Simplectic Keys and Demazure atoms in type *C*: A frank discussion

João Miguel Magalhães Santos

CMUC, University of Coimbra

Séminaire Lotharingien de Combinatoire 83 Bad Boll, September 1-4, 2019

Overview

- Weyl group of type C: tableau criterion for Bruhat order
- Type C Crystals
- Oemazure crystal and Demazure atom crystal
- Key tableaux and frank words in type C
- Lusztig involution

Notation

- $n \in \mathbb{N}_{>0}$;
- $[n] := \{1 < \dots < n\}$ and $[\pm n] := \{1 < \dots < n < -n < \dots < -1\};$
- Vector: element of \mathbb{Z}^n ;
- Word: tuple with entries in $[\pm n]$.

Weyl group of type C

Hyperoctahedral goup

Definition

The hyperoctahedral group is a Coxeter group with the following presentation:

$$B_n \cong \langle s_1, \dots, s_{n-1}, s_n | s_i^2 = 1, 1 \le i \le n; (s_i s_{i+1})^3 = 1, 1 \le i \le n-2;$$

$$(s_{n-1} s_n)^4 = 1;$$

$$(s_i s_j)^2 = 1, 1 \le i < j \le n, |i-j| > 1 \rangle.$$

$$\mathfrak{S}_n = \langle s_1, \dots, s_{n-1} \rangle \leq B_n$$

 $|B_n| = 2^n n!$

Weyl group of type C

Bruhat order

Definition

Let $w \in B_n$ with reduced decomposition $\sigma_1 \dots \sigma_k$, where σ_i are generators of B_n , and u be two elements in B_n . Then

$$u \leq w \overset{\mathsf{def}}{\Leftrightarrow} \exists 1 \leq i_1 < i_2 \cdots < i_{k'} \leq k \, \mathsf{such that}$$

$$u = \sigma_{i_1} \sigma_{i_2} \dots \sigma_{i_{k'}}.$$

Example

 $s_1s_2s_4\leq s_1s_2s_1s_4s_3$

There is a biggest element of B_n , denoted as ω_0 , known as the longest element.

Weyl group of type C

Actions on vectors

Let
$$v = (v_1, v_2, \dots, v_n) \in \mathbb{Z}^n$$
.

•
$$vs_i = (v_1, \ldots, v_{i+1}, v_i, \ldots, v_n)$$
 if $i \in [n-1]$;

•
$$vs_n = (v_1, \ldots, v_{n-1}, -v_n);$$

•
$$v\omega_0 = (-v_1, -v_2, \dots, -v_n).$$

Define
$$x^{\nu} = x_1^{\nu_1} \dots x_n^{\nu_n}$$
.
 s_i acts on $\mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ by $(x^{\nu})s_i = x^{\nu s_i}$.

Young diagram

Definition (Partition)

A vector $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ is a partition if $\lambda_1 \geq \dots \geq \lambda_n \geq 0$.

Young diagram of shape $\lambda = (4, 4, 2, 0)$, n = 4:

Semi Standard Young Tableau

Definition (Semi Standard Young Tableaux)

A semi standard Young tableau (SSYT) of shape λ is a filling of the boxes of the Young diagram of shape λ with elements from a ordered alphabet such that they are non-decreasing in each row and strictly increasing in each column.

$$T = \begin{bmatrix} 1 & 1 & 1 & 1 & 3 \\ 3 & 3 & 3 & 3 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$
. T is a SSYT, sh(T) = (4, 4, 2, 0), $wtT = (3, 0, 4, 3)$.

The (column) reading word of the tableau T, or word of T, is $wr(T) = 34\,13\,134\,134$.

The (column) insertion algorithm constructs a tableau from a given word. The insertion map is not injective and is the left inverse of the reading map.

Symplectic tableaux: Kashiwara-Nakashima tableaux

Admissible columns - Sheats, 1999

A column is a word whose letters are strictly increasing according to the alphabet $[\pm n] = \{1 < 2 < \cdots < n < \overline{n} < \cdots < \overline{1}\}.$

$$C_{1} = \begin{bmatrix} \frac{2}{4} \\ \frac{5}{5} \\ \frac{\overline{5}}{4} \end{bmatrix} & 0 & 2 & 0 & 4 & 5 \\ 0 & 0 & 0 & \overline{4} & \overline{5} \\ \hline 2 & 0 & 0 & 0 & \overline{4} & \overline{5} \\ \hline 3 & 0 & 0 & \overline{3} & \overline{4} & 0 \\ \hline 4 & \overline{4} & \overline{5} \\ \hline 3 & 0 & 0 & \overline{3} & \overline{4} & 0 \\ \hline 6 & \overline{5} & \overline{1} & 0 & 0 & 0 & \overline{5} \\ \hline 6 & \overline{1} & 0 & 0 & 0 & \overline{5} \\ \hline 6 & 0 & 0 & 0 & \overline{5} & \overline{1} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & \overline{5} \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 \\ \hline 7 & 0 & 0 & 0 & 0 \\ \hline 7 &$$

A column is an admissible column if the diagram is such that there is a matching which sends each full slot to an empty slot to its left.

$$\ell C_{1} = \begin{bmatrix} \frac{1}{2} \\ \frac{2}{3} \\ \frac{\overline{5}}{4} \end{bmatrix} \xrightarrow{\begin{array}{c} 1 & 2 & 3 & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \overline{4} & \overline{5} \end{array}} rC_{1} = \begin{bmatrix} \frac{2}{4} \\ \frac{5}{5} \\ \overline{3} \\ \overline{1} \end{bmatrix} \xrightarrow{\begin{array}{c} \emptyset & 2 & \emptyset & 4 & 5 \\ \overline{1} & \emptyset & \overline{3} & \emptyset & \emptyset \end{array}} \ell C_{3} = C_{3} = rC_{3}$$

Symplectic tableaux: Kashiwara-Nakashima tableaux

KN tableaux

Let T be a tableau with all columns admissible. spl(T) is the tableau obtained after replacing each column C by the columns ℓC and rC. T is a Kashiwara-Nakashima (KN) tableau if spl(T) is a SSYT.

Example

$$T_1 = \begin{bmatrix} \frac{3}{3} & \frac{3}{3} \\ \hline \frac{3}{1} & \frac{3}{3} \end{bmatrix}, \ spl(T_1) = \begin{bmatrix} \frac{2}{3} & \frac{3}{2} & \frac{3}{2} \\ \hline \frac{3}{1} & \overline{1} \end{bmatrix} \text{ is not a KN tableau.}$$

$$T_2 = \begin{bmatrix} \frac{2}{3} & \frac{3}{2} \\ \hline \frac{3}{2} & \overline{2} \end{bmatrix}, \ spl(T_2) = \begin{bmatrix} \frac{1}{2} & \frac{3}{3} & \overline{3} \\ \hline \frac{3}{3} & \overline{2} & \overline{2} \end{bmatrix} \text{ is a KN tableau; } wt(T_2) = (0, -1, 2)$$

For KN tableaux there also exists an insertion algorithm that is the inverse of the reading map.

Symplectic Key Tableaux

Definition (Key tableau)

A key tableau is a KN tableau with nested columns and with no symmetric entries.

There is a bijection between symplectic key tableaux in the alphabet $[\pm n]$ and \mathbb{Z}^n .

Consider
$$v = (-4, 0, 2, 4)$$
.

$$K(v) = \begin{array}{c|c} 3 & 3 & 4 & 4 \\ \hline 4 & 4 & \overline{1} & \overline{1} \\ \hline \overline{1} & \overline{1} \end{array}.$$

Tableau criterion for Bruhat order

Proposition

Let $v_1, v_2 \in \mathbb{Z}^n$ such that $v_1, v_2 \in \lambda B_n$. Let $\sigma, \rho \in B_n$ minimal such that $\lambda \sigma = v_1$ and $\lambda \rho = v_2$. Then $\sigma \leq \rho \Leftrightarrow K(v_1) \leq K(v_2)$

$$\lambda = (n, n - 1, ..., 1), \ \sigma = s_1 s_2 s_4 \le \rho = s_1 s_2 s_1 s_4 s_3.$$

$$\lambda \sigma = (3, 2, 4, \overline{1}) \text{ and } \lambda \rho = (2, 3, \overline{1}, 4).$$

$$K(\lambda \sigma) = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & 2 & 3 \end{bmatrix} \le \begin{bmatrix} 1 & 1 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix} = K(\lambda \rho)$$

Knuth relations/plactic monoid in type A

Knuth equivalence in type A is the equivalence relation that identifies words in the alphabet [n] with the same insertion tableau. It is the symmetric and transitive closure of the relations

K1:
$$\gamma\beta\alpha\sim\beta\gamma\alpha$$
, where $\gamma<\alpha\leq\beta$

K2:
$$\alpha\beta\gamma\sim\alpha\gamma\beta$$
, where $\gamma\leq\alpha<\beta$

Knuth-equivalent words have the same weight.

Knuth relations/plactic monoid in type C (Lecouvey, 2002)

Knuth equivalence in type C is the equivalence relation that identifies words in the alphabet $[\pm n]$ with the same insertion tableau. It is the symmetric and transitive closure of the relations

- K1: $\gamma \beta \alpha \sim \beta \gamma \alpha$, where $\gamma < \alpha \leq \beta$ and $(\beta, \gamma) \neq (\overline{x}, x)$;
- K2: $\alpha\beta\gamma \sim \alpha\gamma\beta$, where $\gamma \leq \alpha < \beta$ and $(\beta, \gamma) \neq (\overline{x}, x)$;
- K3: $\overline{y}y\beta \sim y + 1\overline{y+1}\beta$, where $y < \beta < \overline{y}$;
- K4: $\beta \overline{y}y \sim \beta y + 1 \overline{y+1}$, where $y < \beta < \overline{y}$;
- K5: $w \sim w \setminus \{z, \overline{z}\}$, where w is non admissible column, but any of its factors form admissible columns, and z is minimal such that z and \overline{z} appear in w and there are more than z letters in w with absolute value less or equal than z.

Knuth-equivalent words have the same weight.

Knuth relations/plactic monoid in type *C* (Lecouvey, 2002)

Knuth equivalence in type C is the equivalence relation that identifies words in the alphabet $[\pm n]$ with the same insertion tableau. It is the symmetric and transitive closure of the relations

- K1: $\gamma \beta \alpha \sim \beta \gamma \alpha$, where $\gamma < \alpha \leq \beta$ and $(\beta, \gamma) \neq (\overline{x}, x)$;
- K2: $\alpha\beta\gamma\sim\alpha\gamma\beta$, where $\gamma\leq\alpha<\beta$ and $(\beta,\gamma)\neq(\overline{x},x)$;
- K3: $\overline{y}y\beta \sim y + 1\overline{y+1}\beta$, where $y < \beta < \overline{y}$;
- K4: $\beta \overline{y}y \sim \beta y + 1 \overline{y+1}$, where $y < \beta < \overline{y}$;
- K5: $w \sim w \setminus \{z, \overline{z}\}$, where w is non admissible column, but any of its factors form admissible columns, and z is minimal such that z and \overline{z} appear in w and there are more than z letters in w with absolute value less or equal than z.

Knuth-equivalent words have the same weight.

$$2\overline{2}2\overline{1} \xrightarrow{K3} \overline{1}12\overline{1} \xrightarrow{K5} \overline{1}2$$

Kashiwara Crystal

Definition

Let Φ be a root system with simple roots $\{\alpha_i \mid i \in I\}$ in an Euclidian vector space V. A Kashiwara crystal of type Φ is a nonempty set \mathfrak{B} together with maps:

$$e_i, f_i : \mathfrak{B} \to \mathfrak{B} \sqcup \{0\}$$
 $\varepsilon_i, \varphi_i : \mathfrak{B} \to \mathbb{Z} \sqcup \{-\infty\}$ $wt : \mathfrak{B} \to \Lambda \subseteq V$

such that

- If $a, b \in \mathfrak{B}$ then $e_i(a) = b \Leftrightarrow f_i(b) = a$. In this case, we also have $wt(b) = wt(a) + \alpha_i$, $\varepsilon_i(b) = \varepsilon_i(a) 1$ and $\varphi_i(b) = \varphi_i(a) + 1$;
- ② for all $a \in \mathfrak{B}$, we have $\varphi_i(a) = \langle wt(a), \frac{2\alpha_i}{\langle \alpha_i, \alpha_i \rangle} \rangle + \varepsilon_i(a)$.

$$\varphi_i(a) = \max\{k \in \mathbb{Z} \ge 0 \mid f_i^k(a) \ne 0\} \text{ and }$$

$$\varepsilon_i(a) = \max\{k \in \mathbb{Z} \ge 0 \mid e_i^k(a) \ne 0\}$$

Highest weight element: $u \in \mathfrak{B}$ such that $e_i(u) = 0$ for all $i \in I$.

Lowest weight element: $u \in \mathfrak{B}$ such that $f_i(u) = 0$ for all $i \in I$.

Cristal graph: \mathfrak{B} is the vertex set and $b \stackrel{i}{\rightarrow} b'$ iff $b'_{i} = f_{i}(b)$, $i \in I$

Kashiwara Crystal

Given $n \in \mathbb{N}$ and a partition λ with at most n parts, the KN tableaux of shape λ on the alphabet $[\pm n]$ form a connected crystal \mathfrak{B}^{λ} with highest weight $K(\lambda)$ and lowest weight $K(\lambda\omega_0)$.

Proposition

Let $i \in [n]$ and $\varphi_i(v) \neq 0$. $v \stackrel{Knuth}{\simeq} w$ iff $f_i(v) \stackrel{Knuth}{\simeq} f_i(w)$.

Example of crystal: $\mathfrak{B}^{(2,1)}$ (Type A)

$$\rightarrow f_1$$

$$s_{(2,1)}(\mathbf{x}) = x_1^2 x_2^1 + x_1^1 x_2^2$$

Example of crystal: $\mathfrak{B}^{(2,1)}$ (Type C)

Demazure crystal and Demazure atom crystal in type C

Given X a subset of the crystal \mathfrak{B}^{λ} , we define the operator \mathfrak{D}_i on X, $i \in [n]$:

$$X\mathfrak{D}_i = \{x \in \mathfrak{B}^{\lambda} \mid e_i^k(x) \in X \text{ for some } k \geq 0\}.$$

Let $v = \lambda \sigma$ where $\sigma \in B_n$ is minimal with reduced decomposition $s_{i_1} \dots s_{i_k}$. The Demazure Crystal $\mathfrak{B}_v := \{K(\lambda)\}\mathfrak{D}_{i_1} \dots \mathfrak{D}_{i_k}$. Since $e_i^0(x) = x$, we have that if $\rho \leq \sigma$ then $\mathfrak{B}_{\lambda \rho} \subseteq \mathfrak{B}_{\lambda \sigma}$. The Demazure Atom Crystal is $\hat{\mathfrak{B}}_v = \hat{\mathfrak{B}}_{\lambda \sigma} := \mathfrak{B}_{\lambda \sigma} \setminus \bigcup_{\rho \leq \sigma} \mathfrak{B}_{\lambda \rho}$.

Definition

Type
$$C$$
 Key polinomial: $K_{\lambda\sigma}(x) := \sum_{T \in \mathfrak{B}_{\lambda\sigma}} x^{\operatorname{wt} T}$
Type C Demazure atom: $\hat{K}_{\lambda\sigma}(x) := \sum_{T \in \hat{\mathfrak{B}}_{\lambda\sigma}} x^{\operatorname{wt} T}$

Demazure crystal - Example $\mathfrak{B}_{\lambda} = \hat{\mathfrak{B}}_{\lambda}$

$$\rightarrow f_1$$

$$\rightarrow f_2$$

$$K_{(2,1)}(x) = \hat{K}_{(2,1)}(x) = x_1^2 x_2$$

Demazure crystal - Example $\mathfrak{B}_{\lambda s_1}$

$$\rightarrow f_1$$

$$\rightarrow f_2$$

$$K_{(1,2)}(x) = x_1^2 x_2 + x_2^2 x_1$$

Demazure crystal - Example $\mathfrak{B}_{\lambda s_1 s_2}$

$$\rightarrow f_1$$

$$\rightarrow f_2$$

$$K_{(1,\overline{2})}(x) = \sum_{T \in \mathfrak{B}_{(1,\overline{2})}} x^{wt T}$$

Demazure crystal - Example $\mathfrak{B}_{\lambda s_1 s_2 s_1}$

Demazure atom crystal - Example $\hat{\mathfrak{B}}_{\lambda s_1 s_2 s_1}$

$$\begin{array}{c} \frac{1}{2}\bar{1} \\ \frac{1}{2}\bar{1} \\ \downarrow \\ \frac{2}{2}\bar{1} \\ \downarrow \\ \frac{2}{1}\bar{1} \end{array}$$

$$\hat{\mathcal{K}}_{(\overline{2},1)}(x) = \sum_{T \in \hat{\mathfrak{B}}_{(\overline{2},1)}} x^{wt \ T}$$

Frank words in type C

Lascoux-Schützenberger, 1988, in type A

The column decomposition of a word w is the tuple of maximal subwords of w that are columns.

Example

$$T = \begin{bmatrix} 2 & 2 \\ \hline 2 \end{bmatrix}$$
, $w = wr(T) = 22\overline{2}$. Columns of $w: 2, 2\overline{2}$

Proposition

Consider a KN tableau T and w = wr(T) and consider the sequence of column lengths.

For every permutation of those lengths there is a word w' Knuth-equivalent to w with that sequence of column lengths.

Such a word w' is said to be a frank word.

Frank word - Examples

Example

$$T = \frac{\boxed{2} \boxed{2}}{\boxed{2}}, w = 22\overline{2}$$
 has column lengths $(1,2)$.

 $22\overline{2} \xrightarrow{K4} 2\overline{1}1 = w'$ has column lengths (2, 1), so it is a frank word.

Example

$$T = \begin{bmatrix} 1 & 1 \\ 2 & \\ 3 & \end{bmatrix}$$
 $w = 1123$ has column lengths $(1,3)$.

 $\underline{1123} \xrightarrow{K2} 1213$ has column lengths (2, 2), hence it is not a frank word.

 $1213 \xrightarrow{K2} 1231$ has column lengths (3,1), hence it is a frank word.

João Santos (CMUC)

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4) Fill the Young diagram with the right column of each split.

$$T = \overline{\left| \begin{array}{c|c} 1 & 2 \\ \overline{2} \end{array} \right|}$$
, wr $(T) = 21\overline{2}$

$$K_+(T) =$$

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4)Fill the Young diagram with the right column of each split.

$$K_+(T) =$$

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of T find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4)Fill the Young diagram with the right column of each split.

$$C_2 = \boxed{\frac{2}{\overline{2}}}$$

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4) Fill the Young diagram with the right column of each split.

$$K_{+}(T) =$$
 $C_{1} = \begin{bmatrix} 2 & \emptyset & 2 \\ \emptyset & \emptyset \end{bmatrix}$ hence $rC_{1} = C_{1}$

$$C_2 = \begin{array}{|c|c|} \hline 2 \\ \hline \hline \hline 2 \end{array}$$

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4) Fill the Young diagram with the right column of each split.

$$K_{+}(T) =$$
 $C_{1} = \boxed{2} \stackrel{\emptyset}{\underset{0}{\circ}} \stackrel{2}{\underset{0}{\circ}} \text{ hence } rC_{1} = C_{1}$

$$C_2 =$$
 $\begin{bmatrix} 2 \\ \overline{2} \end{bmatrix} \stackrel{\emptyset}{}_{0} \stackrel{2}{\overline{2}} \rightarrow \stackrel{\emptyset}{}_{\overline{1}} \stackrel{2}{}_{0}$ hence $rC_2 =$ $\begin{bmatrix} 2 \\ \overline{1} \end{bmatrix}$

Consider a KN tableau T. To construct $K_+(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose first column has that length.
- 3) Split each of those columns.
- 4)Fill the Young diagram with the right column of each split.

Example

$$T = \overline{\left[\frac{1}{2}\right]}$$
, wr $(T) = 21\overline{2} \stackrel{Knuth}{\simeq} 2\overline{2}1$

$$K_{+}(T) = \begin{bmatrix} 2 & 2 \\ \hline 1 \end{bmatrix}$$
 $C_{1} = \begin{bmatrix} 2 & \emptyset & 2 \\ \emptyset & \emptyset \end{bmatrix}$ hence $rC_{1} = C_{1}$

$$C_2 = \begin{bmatrix} \overline{2} \\ \overline{2} \end{bmatrix} \stackrel{\emptyset}{}_{0} \stackrel{2}{\overline{2}} \rightarrow \stackrel{\emptyset}{}_{1} \stackrel{2}{}_{0} \text{ hence } rC_2 = \begin{bmatrix} \overline{2} \\ \overline{1} \end{bmatrix}$$

4□ > 4□ > 4□ > 4 = > = 90

Left Keys

Consider a KN tableau T. To construct $K_{-}(T)$:

- 1) Start with the Young diagram with same shape as T.
- 2) For every column length of \mathcal{T} find a frank word whose last column has that length.
- 3) Split each of those columns.
- 4)Fill the Young diagram with the left column of each split.

Main Theorem

Consider a vector $v \in \mathbb{N}_0^n$. Define $\mathfrak{U}(v) = \{ T \in SSYT(\lambda, n) \mid K_+(T) = K(v) \}$.

Theorem (Lascoux-Schützenberger, 1988)

Consider $v \in \mathbb{N}_0^n$, λ a partition and $\sigma \in \mathfrak{S}_n$ minimal such that $v = \lambda \sigma$. Then

$$\hat{\mathfrak{B}}_{\lambda\sigma} = \{ T \mid K_{+}(T) = K(\lambda\sigma) \} = \mathfrak{U}(\lambda\sigma)
\mathfrak{B}_{\lambda\sigma} = \{ T \in \mathfrak{U}(\lambda\rho) \mid \rho \leq \sigma \}
= \{ T \mid K_{+}(T) \leq K(\lambda\sigma) \}$$

Main Theorem

Consider a vector $v \in \mathbb{Z}^n$.

Define
$$\mathfrak{U}(v) = \{ T \in \mathcal{KN}(\lambda, n) \mid K_{+}(T) = K(v) \}.$$

Theorem (JS, 2019)

Consider $v \in \mathbb{Z}^n$, λ a partition and $\sigma \in B_n$ minimal such that $v = \lambda \sigma$. Then

$$\hat{\mathfrak{B}}_{\lambda\sigma} = \{ T \mid K_{+}(T) = K(\lambda\sigma) \} = \mathfrak{U}(\lambda\sigma)
\mathfrak{B}_{\lambda\sigma} = \{ T \in \mathfrak{U}(\lambda\rho) \mid \rho \leq \sigma \}
= \{ T \mid K_{+}(T) \leq K(\lambda\sigma) \}$$

João Santos (CMUC)

Demazure crystal - Atom Decomposition

Example $B_{\lambda s_1 s_2 s_1}$

Demazure crystal - Atom Decomposition

Example $B_{\lambda s_1 s_2 s_1}$

Lusztig/Schützenberger involution

Let \mathfrak{B}^{λ} be the crystal of KN tableaux of shape λ .

 $L: \mathfrak{B} \to \mathfrak{B}$ is the Lusztig involution if the following holds:

- $e_i(L(T)) = L(f_i(T))$

In type C, $v\omega_0 = -v$, $i \in [n]$.

Example of crystal: $\mathfrak{B}^{(2,1)}$ (Type C)

Lusztig involution and Keys

Proposition

$$L(K_{+}(T)) = K_{-}(L(T))$$

Consider
$$T = \begin{bmatrix} 2 & \overline{1} \\ \overline{2} \end{bmatrix}$$
.

Then
$$L(K_+(T)) = L\left(\begin{array}{|c|c|c} \hline 2 & \hline 1 \\ \hline \hline 1 \end{array}\right) = \begin{array}{|c|c|c} \hline 1 & 1 \\ \hline \hline 2 \end{array}$$
.

$$K_{-}(L(T)) = K_{-}\left(\begin{array}{|c|c|c} \hline 1 & 2 \\ \hline \overline{2} \end{array}\right) = \begin{array}{|c|c|c} \hline 1 & 1 \\ \hline \overline{2} \end{array}.$$

Thank you!