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Introduction

Partitions: A partition of a positive integer n is a weakly decreasing
sequence λ = (λ1, . . . , λ`) of positive integers whose sum is n. We
denote this by writing λ ` n. The empty partition () is the unique
partition of 0; i.e., p(0) = 1.
Now, P(n) := {λ : λ ` n} and p(n) = |P(n)|
For example, p(4) = 5.

Conjugate of a partition: If λ = (λ1, . . . , λ`) ` n, define a new
partition λ

′
= (λ

′

1, . . . , λ
′

m) ` n (where m is the largest part of λ) by
choosing λ

′

i as the number of parts of λ that are ≥ i . The resulting

partition λ
′

is called the conjugate of λ.
Ex: if λ = (6, 3, 3, 2, 1), the conjugate of λ is λ

′
= (5, 4, 3, 1, 1, 1).

Color partitions: For a positive integer ` ≥ 2, P(`)(n) is the set of
all partitions of n where parts multiple of ` comes up with 2 colors.
We denote p(`)(n) = |P(`)(n)| and p(`)(0) := 1.
Ex: for ` = 3 and n = 4, p(3)(4) = 7.
The generating function of p(`)(n) is

∞∑
n=0

p(`)(n)qn =
∞∏
j=1

1

(1− qj)(1− q`j)
.
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Introduction

Young diagram: To each partition λ ` n we associate Yλ, the
celebrated graphical representation called the Young diagram of λ.
In this context, we prefer the representation to be ‘right side up’.

Ex: For λ = (4, 3, 1) ` 8, Yλ is given by

and for λ = (11, 22, 31) ∈ P(2)(6), the associated colored Young
diagram Yλ is;
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Introduction

Hook length and Hook type tableaux : For each box v in Yλ, we
define the hook length of v as h = a + `+ 1, where a is the arm
length and ` the leg length. The ordered pair (a, `) is called hook
type of the chosen box in the Young tableaux.

Ex: For λ = (4, 3, 1) ` 8, hook length for each boxes in Yλ is
given by;

1
4 2 1
6 4 3 1

Ex: For λ = (3, 1) ` 4, hook type for each boxes in Yλ is

(0, 0)

(2, 1)(1, 0)(0, 0)
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Introduction

Throughout the talk, we shall use following notations: for n, k and ` ≥ 2
positive integers;

Qk(n) :=
∑
λ`n δk(λ), where δk(λ) denotes total number of

occurences of the part k in λ.

Vk(n) :=
∑
λ`n νk(λ), where νk(λ) denotes the number of parts

occurring k or more times λ.

S(n) :=
∑
λ`n µ(λ), where µ(λ) denotes the number of distinct

parts in λ.

Q
(`)
k (n) := Number of occurences of parts k1 and k2 in P(`)(n) when

k is a multiple of `; otherwise the number of occurences of the part

k1 in P(`)(n). In short we say, Q
(`)
k (n) is the number of occurences

of part k.

For λ ` n and p, q ∈ Z≥0, B(p,q)(λ) := Number of boxes with hook
type (p, q) in Yλ. B(p,q)(n) :=

∑
λ`n B(p,q)(λ).
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Introduction

Theorem (Bessenrodt (1998), Bacher-Manivel (2002))

Let 1 ≤ k ≤ n be two integers. Then, for every positive j < k, the total
number of occurrences of the part k among all partitions of n is equal to
the total number of boxes whose hook type is (j , k − j − 1); i.e.,
Qk(n) = B(j,k−j−1)(n).

Note : For k = 1, j has to be 0 and for k > 1 without loss of generality,
one can choose particularly j = k − 1.
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Two partition identities

Theorem (Stanley (1972))

The total number of 1’s in all partitions of a positive integer n is equal to
the sum of the numbers of distinct parts of all partitions of n; i.e.,
S(n) = Q1(n).

For n = 4,

P(4)
λ ` 4 δ1(λ) µ(λ) B(0,0)(λ)
4 0 1 1
3 + 1 1 2 2
2 + 2 0 1 1
2 + 1 + 1 2 2 2
1 + 1 + 1 + 1 4 1 1
Total Q1(4) = 7 S(4) = 7 B(0,0)(n) = 7

.
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Two partition identities

Proof sketch:

We will show that number of distinct parts of a partition λ ` n is
equal to the number of boxes in Yλ with hook-type (0, 0); i.e.,
µ(λ) = B(0,0)(λ).

Let λ = (λ1, λ2, . . . , λr ) ` n and suppose λa1 , λa2 , . . . , λak are all the
distinct parts of λ with respective multiplicities m1,m2, . . . ,mk

where 1 ≤ ai ≤ r and ai ∈ N for all 1 ≤ i ≤ k. Without loss of
generality assume λa1 > λa2 > · · · > λak .

Next, we note that, the boxes with hook-type (0, 0) appear exactly
once in Yλ corresponding to the part λam subject to the condition
that the immediate next part λan with m 6= n.

Therefore, the number of boxes with hook-type (0, 0) equals the
number of distinct parts of λ. Now, summing over all λ ` n we get
the Stanley’s theorem.
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Two partition identities

Theorem (Elder (1984))

The total number of occurences of an integer k among all partitions of n
is equal to the number of occasions that a part occurs greater or equal k
times in P(n); i.e., Qk(n) = Vk(n).

For n = 4 and k = 2,

P(4)

λ ` 4 δ2(λ) ν2(λ) B(1,0)(λ) λ
′ ` 4 ν2(λ

′
)

4 0 0 1 1+1+1+1 1
3 + 1 0 0 1 2 + 1 + 1 1
2 + 2 2 1 1 2 + 2 1
2 + 1 + 1 1 1 0 3 + 1 0
1+1+1+1 0 1 0 4 0
Total Q2(4) =

3
V2(4) =
3

B(1,0)(4) =
3

- V2(4) =
3

.
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Two partition identities

Proof sketch:

We need only to show that the number of boxes with hook type
(k − 1, 0), k > 1, in a partition λ ` n is equal to the number of
parts that occur k or more times in λ.

Now, a box with hook-type (k − 1, 0) in Yλ with
λ = (λ1, λ2, . . . , λr ) ` n precisely describes that there are k − 1
boxes on the right to it but having no box above.

When transforming λ to it’s conjugate λ
′

it is clear that after
conjugation, the box with hook-type (k − 1, 0) transforms into the
box with hook-type (0, k − 1). This shows that there are total at
least k verticals stacks of boxes (including the box itself); i.e., there
exists a part that occurs at least k times in that conjugate partition.

So, corresponding to each box with hook-type (k − 1, 0) there exists
a part that occurs at least k times and hence summing over all
partitions of n we have Elder’s statement.
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partitions of n we have Elder’s statement.
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Box Stacking Principle (BSP)

The BSP consists of a set of rules to produce from all partitions of n a
new set of partitions of n + k where k is a positive integer. Given a
partition λ ` n, the new partitions are produced by adding k boxes as
follows:

For k = 1:

We add one box to all permissible places in Yλ. One can trivially add
one box in two ways: (i) Add to the bottom row of Yλ. (ii) Stack
the box on the above of the top row of Yλ. Also, we can add one
box to a row in Yλ if and only if the difference between the number
of boxes in the chosen row and its immediate next is at least 1.

Explicitly, for λ := (λ1, . . . , λr ) ` n, following rule (i) the trivial
addition of one box corresponds to µ := ((λ1 + 1), . . . , λr ) ` n + 1
whereas by rule (ii) we have µ := (λ1, . . . , λr , 1) ` n + 1. Nontrivial
addition of one box can be done if and only if for any two
consecutive part say, λi and λj (λi ≥ λj), we have λi − λj ≥ 1.
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Box Stacking Principle (BSP)

For example, to all partitions of 4 and applying the stacking principle for
adding one box to the Young diagram gives:

I. λ = 4 :

+ =

=

II. λ = 3 + 1 :

+ =

=

=
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Box Stacking Principle (BSP)

III. λ = 2 + 2 :

+ =

=

IV. λ = 2 + 1 + 1 :

+ =

=
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Box Stacking Principle (BSP)

IV. λ = 2 + 1 + 1 :

+ =

V. λ = 1 + 1 + 1 + 1 :

+ =

=
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Box Stacking Principle (BSP)

For k > 1:

Here we consider the addition of k boxes as a ‘packet of k boxes’,
instead of adding ‘k single boxes’. Again one can trivially add a
‘packet of k boxes’ to the bottom row of Yλ with λ := (λ1, . . . , λr ).
By adding ‘packet of k boxes’, we mean that adding k to λ1 so that
the resulting partition µ := ((λ1 + k), . . . , λr ) ` n + k.

A nontrivial addition of a packet of k boxes to Yλ can be done if
and only if for any two consecutive part say, λi and λj (λi ≥ λj), we
have λi − λj ≥ k.

For stacking of k = 2 boxes with λ = (3, 1) ` 4 following BSP,

+ =

=
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Box Stacking Principle (BSP)

What we do not allow:

We do not consider the addition of ‘k single boxes’ which means that
we do not allow the cases µ1 := (λ1, . . . , λr , 1, . . . , 1) ` n + k and
µ2 := (λ1, . . . , (λj1 + 1), . . . , (λj2 + 1), . . . , , (λjk + 1), . . . , λr ) ` n+k.

For stacking of k = 2 boxes with λ = (3, 1) ` 4, following situations will
be regarded as violating our rules;

+ =

=

=
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Generalization of Stanley’s theorem

Theorem (Dastidar, Sengupta (2013))

For positive integers n and k ,

S(n) = Qk(n)+Qk(n+1)+Qk(n+2)+· · ·+Qk(n+k−1) =
k−1∑
j=0

Qk(n+j).

Ex: For n = 5 and k = 3; we have S(5) = 12, Q3(5) = 2, Q3(6) = 4,
Q3(7) = 6. So, S(5) = Q3(5) + Q3(5 + 1) + Q3(5 + (3− 1)).

In order to prove the theorem it is enough to prove the following
lemma.

Lemma (B., Dastidar (2019))

Stacking k boxes to the Young diagrams corresponding to all partitions
of n following the BSP generates as many new partitions as there are
occurences of k in all partitions of n + k.
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Generalization of Stanley’s theorem

Proof sketch:

Trivial Stacking: We can always add a packet of k boxes to the
largest part of a partition λ ` n and immediately observe that the
total number of generated new partition is p(n).

Non-trivial Stacking: Adding k-boxes to a Young diagram Yλ
following BSP is possible if and only if there exists a box in Yλ with
hook-type (k − 1, 0). On the other hand, to place a packet of k
boxes in the diagram without violating the BSP and structure of Yλ
there must exist a k-consecutive empty places; i.e., a box with
hook-type (k − 1, 0).

This explicitly shows the one to one correspondence between the
number of permissible ways of non-trivial addition of packet of k boxes
and the number of boxes with hook-type (k − 1, 0) in Yλ.

Following BSP, the total of new generated partition is p(n) + Qk(n)
and it is immediate that p(n) + Qk(n) = Qk(n + k).
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BSP in color partitions

The BSP in color partitions context consists of a set of rules to produce
from all color partitions λ of n a new set of color partitions of n + k . In
this context we have to take care about the color of a ‘packet of k
boxes’. If k is not a multiple of `, without loss of generality, we always
add a ‘packet of k boxes’ prescribed by white color. The set of rules are
as follows:

Let λ := (λ1i1 , λ2i2 , . . . , λrir ) ∈ P(`)(n) with ik ∈ {1, 2} and
1 ≤ k ≤ r , k ∈ Z>0. So when we say λ1i1 is the largest part of λ, it
means that λ1 ≥ · · · ≥ λr . First, we will look at the index of the
largest part λ1i1 .

If i1 = 1, then trivially we add the packet of k boxes to λ1i1 ; i.e., to
bottom row of Yλ so that the resulting partition
µ := ((λ1i1 + k1), . . . , λrir ) ∈ P(`)(n + k).
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BSP in color partitions

If i1 = 2, then two cases will arise:

A. If λ1 ≥ k, then we consider following two cases:

(i) If there exist any two consecutive parts say λsis and λtit
(λs ≥ λt) with it = 1 and λs − λt ≥ k , then we add a packet of k boxes
to the row corresponding to the part λtit in Yλ.

(ii) If there does not exists any two consecutive parts with the
condition given in (i), then we simply insert the packet of k-boxes as a
new row into Yλ.
For example, if we consider the addition of a packet of 3 boxes to the
partition λ = (32, 11) ∈ P(3)(4), then:

+ =
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BSP in color partitions

B. If λ1 < k, then we adjoin the packet of k boxes to the below of
the bottom row of Yλ so that resulting partition is
µ := (k1, λ1i1 , . . . , λrir ) ∈ P(`)(n + k).

For example, if we consider the addition of a packet of 5 boxes to the
partition λ = (32, 11) ∈ P(3)(4), then:

+ =
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BSP in color partitions

Exclusion Rule:

Here index of parts in the partition λ ∈ P(`)(n) is important. For any
part of λ, say λmim

with im = 2, we do not allow the addition of a packet
of k boxes to the row corresponding to the part λmim

in Yλ. In short, if
the color of the row corresponding to the part with index 2 is green, we
do not allow the addition of a packet of k boxes to it.
For instance, for n = 11, ` = 3, k = 2 and λ = (62, 32, 21) ∈ P(3)(11):

+ =

=
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BSP in color partitions

Ex 1. We consider all 3 color partitions of 4 and applying the color BSP
for adding a packet of 2 boxes to the Young diagram gives:

I. 41 :

+ =

=

II. 31 + 11 :

+ =

=

III. 32 + 11 :

+ =
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BSP in color partitions

IV. 21 + 21 :

+ =

=

V. 21 + 11 + 11 :

+ =

VI. 11 + 11 + 11 + 11 :

+ =
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BSP in color partitions

Ex 2(a). We consider all 3 color partitions of 4 and applying the color
BSP for adding a packet of 3 boxes to the Young diagram gives:
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III. 32 + 11 :
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BSP in color partitions

Ex 2(b). We consider all 3 color partitions of 4 and applying the color
BSP for adding a packet of 3 boxes to the Young diagram gives:

I. 41 :

+ =

II. 31 + 11 :
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III. 32 + 11 :
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=
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BSP in color partitions
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Generalization of Stanley’s theorem in color context

Theorem (B., Dastidar (2019))

For positive integers ` ≥ 2, k and n ∈ Z>0,

Q
(`)
1 (n) =

{
(Q

(`)
k (n) + Q

(`)
k (n + 1) + · · ·+ Q

(`)
k (n + k − 1))/2, if ` |k,

Q
(`)
k (n) + Q

(`)
k (n + 1) + · · ·+ Q

(`)
k (n + k − 1), if ` - k .

Ex: For n = 4, ` = 2 and k = 2; we have Q
(2)
1 (4) = 9, Q

(2)
2 (4) = 8

and Q
(2)
2 (5) = 10. On the other hand, with the same example but

k = 3; we have Q
(2)
1 (4) = 9, Q

(2)
3 (4) = 1, Q

(2)
3 (5) = 3 and

Q
(2)
3 (6) = 5.

The above theorem follows from the following recursion: If
` ≥ 2, k, n ∈ Z>0, then

Q
(`)
k (n+k)

2 = p(`)(n) +
Q

(`)
k (n)

2 , if ` | k.

Q
(`)
k (n + k) = p(`)(n) + Q

(`)
k (n), otherwise.
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Generalization of Stanley’s theorem in color context

Lemma (B., Dastidar (2019))

Adding a packet of k boxes to the Young diagrams of λ ∈ P(`)(n)
following the color BSP generates as many new color partitions as there
are occurences of a part k in P(`)(n + k) subject to the condition that k
is not a multiple of `. But if k is a multiple of `, then adding a packet of
k boxes generates as many new color partitions which equals to half of
the total number of occurences of the part k in P(`)(n + k).
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Generalization of Stanley’s theorem in color context

Proof sketch:

The trivial addition of a packet of k boxes generates the number of
color partitions which equals to p(`)(n).

Now, if ` - k, then following rule A(i), we conclude that the number
of nontrivial addition of a packet of k boxes to Young diagrams is

Q
(`)
k (n). Therefore, total number of new generated color partitions is

p(`)(n) + Q
(`)
k (n) and p(`)(n) + Q

(`)
k (n) = Q

(`)
k (n + k).

For ` | k, the part k in λ ∈ P(`)(n) appears with two colors. Now,
adding a packet of k boxes to Young Diagrams enumerate half of
the total number of occurrences of k in P(`)(n) because we add only
a white colored packet of k boxes.
So in this context, we have to count the total number of occurrences
of parts k1 and k2 but we have chosen only one representative of k1
and k2 in terms of adding only a white colored packet of k boxes.
Therefore, the total number of generated color partition is

p(`)(n) +
Q

(`)
k (n)

2 and p(`)(n) +
Q

(`)
k (n)

2 =
Q

(`)
k (n+k)

2 .
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Extension of Andrews’ identity

Theorem (Andrews (2019))

Let Od(n) denote the number of partitions of n in which the odd parts
are distinct and each positive odd integer smaller than the largest odd
part must appear as a part. Then

podeu (n) = Od(n),

where podeu (n) denotes the number of partitions of n in which each even
part is less than each odd part and odd parts are distinct.

Ex: The 6 partitions enumerated by Od(9) are 8 + 1, 6 + 2 + 1, 5 + 3 + 1,
4 + 4 + 1, 4 + 2 + 2 + 1, 2 + 2 + 2 + 2 + 1 and those enumerated by
podeu (9) are 9, 7 + 2, 5 + 4, 5 + 3 + 1, 5 + 2 + 2, 3 + 2 + 2 + 2.
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Extension of Andrews’ identity

Definition 1:

Pou
eu (n) :=

{
λ ` n :

(1) all the odd parts of λ are unrestricted,

(2) each even part of λ is less than each odd part of λ

}
,

poueu (n) := #{λ ` n : λ ∈ Pou
eu (n)}.

For example, poueu (9) = 12
(9, 7+2, 7+1+1, 5+4, 5+3+1, 5+2+2, 5+1+1+1+1, 3+3+3, 3+3+
1+1+1, 3+2+2+2, 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1).
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Extension of Andrews’ identity

Definition 2: For λ ` n such that an odd integer must appear as a part
of λ,

OMax(λ) := greatest odd part of λ,

EMax(λ) :=

{
greatest even part of λ, if even parts occur in λ,
0, otherwise

OEMaxSum(λ) := OMax(λ) + EMax(λ),

OEMaxDiff(λ) := |OMax(λ) - EMax(λ)|.

Definition 3:

Ou(n) :=

{
λ ` n :

(1) for odd k with k < OMax(λ); k appears in λ,

(2) for k odd with δk(λ) ≥ 2; OEMaxSum (λ) ≤ n

}
,
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Extension of Andrews’ identity

Definition 4:

OEMaxDiff∗(λ) = min {OEMaxDiff (λ
′
) : λ

′ ∈ Ou(n)}.

O∗u (n) := {λ ∈ Ou(n) : OEMaxDiff∗(λ)}.
For example, o∗u (9) = 12
(8 + 1, 6 + 2 + 1, 5 + 3 + 1, 4 + 4 + 1, 4 + 3 + 1 + 1, 4 + 2 + 2 + 1, 3 +
2 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 2 + 1, 3 + 3 + 1 + 1 + 1, 3 + 1 + 1 + 1 +
1 + 1 + 1, 2 + 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).

According to our definition, the partition λ = (6, 1, 1, 1) /∈ O∗u (9)
but the partition (4, 3, 1, 1) ∈ O∗u (9).

Theorem (B., Dastidar (2019))

o∗u (n) = poueu (n)
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Extension of Andrews’ identity

Proof Sketch: (O∗u (n) −→ Pou
eu (n))

First, consider the Young diagram Yλ for the partition
λ = (λ1, λ2, . . . , λ`) ∈ O∗u (n).

We separate λ into λ
′

= (λo1 , λo2 , . . . , λor ) where 1 ≤ oi ≤ ` and
λ
′′

= (λe1 , λe2 , . . . , λet ) where 1 ≤ oj ≤ l according to the odd and
even parts, respectively with corresponding Young diagrams Yλ′ and
Yλ′′ .

Next, we join Yλ′ and Yλ′′ by successively adjoining their rows with

respect to the ordering of the parts in λ
′
, λ
′′

, respectively, starting
with the largest one and end with the smallest one with restricting
Young diagram, say, Yλ′′′ .

Now, we consider the following three cases:

(1) If the number of odd parts is equal to the number of even parts
in a partition λ ∈ O∗u (n), then Yλ′′′ is with λ

′′′ ∈ Pou
eu (n) as for

λ
′

= (λo1 , . . . , λor ) and λ
′′

= (λe1 , . . . , λer ), the resulting partition
λ
′′′

= (λo1 + λe1 , . . . , λor + λer ).
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Extension of Andrews’ identity

The remaining two cases are:

(2) If number of odd parts is greater than the number of even parts
in a partition λ ∈ O∗u (n) and let the difference be t. Then a similar
argument shows that the t rows in Yλ′ remain left after adjoining of
rows of Yλ′ and Yλ′′ . Therefore, in the resulting Yλ′′′ with

λ
′′′ ∈ Pou

eu (n), t rows will be positioned in the same order as in Yλ′ .

(3) Last, if the number of even parts is greater than the number of
odd parts in a partition λ ∈ O∗u (n) and let the difference be u.
Similarly, we see that u rows in Yλ′′ remain left after adjoining the
rows of Yλ′ and Yλ′′ and here u rows will be inserted into Yλ′ so

that the resulting Yλ′′′ with λ
′′′ ∈ Pou

eu (n) does not violate the
structure of the Young diagram.
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Extension of Andrews’ identity

For example, given Yλ with the partition λ = (5, 4, 3, 2, 1, 1) ∈ O∗u (16):

Step 1: Separating Yλ into the odd and even parts; i.e., into Yλ′ with

λ
′

= (5, 3, 1, 1) and Yλ′′ with λ
′′

= (4, 2) yields;
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Extension of Andrews’ identity

Step 2: Adjoining the rows of Yλ′ and Yλ′′ gives Yλ′′′ with the partition

λ
′′′

= (9, 5, 1, 1) ∈ Pou
eu (16);
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Extension of Andrews’ identity

Proof Sketch: (Pou
eu (n) −→ O∗u (n))

Let µ = (µ1, . . . , µs) ∈ Pou
eu (n). Separate µ into µ

′
= (µo1 , . . . , µoi )

with the odd parts, µoi ≤ µoi−1 ≤ · · · ≤ µo1 where µoi ≥ µs ,

µo1 ≤ µ1 and into µ
′′

with the even parts.

We keep aside the even component Yµ′′ of Yµ. Next, we consider
two cases:

(1) All odd parts of µ are distinct; i.e., there are i distinct odd
values with µoi < µoi−1 < · · · < µo1 . For all j (1 ≤ j ≤ i), we extract
2j − 1 boxes from the jth row of Yµ′ and attach 2j − 1 boxes to Yµ′

without violating the structure of the Young diagram Yµ′ . Explicitly,

we break an odd part µot of the partition µ
′

into
(µot − (2v − 1), 2v − 1) where the part µot corresponds to the
number of boxes in the v th row of Yµ′ . The Young diagram Yµ′′′

obtained from Yµ′ by the above construction and adjoining Yµ′′

with it to get the unique resulting Young diagram, say Yπ with
π ∈ O∗u (n).
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Extension of Andrews’ identity

For example, Yµ with µ = (9, 7, 4, 2) ∈ Pou
eu (22) breaks into Yµ′ with

µ
′

= (9, 7) and Yµ′′ with µ
′′

= (4, 2);

Step 1:

= +

Step 2: Following the above construction, Yµ′ results Yµ′′′ with

µ
′′′

= (1, 3, 6, 6);

=

Step 3: Then the resulting diagram Yπ with
π = (6, 6, 4, 3, 2, 1) ∈ O∗u (22) is the unique pre-image of µ;
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Extension of Andrews’ identity

Proof Sketch: (Pou
eu (n) −→ O∗u (n))

The remaining case:

(2) Odd parts of µ repeats; i.e., µ
′

= (µo1 , . . . , µoi ) with
µoi < µoi−1 < · · · < µo1 with the assumption that µo1 , . . . , µoi occurs
with multiplicity k1, k2, . . . , ki , respectively. Now, for all 1 ≤ t ≤ i ,
we break the kt tuple (µot , . . . , µot ) into
((µot − (2v − 1), 2v − 1), . . . , (µot − (2v − 1), 2v − 1)), where the
part µot corresponds to the number of boxes in the v th row of Yµ′ .
Similar argument shows that the resulting partition, say π ∈ O∗u (n).

For example, the pre-image of µ = (7, 7, 5, 1, 1, 1) ∈ Pou
eu (22) is

π = (5, 5, 3, 2, 2, 2, 1, 1, 1) ∈ O∗u (22);
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