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Motivation: projective representations of Sn

• A projective representation of Sn is an homomorphism

ρ : Sn −→ PGL(V ) = GL(V )/〈id〉. This may be regarded as a

linear representation of the spin group S̃n (double cover of Sn).

• “Non-trivial” conjugacy classes ←→ odd partitions of n.

• Irreducible representations “←→ ” shifted diagrams of λ a strict

partition of n.

• Some of its characters ζλ are informed by Schur Q-functions:

Qλ(x) =
1

n!

∑
µ`n
µ odd

2d
`(λ)+`(µ)

2
ecµζ

λ
µpµ(x)

See also: [Stembridge ’89, Hoffman, Humphreys ’92, Matsumoto, Śniady ’19]
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Motivation: Schur P- and Q-functions

• Q-functions Qλ were first introduced by [I. Schur, 1911] as Pfaffians

of certain skew symmetric matrices indexed by strict partitions.

• They are special cases of Hall-Littlewood symmetric functions.

• A combinatorial definition was due to [Stembridge ’89] in terms of

shifted tableaux.

• Scaled to define Schur P-functions: Pλ = 2−`(λ)Qλ.

• Both Schur P- and Q-functions are symmetric and they constitute a

basis for the subalgebra Ω of the symmetric functions generated by

the odd degree power sums.
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Shifted Tableaux

• A strict partition is a sequence of non-negative integers

λ = (λ1 > . . . > λk).They are represented by shifted diagrams

(skew shapes defined as expected):

λ = (5, 4, 1)

• Primed alphabet [n]′={1′<1 <. . .<n′<n}.
• A (semistandard) shifted tableau is a filling

of a shifted shape λ/µ with letters of [n]′ such

that:

• Every row and every column is weakly

increasing.

• There is at most one i per column and one i ′

per row, for all i .

• Canonical form: the first i is unprimed.

T = 1 1 1 1 3′

2 2 2 3′

3

wt(T ) = (4, 3, 3)

w(T ) = 32223′11113′

xwt(T ) = x4
1 x

3
2 x

3
3
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Shifted Tableaux

• Back to Schur Q-functions:

Qλ(x) =
∑
T

xwt(T )

where the sum is over all semistandard shifted tableaux of shape λ

(not just in canonical form). Same definition for skew shapes λ/µ.

• Many well-known algorithms for Young tableaux have a shifted

analogue:

• Jeu-de-taquin [Worley ’84, Sagan ’87]

• Insertion algorithm, RSK [idem]

• Evacuation, reversal [Worley ’84, Thomas, Yong ’09, Choi, Nam, Oh ’17]

• Tableau switching [Choi, Nam, Oh ’17]
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Shifted LR rule

• A tableau of shape λ/µ and weight ν is said to be

Littlewood-Richardson-Stembridge (LRS) if it rectifies to Yν
(unique tableau of shape and weight ν). The number of such tableaux f λµν
is called the shifted Littlewood-Richardson coefficient.

• For λ = (6, 5, 2, 1), µ = (4, 2) and ν = (4, 3, 1), we have the

following LRS tableaux:

1′ 1

1 1 2′

2 2

3

1 1

1 2 2

1 2

3

1 1

1 2′ 2

1 2

3

1 1

1′ 2′ 2

1 2

3

hence f λµν = 4.
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Shifted LR rule

• Shifted LR coefficients are structure constants of the following linear

expansions, concerning bases of Ω:

PµPν =
∑
λ

f λµνPλ Qλ/µ =
∑
ν

f λµνQν

• They also appear in the context of orthogonal Grassmannian

OG (2n + 1, n)

τµτν =
∑
λ

f λµντλ

where τµ is a Schubert class in the cohomology ring of the

orthogonal Grassmannian.

λ = (4, 2) λ
∨ = (3, 1)

(Shifted diagrams live in an ambient triangle)
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Shifted LR coefficients and its symmetries

Like the LR coefficients for the product of Schur functions, the shifted

analogue exhibit symmetries under the action of S3 on the triple

(µ, ν, λ). Let fµνλ := f λ
∨

µν

• fµνλ = fνµλ (commutativity) −→ P-functions product

PµPν =
∑
ν
f λµνPλ or shifted tableau switching.

−→
µ

ν

λ∨

ν
µ

λ∨

• fµνλ = fλνµ −→ shifted reversal (together with a “reflection”).

−→
µ

ν

λ∨

λ∨
ν

µ

These two may be combined to obtain other symmetries.
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Type A crystals

• A Kashiwara crystal of type A (for GLn) is a non-empty set B
together with partial maps ei , fi : B −→ B, lenght functions

εi , φi : B −→ Z, for i ∈ I = [n − 1], and weight function

wt : B −→ Zn satisfying the axioms:

(K1) For x , y ∈ B, ei (x) = y iff fi (y) = x . In that case,

• (εi (y), φi (y)) = (εi (x)− 1, φi (x) + 1)

• wt(y) = wt(x) + αi

(K2) For x ∈ B, φi (x)− εi (x) = 〈wt(x), αi 〉
(αi = ei − ei+1 for i ∈ I , where {ei} canonical base of Rn)

• This may be regarded as a directed graph, with vertices in B and

i-colored edges y
i−→x iff fi (y) = x , for i ∈ I .
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Type A crystals

• Semistandard Young tableaux (SSYT) of a given shape, in the

alphabet [n], have a Kashiwara type A crystal structure, with

coplactic1 operators ei and fi . This crystal is isomorphic to the

crystal basis of a Uq(gln)-module.

• The Schützenberger involution is defined on the type A crystal B
of SSYT of shape λ on alphabet [n] as the unique map ξ : B −→ B
such that, for i ∈ I = [n − 1]:

• eiξ(x) = ξfn−i (x)

• fiξ(x) = ξen−i (x)

• wt(ξ(x)) = ω{1,...,n} · wt(x)

1i.e. they commute with the jeu de taquin.
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Type A crystals

• The Schützenberger involution “flips” the crystal graph upside down

(reverting the orientation of the arrows and its colors).

• For Young tableaux, it is realized by the evacuation (for normal

shapes) or the reversal (the coplactic extension of the evacuation)

involution.

2

1 3

1

1 1 2

2 1 3

1

1 1 2

3 1 1

2

1 3 3

2 1 1

2

1 1 1

2 3 3

2

switching evac switching
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Group actions on crystals

λ = (3, 1), I = {1, 2}

• In type A tableau crystals, there is an action of Sn,

where the action of the simple transpositions si is

realized by the crystal reflection operators σi , that

corresponds to the restriction of the Schützenberger

involution (or reversal) to the letters i and i + 1.

• To obtain this restriction:

• Temporarily forget about the letters different from i

and i + 1, obtaining a skew tableau.

• Apply the Schützenberger involution to the obtained

tableau.

• Put the letters back again.

σ2 : 1 2 3

2

1 2 3

2

1 3 3

2

1 3 3

2

η
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Group actions on crystals

λ = (3, 1), I = {1, 2}

• These involutions take every string of color i to itself,

“reflecting” it through the middle of the string:

1 2 2

2

1 2 3

2

1 3 3

2

1 3 3

3

2 2 2

σ2

σ2
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The internal action of the cactus group on type A crystals

The n-fruit cactus group Jn is generated by sp,q, for 1 ≤ p < q ≤ n,

subject to the following relations:

1. s2
p,q = id .

2. sp,qsk,l = sk,l sp,q for {p, . . . , q} ∩ {k , . . . , l} = ∅.
3. sp,qsk,l = sp+q−l,p+q−ksp,q for {k , . . . , l} ⊆ {p, . . . , q}.

• For n = 3,

J3 = 〈s1,2, s1,3, s2,3|s2
1,2 = s2

2,3 = s2
2,3 = 1, s1,3s1,2 = s2,3s1,3〉.

• Surjection Jn � Sn, sp,q 7→ ω{p,...,q}.

• Acts internally on type A tableau crystals through the restriction of

the Schützenberger involution to letters {p<. . .<q} [Halacheva ’16].
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Shifted crystals

• [Gillespie, Levinson, Purbhoo ’17] introduced a type A “crystal-like”

structure for shifted tableaux. Let B(λ/µ, n) be the set of

semistandard shifted tableaux of shape λ/µ in the alphabet [n]′ and

index set I = [n − 1] together with:

• Primed and unprimed operators: Ei ,E
′
i ,Fi ,F

′
i , defined by rules, for

i ∈ I (commute with jeu de taquin)

• Lenght functions: εi (ε̂i , ε
′
i ) and φi (φ̂i , φ

′
i ), for i ∈ I .

• Weight function: wt(T ).

• This shifted crystal may be regarded as a directed graph, with

vertices in B(λ/µ, n) and i-colored edges, for i ∈ I :

• x−→y iff Fi (x) = y iff Ei (y) = x .

• x99Ky iff F ′i (x) = y iff E ′i (y) = x .

Unlike type A tableau crystals, there are two possible arragements

for i-colored strings:

•
•

•

•

•

•

•
•
• • • • •
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Shifted crystals

λ = (2, 1), I = {1, 2, 3}

• Taking primed and unprimed operators

independently yields Kashiwara type A

crystals.

• B(λ, n) has a unique highest weight and

lowest weight elements: Yλ and its

evacuation. Any shifted tableau of this shape

and alphabet can be obtained from these.

• The character of B(λ/µ, n) is the Schur

Q-function Qλ/µ(x1, . . . , xn).

• B(λ/µ, n) '
⊔
ν
B(ν, n)f

λ
µν .

• Taking characters of the connected

components, it yields

Qλ/µ =
∑
ν

f λµνQν
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Shifted crystals

• The Schützenberger involution is defined in B(λ, n) as the unique

map η : B(λ, n) −→ B(λ, n) such that, for 1 ≤ i ≤ n − 1:

• E ′i η(T ) = ηF ′n−i (T ), Eiη(T ) = ηFn−i (T ).

• F ′i η(T ) = ηE ′n−i (T ), Fiη(T ) = ηEn−i (T ).

• wt(η(T )) = ω{1,...,n} · wt(T ).

• It it realized by the shifted evacuation or shifted reversal.

1 1 1′ 2′

2 1 2

2 3

1 1 2′ 2

2 3 1

1 2

1 2′ 2 3

2 3 1

1 2

1 1 1 2′

2 2 2

3 3

shifted

switching

shifted

switching

shifted

evacuation
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Shifted crystals

• The shifted reflection operators σi may be defined using the

crystal operators E ′i ,Ei ,F
′
i ,Fi .

• It corresponds to the restriction of the Schützenberger involution to

the letters i ′, i , (i + 1)′, (i + 1).

• Acts as si ∈ Sn on the weight of a tableau (in particular, it shows that

Q-functions are symmetric functions).

• Acts on strings by “double” reflection, through the vertical and

horizontal middle axis (or rotation by π).

•
•

•

•

•

•

•
•
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Shifted crystals

• We have σ2
i = 1 and σiσj = σjσi , for |i − j | ≥ 2.

• However, unlike the type A, the involutions σi do not realize an

action of Sn on B(λ, n), since the braid relations may not hold:

σ1σ2σ1( 1 1 1 1 3′

2 2 3′

3

) = 1 1 1 2 3

2 3′ 3

3

σ2σ1σ2( 1 1 1 1 3′

2 2 3′

3

) = 1 1 1 2′ 3′

2 3′ 3

3
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A cactus group action on B(λ, n)

λ= (2, 1), I ={1, 2, 3}

• The restriction of the Schützenberger

involution to the letters {p, . . . , q}′ ⊆ [n]′,

ηp,q, defines an action of the n-fruit cactus

group in B(λ, n):

sp,q · T = ηp,q(T ).

• Consider the subgraph Bp,q, obtained from

B(λ, n) considering only the vertices in which

the letters {p, . . . , q}′ appear and the edges

colored in {p, . . . , q − 1}.
• Then ηp,q acts on the connected components

of Bp,q regarding its vertices as skew shifted

tableaux on the alphabet {p, . . . , q}′.
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A cactus group action on B(λ, n)

λ= (2, 1), I ={1, 2, 3}, action of s2,4

• The restriction of the Schützenberger

involution to the letters {p, . . . , q}′ ⊆ [n]′,

ηp,q, defines an action of the n-fruit cactus

group in B(λ, n):

sp,q · T = ηp,q(T ).

• Consider the subgraph Bp,q, obtained from

B(λ, n) considering only the vertices in which

the letters {p, . . . , q}′ appear and the edges

colored in {p, . . . , q − 1}.
• Then ηp,q acts on the connected components

of Bp,q regarding its vertices as skew shifted

tableaux on the alphabet {p, . . . , q}′.
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A cactus group action on B(λ, n) (sketch of proof)

• The relations

η2
p,q = id

ηp,qηk,l = ηk,lηp,q for {p, . . . , q} ∩ {k , . . . , l} = ∅

are trivial.

• For the relation

sp,qsk,l = sp+q−l,p+q−ksp,q for {k , . . . , l} ⊆ {p, . . . , q}

if suffices to show that

η1,nηp,q = η1+n−q,1+n−pη1,n

• The subgraph Bp,q is an union of connected components, each one

isomorphic to some B(µ, q − p + 1). Hence, each one has unique

highest and lowest weights.

• η = η1,n takes each connected component B0
p,q to another

B0
1+n−q,1+n−p. Moreover, the highest weight of the former is sent to

the lowest weight of the latter.
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)

η1,4(T ) =
2 3

4
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)

η1,4(T ) =
2 3

4

η1,3η1,4(T ) =
1 2

4
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)

η1,4(T ) =
2 3

4

η1,3η1,4(T ) =
1 2

4

η2,4(T ) =
1 3

4
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)

η1,4(T ) =
2 3

4

η1,3η1,4(T ) =
1 2

4

η2,4(T ) =
1 3

4

η1,4η2,4(T ) =
1 2

4
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A cactus group action on B(λ, n) (sketch of proof)

T =
1 2

3
∈ B((2, 1), 4)

η1,4(T ) =
2 3

4

η1,3η1,4(T ) =
1 2

4

η2,4(T ) =
1 3

4

η1,4η2,4(T ) =
1 2

4
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An application to the symmetries of shifted LR coefficients

• In particular, we have si,i+1 · T = σi (T ).

• The action of s1,n coincides with the

Schützenberger involution in B(λ/µ, n).

• For T a LRS tableau,

s1,n · T = σi1 . . . σik (T )

where ω{1,...,n} = si1 . . . sik is the longest

permutation in Sn.

• It exhibits the symmetry fµνλ = fλνµ (after

“reflection”).
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Thank you!
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