY)*.



A a simplicial arrangement, K = (B")~0, BY = {ay,...,a, } a chamber,

and B = {ay,...,a,} be dual to BY.

Corollary: for K, B there are unique reflections o1, ..., 0., represented by
1 0
Hil -1 Hir |
0 1

for certain p;j € R, i # j with respect to B.



Definition

The matrix CKB = (Cij)lgiJSr with
—pij ifi#j
Cij = =A A
2 if i =j
is called the Cartan matrix of (K, B) in A. Note that
oi(aj) = aj — ¢ija

forall 1 <i,j<r.

K?

We sometimes write o; Bto emphasize that o; depends on K and B.



Let A be as in the last example. Then the Cartan matrix of (K, B) is

ke (2 -3
c _(_2 2).




Example

Let A be as in the last example. Then the Cartan matrix of (K, B) is
2 _1
K,B _ 2
cke= (2, 7).

If W is a Weyl group with root system R, then all Cartan matrices of
(K, B) when B is a set of simple roots for the chamber K are equal
and coincide with the classical Cartan matrix of W.



A Cartan graph
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Definition

Let A be a simplicial arrangement in V = R". We construct a category
C(A) with
objects: Obj(C(A)) = {B = (a1,...,a,) € (V*)" | (B*)~0€ K(A)}
(where the bases B are ordered).



Let A be a simplicial arrangement in V = R". We construct a category
C(A) with
objects: Obj(C(A)) = {B = (a1,...,a,) € (V¥*)" | (B*)~0 € K(A)}
(where the bases B are ordered).
morphisms: for each B = (a1,...,a,) € Obj(C(A)) and i =1,...,r
there is a morphism O‘IK’B € Mor(B, (O‘,K’B(Oq), c UIK’B(a,))).

All other morphisms are compositions of the generators O'I-K’B.



Definition
Let A be a simplicial arrangement in V = R". We construct a category
C(A) with
objects: Obj(C(A)) = {B = (a1,...,a,) € (V¥*)" | (B*)~0 € K(A)}
(where the bases B are ordered).
morphisms: for each B = (a1,...,a,) € Obj(C(A)) and i =1,...,r
there is a morphism O‘IK’B € Mor(B, (O‘,K’B(Ozl), c O‘IK’B(Oé,-))).
All other morphisms are compositions of the generators O'I-K’B.
A reflection groupoid JW(A) of A is a connected component of C(A).

A Weyl groupoid is a reflection groupoid for which all Cartan matrices
are integral.



Using the so-called gate property, one can prove the existence of a type
function for the chamber complex of a simplicial arrangement. In other
words:

Proposition

Let A be a simplicial arrangement, W(A) a reflection groupoid, and
By = (al, R ,Otr), B, = (61, R ,,Br) two objects with <Bf>>0 = <B§<>>0.

Then there exist A1,...,A, such that «; = \;3; foralli=1,...,r.

In particular, for a fixed reflection groupoid we obtain a unique labelling of
the walls of each chamber with the labels 1, ... r.



Definition

Let A be a simplicial arrangement, W(.A) a reflection groupoid, and
K = (B*)-¢ a chamber for B = (a1,...,a,) € Obj(W(A)).
Forie{1,...,r}, let pj(K) be the chamber adjacent to K with common
wall ker ;. We thus obtain well defined maps

pi - K(A) — K(A)

which satisfy ,0,2 = id by the proposition.



Crystallographic arrangements



Definition (C., 2011)

Let A be a simplicial arrangement in V and R < V* a finite set such that
A= {kera|aeR}and Ra n R = {ta} forall a € R.




Definition (C., 2011)

Let A be a simplicial arrangement in V and R < V* a finite set such that
A={kera|aeR}and RanR = {+a} forall « € R.

We call (A, V,R) a crystallographic arrangement if for all chambers
K e K(A):
RS ), Za, (3)

aeBK

where
BK ={aeR|V¥xeK : a(x) =0, (keran K) = kera}

corresponds to the set of walls of K.



Definition

Two crystallographic arrangements (A, V,R), (A, V,R’) in V are called
equivalent if there exists ¢ € Aut(V*) with ¢)(R) = R’. We then write
(A V,R)~ (A, V,R.

If A is an arrangement in V for which a set R © V* exists such that
(A, V,R) is crystallographic, then we say that A is crystallographic.



Let R be the set of roots of the root system of a crystallographic
reflection group (i.e. a Weyl group). Then ({kera | a € R}, V,R) is
a crystallographic arrangement.




Let R be the set of roots of the root system of a crystallographic
reflection group (i.e. a Weyl group). Then ({kera | a« € R}, V,R) is
a crystallographic arrangement.

If Ry = {(1,0),(3,1),(2,1), (5,3), (3,2),(1,1), (0, 1)}, then

({ot | @€ Ry}, R?, R, U —R,) is a crystallographic arrangement.




Ry :={(1,0),(31),(2,1),(5,3),(3,2),(1,1), (0, 1)}

01 253410

01323110

01121210

01325310

01132110

01432310

01112110



Definition
Let (A, V,R) be a crystallographic arrangement and K a chamber. Fixing
an ordering for BX, we obtain a unique reflection groupoid WW(A) and
thus unique orderings for all BX, K’ € K(A) (type function). Hence we
obtain a unique coordinate map

TK .V >R’ with respect to  BX.

The elements of the standard basis {a1,...,a,} = TK(BK) are called
simple roots.



Definition
Let (A, V,R) be a crystallographic arrangement and K a chamber. Fixing
an ordering for BX, we obtain a unique reflection groupoid WW(A) and
thus unique orderings for all BX, K’ € K(A) (type function). Hence we
obtain a unique coordinate map

TK .V >R’ with respect to  BX.

The elements of the standard basis {a1,...,a,} = TK(BK) are called
simple roots. The set

RK = {TK(a) |a e R} = N§j U —N},

is called the set of roots of A at K. The roots in RK := R ~ N{ are
called positive.



Let 1 < i,j < r. Then it is easy to see that

]

CKz{—max{keN;Mka;—i—ajeRK} i #j
2 i=j

where CK := (c,-'j-),-J is the Cartan matrix of (K, B).



Let 1 < i,j < r. Then it is easy to see that

CK:{—max{keN>0|ka;+ajeRK} i #j
2 i=j

where CK := (c,-'j-),-J is the Cartan matrix of (K, B).

Recall that for every i = 1,...,r, we have a reflection O‘IK AR/
defined by o/ () = aj — cf£ Gaiforall 1<j <



Let 1 < < r. Then it is easy to see that

K_{—max{keN;Mka,-—i—ajeRK} i
-1, .

where CK := (lej-),-d- is the Cartan matrix of (K, B).

Recall that for every i = 1,...,r, we have a reflection O‘,K A/
defined by o () = aj — X Gaiforall 1<) <

Remark that if K is the chamber adjacent to K with
(K n ?> —kera for aeR with TK(a)="TK()=aq;
then the lemma implies o = TK o (T$)=1 and thus o (RK) = RK.



To avoid confusion, we use different fonts for the “global” set R and the
“local” representations RX.



To avoid confusion, we use different fonts for the “global” set R and the
“local” representations RX.

These local representations “are” the objects of the Weyl groupoid. Notice
that in the crystallographic case we have

Mor(BK, BR) = (/K .= 1K o (TK)~1

for chambers K and K.



Let m,r e N.
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Definition
Let m,r e N.

By the Smith normal form there is a unique left GL(Z")-invariant right
GL(Z™)-invariant function Vol,, : (Z")™ — 7Z such that

Vol (ai10a,...,amam) = |a1---am| forall ai,...,am € Z, (4)
where | - | denotes absolute value, i.e. Vol,(B1, ..., Bm) is the product of
the elementary divisors of the matrix with columns (1, ..., Bm.



If m=1and € Z"\{0}, then Voli(f) is the greatest common divisor of
the coordinates of .

If m=rand fpi,...,08, € Z", then Vol (1, ..., [,) is the absolute value
of the determinant of the matrix with columns 51, ..., 3,.



We obtain a “volume” for tuples of roots:

Let (A, V,R) be an irreducible crystallographic arrangement of rank r.

By the crystallographic property (3), for chambers K, K’, the bases BX
and BX' differ by a map in GL(Z"). Thus for f1,...,8m € R,

Vol (TK(B1), ..., TK(Bm)) = Volm(TK (B1), ..., TH (Bm)).



We obtain a “volume” for tuples of roots:

Let (A, V,R) be an irreducible crystallographic arrangement of rank r.
By the crystallographic property (3), for chambers K, K’, the bases BX
and BX’ differ by a map in GL(Z"). Thus for 1, ...,Bm€ R,

Vol (TK(B1), ..., TK(Bm)) = Volm(TK (B1), ..., TH (Bm)).

Hence we have a well-defined map

Vol : R™ = Z, (Bi1,-..,Bm) — Volm(TK(B1),..., TK(Bm))

which does not depend on the choice of K.



Definition

Let (A, V,R) be a crystallographic arrangement and K a chamber.
For a subspace X < R", we call Sk x := X n RX a localization of the
crystallographic arrangement at K and X.



Definition

Let (A, V,R) be a crystallographic arrangement and K a chamber.
For a subspace X < R", we call Sk x := X n RX a localization of the
crystallographic arrangement at K and X.

Notice that

_ o o K
Skx =Skx, U —5Skx, for Skx,:=XnRI.



Localizations in crystallographic arrangements define crystallographic
arrangements.



Localizations in crystallographic arrangements define crystallographic
arrangements.

Lemma

Let (A, V,R) be a crystallographic arrangement, K a chamber, and
X < R". Then there is a subset A = X n Rff which is a set of simple
roots for the localization Sk x = X N RK, je.

SK,X+ - Z Npa.

ae



Define F-sequences as finite sequences of length > 2 with entries in N3
given by the following recursion.

((0,1),(1,0)) is an F-sequence.

If (vi,...,vn) is an F-sequence, then
(Viy.woy Viy Vi + Vig1, Vitl, ..., Vy) are F-sequences for
i=1,...,n—1.

Every F-sequence is obtained recursively by (1) and (2).



Ry :={(1,0),(31),(2,1),(5,3),(3,2),(1,1), (0, 1)}

(5,3)




Theorem

Let (A, V) be an arrangement of rank two and R < V* such that
A={kera|aeR}and Ra nR = {xa} foralla € R.

Then (A, V,R) is a crystallographic arrangement if and only if there exists
a chamber K such that Rf is an JF-sequence.

In this case, R is an F-sequence for all chambers K.



A crystallographic arrangement A of rank two and a chamber K define a
sequence of negative Cartan entries

K K
(c1y...,Cn) = (—cfz,—cgyll( )7_C£22(p1( )),...)

n = |A|, which is the quiddity cycle of a Conway-Coxeter frieze pattern.



Corollary

Let (A, V,R) be a crystallographic arrangement of rank two and K a
chamber.
Any o € Rf is either simple or the sum of two positive roots in Rf .

If &, 3 are simple roots and ka + 3 € RK, then la + B € Rf for all
=0,...,k.



The first claim of the corollary may be extended to arbitrary rank, we omit
the proof because it involves the length function of a Weyl groupoid:

Theorem

Let (A, V,R) be a crystallographic arrangement, K a chamber, and
o€ Rff a positive root. Then either « is simple, or it is the sum of two
positive roots in RY.

The second part of the corollary extends to arbitrary rank as well (we will
see this later).



Now assume that r = 3, i.e. V = R3.

Lemma

Let (A, V,R) be a crystallographic arrangement of rank three and K a
chamber. Then (A, V) is reducible if
|Rf n{ag,a)| = |I:\’_"_< n{ag,az)| = 2.

Proof.

Since 0 (ap) = ay, off(a3) = as, the chamber p;(K) is also adjacent to
the localization {az, a3). But then any further 8 € RK\{a1} is in (a2, a3),
thus A is a so-called near pencil arrangement which is reducible.



A localization and the roots on the boundary in the dual space.



Definition

Let (A, V,R) be a crystallographic arrangement, K; a chamber,
1<i#j<r, and n:= [{aj,a;) n RE|. We denote the 2n chambers
adjacent to the localization (o, aj) by K1, ..., Kop: for £ > 1, let

K, — pi(Ki—1) if £ is even,
T pj(Ke—1) if £is odd.

Notice that Kzp41 = Ki.



Definition

This sequence of chambers yields two sequences of integers:

K, . .
—c:{ if £is even,

{— [ if £is odd,
Cy =
J

{—c,.K,f if £ is odd,

—Cjy if Lis even
for £ =1,...,2n and the unique k ¢ {i,j} with 1 < k <r = 3.

We call (¢, ..., cy) the quiddity cycle
and (di,. .., do,) the auxiliary cycle of the localization {a;j, o).



A localization and the roots on the boundary in the dual space.



Proposition

Let (A, V,R) be an irreducible crystallographic arrangement of rank three
and K a chamber. Let 51 = (0,1,0), 82,...,Bn-1,8n = (1,0,0) be the
roots in the localization (a1, o) ordered in such a way that (51, ..., [(n)

is” an F-sequence. Let (di,...,da,) be the auxiliary cycle of the
localization {caz, a1).
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Let (A, V,R) be an irreducible crystallographic arrangement of rank three
and K a chamber. Let 51 = (0,1,0), 82,...,Bn-1,8n = (1,0,0) be the
roots in the localization (a1, o) ordered in such a way that (51, ..., [(n)

is” an F-sequence. Let (di,...,da,) be the auxiliary cycle of the
localization {c, a1). Then

0 ’
Yoi=0a3+ Y diBk, Gei=az+ ). dant1—kBrri—k,
k=1 k=1
¢ =0,...,n are positive roots in RK with third coordinate 1. These

are the vertices of the convex set in the (x,x, 1)-plane.
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and K a chamber. Let 51 = (0,1,0), 82,...,Bn-1,8n = (1,0,0) be the
roots in the localization (a1, o) ordered in such a way that (51, ..., [(n)

is” an F-sequence. Let (di,...,da,) be the auxiliary cycle of the
localization {c, a1). Then

0 ’
Yoi=0a3+ Y diBk, Gei=az+ ). dant1—kBrri—k,
k=1 k=1
¢ =0,...,n are positive roots in RK with third coordinate 1. These

are the vertices of the convex set in the (x,x, 1)-plane.

There are no consecutive dp's both equal to 0.



Proposition

Let (A, V,R) be an irreducible crystallographic arrangement of rank three
and K a chamber. Let 51 = (0,1,0), 82,...,Bn-1,8n = (1,0,0) be the
roots in the localization (a1, o) ordered in such a way that (51, ..., [(n)

is” an F-sequence. Let (di,...,da,) be the auxiliary cycle of the
localization {c, a1). Then

0 ’
Yoi=0a3+ Y diBk, Gei=az+ ). dant1—kBrri—k,
k=1 k=1
¢ =0,...,n are positive roots in RK with third coordinate 1. These

are the vertices of the convex set in the (x,x, 1)-plane.

There are no consecutive dp's both equal to 0.

{ve|£=0,...,n}| = n/2 and vp11 — e € N3.



The next lemma is a crucial tool. It extends the convexity which was
observed in rank two to localizations and may be applied to pairs of roots
in the (x,*,1)-plane:

Lemma

Let (A, V,R) be a crystallographic arrangement, K a chamber, k € N>»,
ae RK, peZr, dimla, B)g = 2, a + kB € RK, Vola(a, B) = 1, and
(—Na + ZB) n N = &.

Then Be RX and a+ (5 e RX forall ¢ =0,..., k.

Moreover, there exists a chamber K" and 1 < i,j < r such that —c,.K-' > k.

o



The lemma applied to the (, *, 1)-plane.

With « = (0,0,1), 5 = (2,1,0), and k = 4, the lemma implies the
existence of the roots on the green line in the figure.

In fact, in this example the lemma implies that all lattice points in the
convex set in the figure are roots.



The next theorem is stronger than expected. If three roots have volume 1,
then they are close to be the walls of a chamber:

Theorem

Let K be a chamber and o, 3,7 € Rf. If Volz(«, 8,7v) = 1 and none of

a— B, a—~, B —~ are contained in RX, then o, 8,~ are the simple roots
in RX.




Corollary

Let K be a chamber and 1,72, € RK. Assume that Y1, Y2 are simple
roots and that Vol3(y1,72,a) = 1. Then either « is a simple root or one
of « — 1, a — 7y is contained in RK.



A path of roots in the (x,*,1)-plane.

Repeatedly applying the corollary with v; = (1,0,0), 72 = (0,1,0), and
starting with a = (10, 4, 1) yields (for example) the blue path of roots
displayed in the figure.



A short proof for the fact that all lattice points in the convex hull of the
roots in the (x,*,1)-plane are roots is still unknown.




Lemma

Let (A, V,R) be an irreducible crystallographic arrangement of rank three
and K a chamber. Then a1 + as + az € RK.




Bounds



Theorem

Let (A, V,R) be a crystallographic arrangement of rank three, K a
chamber, and |RY n (a1, a2)| = 5. Then

ko := min{k € Ng | kay + 2as + az € RK} € {0,...,4}

and ko < 2 ifcf3 =0.



Proof.

Let (c1,...,cn) be the quiddity cycle, (di, ..., d2s) the auxiliary cycle of
{ap,a1), and o, ...,7y, as before. Then

Yo = (0707 1)5 Y1 = (Oa d17 1)5 Y2 = (d27 C1d2 + d17 1),
13 = (C2d3 + dp, c1cod3 + c1db + dy — d3, 1),
Y4 = (C2C3d4+C2d3+d2—d4, c1cpc3dytcicrds+cidr—cida—c3dy+di—ds, 1),

are positive roots. Moreover, (1,1,1) € R,



Now we consider several cases:

Remark first that if (0, c,1) € R¥ for ¢ > 1, then (0,2,1) € R¥ by a lemma since 7o = (0,0,1) € R¥. Similarly, if
(1,¢,1) € RX for ¢ > 1, then (1,2,1) € RX by a lemma since (1,1,1) € RX. Hence

(k,e,1) e R k<1, c>1 = Kk <1 (5)

Now we consider all possible values for the cycles.

If dy = 2, then kg < 1 by (5) since 1 € RKX. Hence assume d; < 1.

We first consider the case ¢; > 1.

If di = 0, then d» > 0 (Prop.). Applying a lemma to g, (d2, c1d2,1) = v2 € RK gives (1,¢,1) € RK, thus kg < 1 by (5).
Ifdy =1, d > 0, then o = da(1, c1,0) + 1, thus (1,¢; + 1,1) € RK and ky < 1 by (5).

Ifdy =1, dy =0, then d3 > 0, v3 = d3(cp, c1cp — 1,0) + 1 thus (cp, c1cp, 1) € RK which implies (1, ¢;,1) € R¥ and
ko < 1by (5).

Now consider the case ¢c; = 1. This implies ¢, > 1 since |Rf§ N {ag, a)|
Ifdy =1, d» > 0, then 7o = da(1,1,0) + ~1, thus (1,2,1) € RK and ko
Ifd; =1,dy =0, then d3 > 0, v3 = d3(cz, ¢ — 1,0) + 1 thus (cp, ¢, 1) € R¥ which implies (2,2,1) € RX and ky < 2.
The last remaining case is d; = 0, and thus dy > 0. Notice that d; = 0 also implies (1,0,1) € RK since

81 = (dop,0,1) € RK and dp, > 0. Recall also that we are still in the case c; = 1 and ¢ > 1.

If dp = 2, then vp = (dp,dp,1) € RK and thus (2,2,1) e RK and ko < 2. Hence we may assume dp = 1.

If d3 > 0then v3 = (pd3 +1,c0d3 +1 —d3,1) = d3(c2, 0 — 1,0) + (1,1,1), thus (e + 1, ,1) € RK. But

(2 +1,¢,1) = (1,1,0) + (1,0, 1) which implies (3,2,1) € RK and ko < 3.

Finally, assume that d3 = 0, dj > 0. Then v4 = ds(cpc3 — 1, cpc3 — 1 — ¢3,0) + (1,1, 1) implies

(e2¢e3, 003 — c3,1) = e3(c2, 0 — 1,0) + (0,0,1) € RK.

If ¢ > 2, then (3,0 — 1,1) = (e — 1)(1,1,0) + (1,0,1) € RK and thus 3,2,1) e RK and ko < 3.

If ¢ = 2, then (2¢3,¢3,1) € RK i c3 > 1 then this implies (4,2,1) € RK and ko < 4. The case c3 = 1 is excluded since it

= 5.
<1

implies |Ri N (a1, az)| = 4: by a remark, the only quiddity cycles containing (1,2, 1) are (1,2,1,2) and (2,1,2,1).
If c1K3 = 0 then dp, = clK3 = 0 implies d; > 0 by a Prop. All above cases with positive d; imply kp < 2.



This allows to compute a global bound for Cartan entries in
crystallographic arrangements of rank greater than two:

Theorem

Let (A, V,R) be a crystallographic arrangement of rank greater or equal
to three.

Then all entries of the Cartan matrices are greater or equal to —7.



Proof.

Assume that K is a chamber with largest Cartan entry —cfX, > 8, i.e.
IR n a1, a2)] = 5.
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Proof.

Assume that K is a chamber with largest Cartan entry —cfz =8, ie.
IR n (a1, az)| = 5.

By the theorem there exists kg € {0, 1,2, 3,4} such that
v = koay + 200 + az € Rff.
In the adjacent chamber K’ = p;(K), we have

v = o'{((’y) = (—ko — 2cfz — cf3)a1 +2a +aze€ R-I:/-



Proof.

Assume that K is a chamber with largest Cartan entry —cfz =8, ie.
IR n (a1, az)| = 5.

By the theorem there exists kg € {0, 1,2, 3,4} such that
v = koay + 200 + az € Rff.
In the adjacent chamber K’ = p;(K), we have

v = o'{((’y) = (—ko — 2cfz — cf3)a1 +2a +aze€ Rf/-

Again by the theorem there exists kj € {0, 1,2, 3,4} such that
a = kyas + 200 + a3z € Rf'.



Now applying a lemma to o and 7/ = a + (—ko — 2c1’f2 — Cfs — k§)oa
yields a chamber K” with 1 < /,j < 3 and

"
—cfS = —ko — 2¢f — ¢f'5 — k.

ij =



Now applying a lemma to o and 7/ = a + (—ko — 2c{f2 — cf3 —

yields a chamber K” with 1 < /,j < 3 and

"
—cfS = —ko — 2¢f — ¢f'5 — k.

iJj
We have
2 if —cf5=0,
ko < . k
4 if —¢3>0,
thus
_Ci,j = b b b

K K K K
—Clp— €3> —Cp if —¢3>0.

kf)oa



Now applying a lemma to o and 7/ = a + (—ko — 2c{f2 — cf3 — k{)aa
yields a chamber K” with 1 < /,j < 3 and

K" K K /
_Ci,j 2 _ko - 2C1’2 - C173 - ko
We have
H K
e < 2 |f—c1’3=0,
4 if —¢3>0,
thus
K K H K _
_CK,” > _C172 + 2 > _C172 |f - Cl,3 - 0,
[ K K K H K
—Clp— €3> —Cp if —¢3>0.

This is a contradiction to the assumption that —cf2 is
the largest Cartan entry.



In fact, entries of the Cartan matrices in rank greater or equal to three are
always greater or equal to —6.




Notice that there are infinitely many non-equivalent crystallographic
arrangements of rank two with Cartan entries greater or equal to —7.
(quiddity cycles over N with entries < 7)



Notice that there are infinitely many non-equivalent crystallographic
arrangements of rank two with Cartan entries greater or equal to —7.
(quiddity cycles over N with entries < 7)

However:

Theorem

Any localization of rank two of an irreducible crystallographic arrangement
of rank three has at most 128 positive roots.



Proof.

Without loss of generality, assume that |RX N (a1, ax)| > 128 for some
chamber K. Then by a previous proposition there are more than 64 roots

of the form ko + fan + ag,



Proof.

Without loss of generality, assume that |RE N (a1, ap)| > 128 for some
chamber K. Then by a previous proposition there are more than 64 roots
of the form kay 4 fan + az, i.e. there exist roots (a, b, 1), (', b, 1) € RK,
(a,b,1) # (d, b/, 1) with

a=a (mod8), b=b (mod8),

and by the same proposition we may assume a > a’ and b > b'.



Without loss of generality, assume that |RE N (a1, ap)| > 128 for some
chamber K. Then by a previous proposition there are more than 64 roots
of the form kay 4 fan + az, i.e. there exist roots (a, b, 1), (', b, 1) € RK,
(a,b,1) # (d, b/, 1) with

a=a (mod8), b=b (mod8),
and by the same proposition we may assume a > a’ and b > b’. But then
(aa ba 1) = (ala blv 1) + k((a - a/)/k7 (b - b,)/k7 0)

for some k = 8 and coprime (a — a')/k,(b—b')/k € Z.
By the “green lemma”, this implies the existence of a Cartan entry less or
equal to —8, contradicting the theorem.



Corollary

There is a finite set T of equivalence classes of crystallographic
arrangements of rank two such that every localization of rank two of an
irreducible crystallographic arrangement of rank three belongs to one of
the classes in T.

Proof.

By the theorem, a localization of rank two of a crystallographic
arrangement of rank three has at most 128 positive roots.

Since a crystallographic arrangement (A, V,R) of rank two corresponds to
a triangulation of a convex |R|/2-gon by non-intersecting diagonals, there
are only finitely many non-equivalent such arrangements with at most 128
positive roots.



Corollary

There exists a bound m, such that for any irreducible crystallographic
arrangement of rank r > 2 and o, B € R,

Vol (a, B) < m.

In fact, the sharp bound is m = 6.




Proof.

Viewing o and (3 as elements of the localization {«, 3), we may choose a
chamber K such that TX(a) = a;, TK(B) = aa; + ba; for suitable
a, b € Z, without loss of generality i = 1, j = 2.
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Since r > 2, the roots TX(a), TK(B) are roots in a localization
(o, ag, ay)y of rank three, £ > 2.



Proof.

Viewing o and (3 as elements of the localization {«, 3), we may choose a
chamber K such that TX(a) = a;, TK(B) = aa; + ba; for suitable
a, b € Z, without loss of generality i = 1, j = 2.

Since r > 2, the roots TX(a), TK(B) are roots in a localization
(o, ag, ay)y of rank three, £ > 2.

Thus by a corollary, the localization {«a, 3) is one of finitely many possible
crystallographic arrangements of rank two up to equivalence, hence
coordinates of roots in these crystallographic arrangements are bounded by
some number m € N.



Proof.

Viewing o and (3 as elements of the localization {«, 3), we may choose a
chamber K such that TX(a) = a;, TK(B) = aa; + ba; for suitable
a, b € Z, without loss of generality i = 1, j = 2.

Since r > 2, the roots TX(a), TK(B) are roots in a localization
(o, ag, ay)y of rank three, £ > 2.

Thus by a corollary, the localization {«a, 3) is one of finitely many possible
crystallographic arrangements of rank two up to equivalence, hence
coordinates of roots in these crystallographic arrangements are bounded by
some number m € N.

This implies Vola(a, 8) = |b| < m.



Theorem (C., Heckenberger (2015); C. (2019))

Let r > 2. Then there are only finitely many equivalence classes of
irreducible crystallographic arrangements of rank r.
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irreducible crystallographic arrangements of rank r.

Let K be a chamber of an irreducible crystallographic arrangement of rank
r > 2. Consider the map

Y RE S (Z)(m+1)Z), (a1,...,a) — (31,...,3).
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Let r > 2. Then there are only finitely many equivalence classes of
irreducible crystallographic arrangements of rank r.

Let K be a chamber of an irreducible crystallographic arrangement of rank
r > 2. Consider the map

Y RE S (Z)(m+1)Z), (a1,...,a) — (31,...,3).

Assume that |[RK| > (m + 1)". Then there exist o, 8 € RX, a # 3 and
P(a) = ¢(B).



Theorem (C., Heckenberger (2015); C. (2019))

Let r > 2. Then there are only finitely many equivalence classes of
irreducible crystallographic arrangements of rank r.

Let K be a chamber of an irreducible crystallographic arrangement of rank
r > 2. Consider the map

Y RE S (Z)(m+1)Z), (a1,...,a) — (31,...,3).

Assume that |[RK| > (m + 1)". Then there exist o, 8 € RX, a # 3 and
(a) = ¢(B). Thus the volume Vol (a, 5) is divisible by (m + 1). Since
« # f3, this contradicts the corollary.



Theorem (C., Heckenberger (2015); C. (2019))

Let r > 2. Then there are only finitely many equivalence classes of
irreducible crystallographic arrangements of rank r.

Let K be a chamber of an irreducible crystallographic arrangement of rank
r > 2. Consider the map

Y RE S (Z)(m+1)Z), (a1,...,a) — (31,...,3).

Assume that |[RK| > (m + 1)". Then there exist o, 3 € RX, o # 3 and
(a) = ¥(B). Thus the volume Vol (a, ) is divisible by (m + 1). Since
« # f3, this contradicts the corollary.

Hence there is a global bound for the number of positive roots. But the
number of equivalence classes of irreducible crystallographic arrangements
with bounded number of roots is bounded.



Enumeration and classification



Let K be a chamber of an irreducible crystallographic arrangement.

Let a e Rff . Then either « is simple, or it is the sum of two positive roots.



Function Enumerate(R)
If R defines a crystallographic arrangement, output R and continue.
Y ={a+f|a,BeR, a+#[}\R.
For all & € Y with o > max R:

Compute all localizations in R U {a}.
If all Cartan entries are > —7, all localizations are crystallographic [and
. and ...] then call Enumerate(R U {a}).



The algorithm terminates and yields the result:

Theorem (C., Heckenberger (2012))

Up to equivalences, there are 55 irreducible crystallographic arrangements
of rank three.



The algorithm terminates and yields the result:
Theorem (C., Heckenberger (2012))

Up to equivalences, there are 55 irreducible crystallographic arrangements
of rank three.

With the knowledge about rank three, we enumerate crystallographic
arrangements in ranks four to eight with a similar algorithm.



The algorithm terminates and yields the result:

Theorem (C., Heckenberger (2012))

Up to equivalences, there are 55 irreducible crystallographic arrangements
of rank three.

With the knowledge about rank three, we enumerate crystallographic
arrangements in ranks four to eight with a similar algorithm.

An analysis of Dynkin diagrams leads to a complete classification.



Theorem (C., Heckenberger, 2009/2010)

There are exactly three families of crystallographic arrangements:

The family of rank two parametrized by triangulations of a convex
n-gon by non-intersecting diagonals.




Theorem (C., Heckenberger, 2009/2010)

There are exactly three families of crystallographic arrangements:

The family of rank two parametrized by triangulations of a convex
n-gon by non-intersecting diagonals.

For each rank r > 2, arrangements of type A,, B,, C, and D,, and a
further series of r — 1 arrangements.



Theorem (C., Heckenberger, 2009/2010)

There are exactly three families of crystallographic arrangements:

The family of rank two parametrized by triangulations of a convex
n-gon by non-intersecting diagonals.

For each rank r > 2, arrangements of type A,, B,, C, and D,, and a
further series of r — 1 arrangements.

Further 74 “sporadic” arrangements of rank r, 3 < r < 8.



Nichols algebras



Definition

Let V be a vector space,
c:VV-VRV
a linear isomorphism with

(c®id)(ld®c)(c®id) = (Id® c)(c®id)(id ® c).

Then c is a braiding, and (V/, ¢) is a braided vector space.



Define a map p : S, — End(V®") by:
For a transposition (i,i + 1) € S, let
p((ii+1)=d® - ®IAdRKcRIAd® - ®id,

where ¢ acts in the copies / and i + 1 of V.

If w=71...7¢is a reduced expression of w € S, then

p(w) = p(11) ... p(7e).



Define a map p : S, — End(V®") by:
For a transposition (i,i + 1) € S, let
p((ii+1)=d® - ®IAdRKcRIAd® - ®id,

where ¢ acts in the copies / and i + 1 of V.

If w=71...7¢is a reduced expression of w € S, then

p(w) = p(11) ... p(7e).

Let &, = s, P(W).

is called the Nichols algebra of (V, ¢).
e



cx®y)=y®x forallx,yeV:
B(V) = S(V) symmetric algebra

c(x®y)=-y®x forall x,yeV:
B(V) = A(V) exterior algebra



Nichols (1978): construction of examples of Hopf algebras
Woronowicz (1988): build a “quantum differential calculus”
Lusztig (1993), Rosso (1994), Schauenburg (1996): abstract
definition of quantized universal enveloping algebras

Andruskiewitsch-Schneider (1998): essential tool in the classification
of pointed Hopf algebras



Let (V, c) be a braided vector space.

Is B(V) finite dimensional?

Compute the defining relations of B(V).



Let A = (aj)1<ij<r be a Cartan matrix of finite type and dy,...,d, € N5
be such that dja;; = d;aj;.
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Let A = (ajj)1<ij<r be a Cartan matrix of finite type and di,...,d, € N5
be such that d;a;; = d;a;;.

Let V be a vector space over k with basis x3,...,x,, and g € k,
c:V®V - V®V given by c(x; ® xj) = qd"a"ixj®x,-.



Let A = (ajj)1<ij<r be a Cartan matrix of finite type and di,...,d, € N5
be such that d;a;; = d;a;;.

Let V be a vector space over k with basis x3,...,x,, and g € k,
c:V®V - V®YV given by c(x; ® x;) = qd"a"ij®x,-.

Theorem (Lusztig)

If q is a root of unity of odd order N with 31 N, then $B(V) is finite
dimensional with basis [...].

B(V) is the “positive part” of the Frobenius-Lusztig kernel of the Lie
algebra associated to A.



{x1,...,x/} Basis of V,

c(x ®x;) = qiixj ®x;, qjjeC.

Then ¢ and B(V) are called of diagonal type.



Definition
{x1,...,x/} Basis of V,

c(x ®x;) = qiixj ®x;, qjjeC.

Then ¢ and B(V) are called of diagonal type.

The numbers gj;, i,j = 1,...,r define a bicharacter

r r d ibj
X:Z xXZ —>C, ((a,...,a),(br,.... b)) = [ ] a7
ij=1



Let (V, c) be of diagonal type.
Theorem (Kharchenko, 1999)

There exists a totally ordered index set (L, <) and Z"-homogeneous
elements X, € B(V), L € L such that

e X | w20, . byel, b> >4,
<

m; < hgu Vi = 1,...,1/}
is a vector space basis of B(V'), where
he=min{meN|1+q +...+q ' =0}u{oo}

and qy = x(deg Xy, deg Xy), £ € L.



Theorem (Heckenberger, 2006)

Let B be a finite dimensional Nichols algebra of diagonal type.

Let R, be the set of degrees of the PBW generators of B.
Then Ry u —Ry is a root system of a finite Weyl groupoid.

Result (Angiono, 2013)

Explicit list of defining relations of a Nichols algebra of diagonal type with
finite root system.



Definition
Let H be a Hopf algebra and V a module and a comodule over H. Then
V is called a Yetter-Drinfeld module if

5\/(hv) = hlv_15(h3) ®hvy VYVhe H,veV.
A Yetter-Drinfeld module V is a braided vector space via

c:VRV-oVRV, vRw—v_iw® v.

Example

G a finite group, H = CG =
Yetter-Drinfeld modules are representations of the quantum double D(G).



Let V be a Yetter-Drinfeld module over CG where G is a finite group.

G abelian = B(V) of diagonal type.
G non-abelian, V irreducible = B (V) Nichols algebra of a rack.



Let g = (g1, g, g2) be a triple of numbers (in a commutative ring) and
assume that

m; :=min{meNo |1+ g+ g +...+q" =0or q"q =1}

for i = 1,2 are well defined integers.



Let g = (g1, g, g2) be a triple of numbers (in a commutative ring) and
assume that

m;:=min{meNo [1+qi+ ¢ +...+q" =0or q"q =1}

for i = 1,2 are well defined integers. Let

2
o1(q1,9: @) = (q1.9;°™q 1 a7 q™ o)
_ Jlandig Tt ag™a) ifltgitai ...+ =0
(91,9, q2) if gi"q =1
and similarly
2 —_— —
o2(q1,9, ) = (q19™a57,05,°™q7 L, qo).



Let 9 = (g1, g, g2) be a triple of numbers (in a commutative ring) and
assume that

mi:=min{meNo|1+q+¢*+...+q"=00rq"qg=1}

for i = 1,2 are well defined integers. Let

_2 _ 2

o1(91,9,q2) = (q1,91°"™q 1, a0, ¢™qn)

_ (ql,q%qfl,qlqmlqg) ifl—i—ql—i—qf—i-...—i—q{"l =0

(91,9, q2) if gi"q =1
and similarly
2
_2 _
02(q1,9,q2) = (19™q %, 00", q).

Thus o1, 02 produce new triples of numbers which possibly define new
integers m;, and notice that o;(0;(q1, 9, 92)) = (q1, 9, G2)-
]



Definition
Assuming that the new m; are well defined again and again, the first triple
q0 := 9 = (q1, g9, g2) will produce an infinite sequence of the form

02 g1 g2 g1 02 o1

q_> q_1 o q qz

where every ¢; has its own m;,



Assuming that the new m; are well defined again and again, the first triple

q0 := 9 = (q1, g9, g2) will produce an infinite sequence of the form

02 g1 g2 g1 02 o1

q_> q_1 o q qz

where every o; has its own m;, thus we obtain a sequence of integers
-v.,C-2,C-1,Cp,C1,C2,. ..

which we call the characteristic sequence of q = (qi1, g, g2), where the ¢;
correspond to the maps in the following way (cop = my, c_1 = my):

c_3 c_2 Cc_1 [e)) Cc1 (e}

q_> q_; o q; a4z




Assuming that the new m; are well defined again and again, the first triple

q0 := 9 = (q1, g9, g2) will produce an infinite sequence of the form

02 g1 g2 g1 02 o1

q_> q_1 o q qz

where every o; has its own m;, thus we obtain a sequence of integers
-v.,C-2,C-1,Cp,C1,C2,. ..

which we call the characteristic sequence of q = (qi1, g, g2), where the ¢;
correspond to the maps in the following way (cop = my, c_1 = my):

c_3 c_2 Cc_1 [e)) Cc1 (e}

q_> q_; o q; a4z

We say that a triple q is broken if the above procedure leads to a triple
for which one of the m; is not defined.



Example

Let ¢ € C be a primitive 9-th root of unity and q = (¢°,¢8,¢%). Then the
above picture is

> (6,646%) <5 (¢565%,0) = (65,1 0) < (¢ 0)

and the characteristic sequence is (...,2,2,5,2,2,5,...), thus periodic
with period (2,2,5).



To determine the triple q from a given characteristic sequence, the
knowledge of three consecutive entries ¢;, ¢j1+1, Ci+2 is (almost) sufficient.



To determine the triple q from a given characteristic sequence, the
knowledge of three consecutive entries ¢;, ¢j1+1, Ci+2 is (almost) sufficient.

Theorem

The Nichols algebra of diagonal type corresponding to a triple q is finite
dimensional if and only if the characteristic sequence of q is the quiddity
cycle of a Conway-Coxeter frieze pattern.



To determine the triple q from a given characteristic sequence, the
knowledge of three consecutive entries ¢;, ¢j1+1, Ci+2 is (almost) sufficient.

Theorem

The Nichols algebra of diagonal type corresponding to a triple q is finite
dimensional if and only if the characteristic sequence of q is the quiddity
cycle of a Conway-Coxeter frieze pattern.

Corollary

A local description (¢ = 3) of quiddity cycles leads to a complete
classification of finite dimensional Nichols algebras of diagonal type
in rank two.



What about “infinite” Weyl groupoids?
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Definition (C., Mihlherr, Weigel, 2014)

Let A be a set of linear hyperplanesin V and (J # T < V an open convex
cone (called the Tits cone). We call (A, T) a simplicial arrangement, if

HnT#@& VHeA,
VwveT Je>0: |{He A|Hn U(v) # &} < o,
the connected components of T\ 4 H are simplicial cones,

every wall is in A.



Definition (C., Mihlherr, Weigel, 2014)

Let A be a set of linear hyperplanes in V and ¢J # T < V an open convex
cone (called the Tits cone). We call (A, T) a simplicial arrangement, if

HnT#@& VHeA,
VwveT Je>0: |{He A|Hn U(v) # &} < o,
the connected components of T\ 4 H are simplicial cones,

every wall is in A.

(A, T, R) is a crystallographic arrangement, if
(A, T) is simplicial,
A={at|aeR}and Ran R = {+a} foralla e R,

for all K € K(A):
RS ) Zao.

aeBK
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If V=T, then A is a finite simplicial arrangement.
If T is a half-space, then (A, T) is called affine.

An affine Weyl group defines an affine crystallographic arrangement.




If V=T, then A is a finite simplicial arrangement.
If T is a half-space, then (A, T) is called affine.
An affine Weyl group defines an affine crystallographic arrangement.

Theorem (C., Miihlherr, Weigel, 2014)

Correspondence: “Weyl groupoids” «—— crystallographic arrangements.

Theorem (C., Miihlherr, 2013)

Characterization of Weyl groupoids of rank two with finitely many objects
via periodic continued fractions.







Quiddity cycle: ¢ = (1,2,3,2,1,4,1,4)

mi={jef{l,....n}|cj=cigforall £ =1,... n}.

0 1 1 0 2 1 1
1/ . 1/ ) 1/ ) ) .
4 5 3 3 2 1 2 1

3 8 2 5 1 2 1 1

Cij |mi|

~ (|m1|’ |m2|7" ) = (171’3515171727 1)



Quiddity cycle: ¢ =(1,3,1,4,1,3,1,4)

mi={je{l,....n}|cj=cipforall £=1,... n}.
1 1 0 1 1 0 1 2
0 2 1 3 1 1 2 1
1 14 2 3 1 1 )
1 2 3 5 2 3 2 1
Cij |mi|

v ([ml, [mal, .. ) = (1,2,1,2,1,2,1,2)



Theorem (C., 2013)

Let ¢ be a quiddity cycle such that for all i,
up to rotations, c is one of the following:

mj| > 1 or |mj;1| > 1. Then

(1,1,1), (1,2,1,2), (1,3,1,3,1,3),

(1,3,1,4,1,3,1,4), (1,3,1,5,1,3,1,5,1,3,1,5).




Theorem (C., 2013)
Let ¢ be a quiddity cycle and R < Z? its root system (at any object). If

{(y,2)" | (x,y) € R, z€ Z}
is simplicial, then c is

(1,1,1), (1,2,1,2), (1,3,1,3,1,3), or (1,3,1,5,1,3,1,5,1,3,1,5).
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Thank you!



