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SL
C83A group W with presentation

W = 〈s1, . . . , sn | (si sj )
mij = 1〉,

where
- mii = 1
- mij = mji ∈ Z≥2 ∪ {∞} for i 6= j
(mij = ∞ indicates that there is no relation between si and sj )

is called a Coxeter group. The set S := {s1, . . . , sn} is called set of
simple reflections and the pair (W ,S) is called Coxeter system.

The set R = {wsiw–1 | w ∈ W , 1 ≤ i ≤ n} is called the set of
reflections.

finite Coxeter groups 1:1←→ finite real reflection groups
(An,Bn,Dn,E6,E7,E8,F4,H3,H4, I2(m))
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Example. The symmetric group Sym(n) together with the
generating set

S = {(1, 2), (2, 3), . . . , (n – 1, n)}

is a Coxeter system.

The set of reflections is given by

R = {(i , j) | 1 ≤ i < j ≤ n}.

Example. The infinite dihedral group

Dih∞ = 〈s , t | s2 = t2 = 1〉

is a Coxeter group. The set of reflections is given by the words of
odd length (s, t, sts, tst, ststs , . . .).
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Let (W ,S) be a Coxeter system with set of reflections R .
Associated to the generating sets R and S we have length functions

`R , `S : W → Z≥0.

More precisely, for w ∈ W

`R (w ) := min{k | w = r1 · · · rk , ri ∈ R}
`S (w ) := min{k | w = s1 · · · sk , si ∈ S}

Note that `R (w ) ≤ `S (w ) for all w ∈ W .

A tuple (r1, . . . , rm) ∈ Rm is called a reflection factorization for
w ∈ W if w = r1 · · · rm and it is called a reduced reflection
factorization if m = `R (w ). We denote the set of all reduced
reflection factorizations for w by RedR (w ).
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C83The group

Bm = 〈σ1, . . . , σm–1 | σiσj = σjσi (|i – j| > 1), σiσi+1σi = σi+1σiσi+1〉

is called braid group on m strands (m ∈N).

It acts on the set
Rm by

σi (r1, . . . , ri , ri+1, . . . , rm) = (r1, . . . , ri ri+1ri , ri , . . . , rm),

σ–1
i (r1, . . . , ri , ri+1, . . . , rm) = (r1, . . . , ri+1, ri+1ri ri+1, . . . , rm).

We write (r1, . . . , rm) ∼ (t1, . . . , tm) to indicate that both tuples
are in the same orbit under this action. Note that this action
restricts to reflection factorizations of a given element w ∈ W and
we call it Hurwitz action.

Remark. Let (r1, . . . , rm) ∼ (t1, . . . , tm).
- 〈r1, . . . , rm〉 = 〈t1, . . . , tm〉,
- {{[r1], . . . , [rm]}} = {{[t1], . . . , [tm]}} (multiset of conj. classes).
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Let (W , {s1, . . . , sn}) be a Coxeter system. Then the element

c = sπ(1) · · · sπ(n)

is called a Coxeter element for every π ∈ Sym(n).
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Example. We consider the symmetric group Sym(4) with set of
simple reflections S = {(1, 2), (2, 3), (3, 4)}. Recall that the set of
reflections is given by all transpositions.

The 4-cycle c = (1, 2, 3, 4)
is a Coxeter element and

((1, 2), (2, 3), (3, 4)) ∈ RedR (c).

We have

((1, 2), (2, 3), (3, 4)) ∼ ((1, 2), (3, 4), (2, 4))
∼ ((3, 4), (1, 2), (2, 4)).

We also have
c = (3, 4)(1, 3)(1, 2)(2, 4)(3, 4)

and

((3, 4), (1, 3), (1, 2), (2, 4), (3, 4)) ∼ ((3, 4), (1, 2), (2, 3), (2, 4), (3, 4))
∼ ((3, 4), (1, 2), (2, 4)︸ ︷︷ ︸

∈RedR (c)

, (3, 4), (3, 4)).
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Lemma (Lewis–Reiner 2016). Let (W ,S) be a finite Coxeter
system with set of reflections R and let w ∈ W with `R (w ) = m.
If w = t1 · · · tm+2k with ti ∈ R and k ∈ Z≥0. Then

(t1, . . . , tm+2k ) ∼ (r1, . . . , rm︸ ︷︷ ︸
∈RedR (w )

, ri1 , ri1 , . . . , rik , rik )

for some ri ∈ R .
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C83 Theorem (Lewis–Reiner 2016). In a finite Coxeter group, two

reflection factorizations of a Coxeter element lie in the same or-
bit under the Hurwitz action if and only if they share the same
multiset of conjugacy classes.

That is, if c = r1 · · · rm = t1 · · · tm, then

(r1, . . . , rm) ∼ (t1, . . . , tm) ⇔ {{[r1], . . . , [rm]}} = {{[t1], . . . , [tm]}}.

The two main ingredients of the proof are the previous Lemma of
Lewis and Reiner as well as the following result:

Theorem (Deligne 1974, Igusa–Schiffler 2010). In an arbitrary
Coxeter group, the Hurwitz action is transitive on the set of re-
duced reflection factorizations of a Coxeter element.

Question: Does the Theorem of Lewis and Reiner hold for
arbitrary Coxeter groups?
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Unfortunately, the Lemma of Lewis and Reiner does not hold for
Coxeter groups in general, but...

Lemma (W.–Yahiatene 2019). Let (W ,S) be an arbitrary Cox-
eter system with set of reflections R and let w ∈ W with
`S (w ) = m. If w = t1 · · · tm+2k with ti ∈ R and k ∈ Z≥0.
Then

(t1, . . . , tm+2k ) ∼ (r1, . . . , rm, ri1 , ri1 , . . . , rik , rik )

for some ri ∈ R .

For a Coxeter element c ∈ W we have `S (c) = `R (c). Therefore we
are able to prove...
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Theorem (W.–Yahiatene 2019). In an arbitrary Coxeter group,
two reflection factorizations of a Coxeter element lie in the same
orbit under the Hurwitz action if and only if they share the same
multiset of conjugacy classes.

Corollary. Let (W ,S) be a Coxeter system such that all elements
of S are conjugated (for example, if the Coxeter graph is con-
nected and has a spanning tree with odd labels on all of its edges),
then the Hurwitz action is transitive on equal length reflection fac-
torizations of a Coxeter element.
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Thank you!
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Outlook: Complex reflection groups
- G4,G5 (Z. Peterson)
- the Shephard groups G (p, 1, n) (Lewis, Yahiatene)
- computational evidence for G8 and G20.


