The Compositional Delta Conjecture

Alessandro Iraci

joint work with Michele D'Adderio and Anna Vanden Wyngaerd

2 september, 2019

Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ on which S_n acts diagonally:

 $\sigma f(x_1,\ldots,x_n,y_1,\ldots,y_n) \coloneqq f(x_{\sigma_1},\ldots,x_{\sigma_n},y_{\sigma_1},\ldots,y_{\sigma_n})$

Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ on which S_n acts diagonally:

$$\sigma f(x_1,\ldots,x_n,y_1,\ldots,y_n) \coloneqq f(x_{\sigma_1},\ldots,x_{\sigma_n},y_{\sigma_1},\ldots,y_{\sigma_n})$$

Let ${\cal I}$ be the ideal generated by the constant free invariants of this action.

$$\mathcal{DH}_n \coloneqq R/I$$

Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ on which S_n acts diagonally:

$$\sigma f(x_1,\ldots,x_n,y_1,\ldots,y_n) \coloneqq f(x_{\sigma_1},\ldots,x_{\sigma_n},y_{\sigma_1},\ldots,y_{\sigma_n})$$

Let ${\cal I}$ be the ideal generated by the constant free invariants of this action.

$$\mathcal{DH}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{DH}_n is a bi-graded S_n -module.

Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ on which S_n acts diagonally:

$$\sigma f(x_1,\ldots,x_n,y_1,\ldots,y_n) \coloneqq f(x_{\sigma_1},\ldots,x_{\sigma_n},y_{\sigma_1},\ldots,y_{\sigma_n})$$

Let I be the ideal generated by the constant free invariants of this action.

$$\mathcal{DH}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{DH}_n is a bi-graded S_n -module.

We have

$$\mathcal{DH}_n = \bigoplus_{\substack{V \subseteq \mathcal{DH}_n \\ \text{irreducible}}} V$$

Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ on which S_n acts diagonally:

$$\sigma f(x_1,\ldots,x_n,y_1,\ldots,y_n) \coloneqq f(x_{\sigma_1},\ldots,x_{\sigma_n},y_{\sigma_1},\ldots,y_{\sigma_n})$$

Let I be the ideal generated by the constant free invariants of this action.

$$\mathcal{DH}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{DH}_n is a bi-graded S_n -module.

We define its bi-graded Frobenius characteristic

$$\mathcal{F}_{q,t}(\mathcal{DH}_n) \coloneqq \sum_{\substack{V \subseteq \mathcal{DH}_n \\ \text{irreducible}}} q^{\deg_x(V)} t^{\deg_y(V)} s_{\lambda(V)} \in \Lambda_{\mathbb{Q}(q,t)}$$

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

▶ Generalisation of Schur, Hall-Littlewood, Jack

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

- ▶ Generalisation of Schur, Hall-Littlewood, Jack ...
- ► Schur positive.

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

- ▶ Generalisation of Schur, Hall-Littlewood, Jack ...
- ► Schur positive.
- ▶ Bi-graded Frobenius characteristic of submodules of \mathcal{DH}_n (Garsia-Haiman).

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

- ▶ Generalisation of Schur, Hall-Littlewood, Jack ...
- ► Schur positive.
- ▶ Bi-graded Frobenius characteristic of submodules of \mathcal{DH}_n (Garsia-Haiman).

Definition

The nabla operator is the linear operator defined by

$$\nabla \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)}$$
$$H_{\mu} \mapsto e_{|\mu|}[B_{\mu}]H_{\mu}$$

The Macdonald polynomials, $\{H_{\mu}\}_{\mu \vdash d}$ form a basis of the ring $\Lambda_{\mathbb{Q}(q,t)}^{(d)}$

- ▶ Generalisation of Schur, Hall-Littlewood, Jack ...
- ► Schur positive.
- ▶ Bi-graded Frobenius characteristic of submodules of \mathcal{DH}_n (Garsia-Haiman).

Definition

The nabla operator is the linear operator defined by

$$\nabla \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)}$$
$$H_{\mu} \mapsto e_{|\mu|}[B_{\mu}]H_{\mu}$$

Theorem (Haiman)

The bi-graded Frobenius characteristic of \mathcal{DH}_n is ∇e_n .

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^{D}$$

LD(n): labelled Dyck paths of size n

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^{D}$$

Area: number of whole squares between the path and y = x.

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^{D}$$

Dinv: count the number of pairs

 same diagonal, lower label < upper label (primary dinv)

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^{D}$$

Dinv: count the number of pairs

- same diagonal, lower label < upper label (primary dinv)
- lower step one diagonal above upper step lower label > upper label

(secondary dinv)

Theorem (Carlsson-Mellit)

$$\nabla e_n = \sum_{D \in \mathsf{LD}(n)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

$$x^{D} \coloneqq \prod_{i=1}^{n} x_{l_i(D)}$$

where $l_i(D)$ is the label of the *i*-th vertical step of D.

$$x_1^2 x_2 x_3^2 x_4 x_5 x_6$$

The Compositional Shuffle Theorem

Theorem (Carlsson-Mellit)

$$abla C_{oldsymbol{lpha}} = \sum_{D \in \mathsf{LD}(oldsymbol{lpha})} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^{D}$$

We have

$$\sum_{\alpha \vDash n} C_{\alpha} = e_n$$

 $LD(\alpha)$: labelled Dyck paths with diagonal composition α .

$$\alpha = (\mathbf{5}, \mathbf{3})$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Theorem (Zabrocki)

Set $\mathsf{D}_{q,t}(\alpha) = \sum_{D \in \mathsf{D}(\alpha)} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)}$. We have the recursion

$$\mathsf{D}_{q,t}(a,\alpha) = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)$$

Super-diagonal coinvariants and Δ_f Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n, \theta_1, \ldots, \theta_n]$ where $\theta_i \theta_j = -\theta_j \theta_i$.

Super-diagonal coinvariants and Δ_f Let $R \coloneqq \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n, \theta_1, \dots, \theta_n]$ where $\theta_i \theta_j = -\theta_j \theta_i$. Consider again the diagonal action of S_n on R and let I be the ideal

generated by the constant free invariants of this action.

$$\mathcal{M}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{M}_n is a bi-graded S_n -module.

Super-diagonal coinvariants and Δ_f Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n, \theta_1, \ldots, \theta_n]$ where $\theta_i \theta_j = -\theta_j \theta_i$. Consider again the diagonal action of S_n on R and let I be the ideal generated by the constant free invariants of this action.

$$\mathcal{M}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{M}_n is a bi-graded S_n -module.

Definition

For $f \in \Lambda_{\mathbb{Q}(q,t)}$ we define the **Delta operators** as $\Delta_f \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)} \colon H_\mu \mapsto f[B_\mu]H_\mu$ $\Delta'_f \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)} \colon H_\mu \mapsto f[B_\mu - 1]H_\mu$ Super-diagonal coinvariants and Δ_f Let $R \coloneqq \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n, \theta_1, \ldots, \theta_n]$ where $\theta_i \theta_j = -\theta_j \theta_i$. Consider again the diagonal action of S_n on R and let I be the ideal generated by the constant free invariants of this action.

$$\mathcal{M}_n \coloneqq R/I$$

R is bi-graded, I is homogeneous and invariant so \mathcal{M}_n is a bi-graded S_n -module.

Definition

For $f \in \Lambda_{\mathbb{Q}(q,t)}$ we define the **Delta operators** as $\Delta_f \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)} \colon H_\mu \mapsto f[B_\mu]H_\mu$ $\Delta'_f \colon \Lambda_{\mathbb{Q}(q,t)} \to \Lambda_{\mathbb{Q}(q,t)} \colon H_\mu \mapsto f[B_\mu - 1]H_\mu$

Conjecture (Zabrocki)

The bi-graded Frobenius characteristic of the submodule of \mathcal{M}_n in θ -degree k is $\Delta'_{e_{n-k-1}}e_n$.

Conjecture (Haglund-Remmel-Wilson)

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

Conjecture (Haglund-Remmel-Wilson)

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

 $\mathsf{LD}(n)^{*k}$: labelled Dyck paths of size n with k decorated rises

Conjecture (Haglund-Remmel-Wilson)

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

Area: number of whole squares between the path and y = x and in rows not containing decorated rises.

Conjecture (Haglund-Remmel-Wilson)

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

Dinv, x^D : same as for the undecorated case

Conjecture (Haglund-Remmel-Wilson)

$$\Delta'_{e_{n-k-1}}e_n = \sum_{D \in \mathsf{LD}(n)^{*k}} q^{\mathsf{dinv}(D)} t^{\mathsf{area}(D)} x^D$$

Definition

For $f \in \Lambda_{\mathbb{Q}(q,t)}$ we define the following operators on $\Lambda_{\mathbb{Q}(q,t)}$

$$\mathbf{\Pi} \coloneqq \sum_{i \in \mathbb{N}} (-1)^i \Delta_{e_i} \qquad \Theta_f \coloneqq \mathbf{\Pi} f\left[\frac{X}{(1-q)(1-t)}\right] \mathbf{\Pi}^{-1}$$

Theorem (D'Adderio-Iraci-Vanden Wyngaerd)

$$\Theta_{e_k} \nabla e_{n-k} = \Delta'_{e_{n-k-1}} e_n$$

The Compositional Delta Conjecture

Conjecture (D'Adderio-Iraci-Vanden Wyngaerd)

$$\Theta_{e_k} \nabla C_{\alpha} = \sum_{D \in \mathsf{LD}(\alpha)^{*k}} q^{\operatorname{dinv}(D)} t^{\operatorname{area}(D)} x^D$$

 $LD(\alpha)^{*k}$: labelled decorated Dyck paths with diagonal composition α . Rows containing decorated rises do not count.

$$\alpha = (\mathbf{4},\mathbf{2})$$

7 / 8

Theorem (D'Adderio-Iraci-Vanden Wyngaerd)

We have the combinatorial recursion, for a, k > 0,

$$\mathsf{D}_{q,t}(a,\alpha)^{*k} = t^{a-1} \sum_{\beta \vDash a-1} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)^{*k} + t^{a-1} \sum_{\beta \vDash a} q^{\ell(\alpha)} \mathsf{D}_{q,t}(\alpha,\beta)^{*k-1}$$

with initial conditions $\mathsf{D}_{q,t}(\varnothing)^{*k} = \delta_{k,0}$ and $\mathsf{D}_{q,t}(\alpha)^{*0} = \mathsf{D}_{q,t}(\alpha)$.

Towards a Theta Conjecture

▶ Algebra side: diagonal coinvariants of

$$R := \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n, \theta_1, \dots, \theta_n, \eta_1, \dots, \eta_n]$$

where $\theta_i \theta_j = -\theta_j \theta_i$ and $\eta_i \eta_j = -\eta_j \eta_i$ in θ -degree k and η -degree l.

- Symmetric function side: $\Theta_{e_k} \Theta_{e_l} \nabla e_{n-k-l}$.
- Combinatorial side: labelled Dyck paths with decorated rises and valleys. Statistics?

Thank you for your attention!

t^3			
t^2			
t	qt	q^2t	
1	q	q^2	q^3

For $f \in \Lambda_{\mathbb{Q}(q,t)}$ we set $f[B_{\mu}]$ to be fevaluated in the content of this picture