Homage to John Conway

Photo: Princeton University / Denise Applewhite

Theresia Eisenkölbl, Université Lyon 1

John Horton Conway

\qquad

John Horton Conway

\qquad

John Horton Conway

\qquad

John Horton Conway

Bio

- *26. 12. 1937
- PhD 1964

\square

John Horton Conway

Bio

- *26. 12. 1937
- PhD 1964
- Cambridge

\square

John Horton Conway

Bio

- *26. 12. 1937
- PhD 1964
- Cambridge
- Princeton

Photo:
Princeton University Denise Applewhite

John Horton Conway

Bio

- *26. 12. 1937
- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

John Horton Conway

Bio

- *26. 12. 1937

■ PhD 1964

- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

\qquad

John Horton Conway

Bio

- *26. 12. 1937
- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

- Group theory
\qquad

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

- Group theory
- Knot theory
\square

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

- Group theory
- Knot theory
- Game theory

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory
- Monstrous Moonshine
- ...

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton
- †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory
- Monstrous Moonshine

■...

Books

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton

■ †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory
- Monstrous Moonshine

■...

Books

- On Numbers and Games (1976)

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton

■ †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory
- Monstrous Moonshine

Books

- On Numbers and Games (1976)
- (with Berlekamp and Guy) Winning Ways for your Mathematical Plays (1982)

John Horton Conway

Bio

■ *26. 12. 1937

- PhD 1964
- Cambridge
- Princeton

■ †11. 4. 2020
(Covid-19)

Photo:
Princeton University Denise Applewhite

Research areas

■ Group theory

- Knot theory
- Game theory
- Number theory
- Monstrous Moonshine

Books

- On Numbers and Games (1976)
- (with Berlekamp and Guy) Winning Ways for your Mathematical Plays (1982)
- (with Norton, Wilson and Parker)

Atlas of finite groups (1985)

John Horton Conway

In an interview, John Conway said that after he made his name with his work on the classification of finite simple groups he felt that he was now free to do whatever he liked.

John Horton Conway

In an interview，John Conway said that after he made his name with his work on the classification of finite simple groups he felt that he was now free to do whatever he liked．

His advisor，Harold Davenport，said that when he would give John Conway a problem to solve，，，he would return with a very good solution to another problem．＂

Summer Camps

Summer Camps

Friday 22nd

Breakfast	Breakfast	Breakfast
Anouncements	Anouncements	Anouncements
Mark Levi	John Conway	Don Zagier
Mathematics by physical reasoning	Topic decided in consultation with participants	Partitions

Summer Camps

Summer Camps

Photo: MoMISS 2012/Katia Sergeeva

Motivation

Motivation

Spektrum
 DER WISEENSCHAFT

German version of Scientific American

Motivation

Spektrum
 IDR MSGENECHAT

German version of Scientific American

Martin Gardner

Photo: Wikimedia Commons Konrad Jacobs

Themes of this talk

Themes of this talk

- Conway group

Themes of this talk

- Conway group
 - Conway polynomial

Themes of this talk

- Conway group
 - Conway polynomial
 Conway sequence and constant

Themes of this talk

- Conway group
- Conway polynomial

■ Conway sequence and constant

- Sprouts and variants

Themes of this talk

- Conway group
- Conway polynomial

■ Conway sequence and constant

- Sprouts and variants
- Game of life

Themes of this talk

- Conway group
- Conway polynomial

■ Conway sequence and constant

- Sprouts and variants
- Game of life
- Conway circle

Things Named After John Conway

WikipediA The Free Encyclopedia

Main page

Contents
Current events
Random article About Wikipedia Contact us Donate

Contribute
Help
Community portal Recent changes Upload file

Tools
What links here Related changes Special pages Permanent link Page information Cite this page Wikidata item

Print/export
Download as PDF Printable version

Languages

Article Talk

List of things named after John Horton Conway

From Wikipedia, the free encyclopedia

This is a list of things named after the English mathematician John Horton Conway (1937-2020).

- Conway algebra - an algebraic structure introduced by Paweł Traczyk and Józef H. Przytycki[1]
- Conway base 13 function - a function used as a counterexample to the converse of the intermediate value theorem ${ }^{[2]}$
- Conway chained arrow notation - a notation for expressing certain extremely large numbers ${ }^{[3]}$
- Conway circle - a geometrical construction based on extending the sides of a triangle ${ }^{[4]}$
- Conway criterion - a criterion for identifying prototiles that admit a periodic tiling ${ }^{[5]}$
- Conway group - any of the groups $\mathrm{Co}_{0}, \mathrm{Co}_{1}, \mathrm{Co}_{2}$, or $\mathrm{Co}_{3}{ }^{[6]}$
- Conway group Co1 - one of the sporadic simple groups discovered by Conway in $1968{ }^{[6]}$
- Conway group Co2 - one of the sporadic simple groups discovered by Conway in $1968^{[6]}$
- Conway group Co3 - one of the sporadic simple groups discovered by Conway in $1968^{[6]}$
- Conway knot - a particular knot in knot theory
- Conway notation (knot theory) - a notation invented by Conway for describing knots in knot theory ${ }^{[7]}$
- Conway polyhedron notation - notation invented by Conway used to describe polyhedra ${ }^{[8]}$
- Conway polynomial (finite fields) - an irreducible polynomial used in finite field theory ${ }^{[8]}$
- Conway puzzle - a packing problem invented by Conway using rectangular blocks ${ }^{[9]}$
- Conway sphere - a 2-sphere intersecting a given knot in the 3-sphere or 3-ball transversely in four points ${ }^{[7]}$
- Conway triangle notation - notation which allows trigonometric functions of a triangle to be managed algebraically ${ }^{[8]}$
- Conway's 99-graph problem - a problem invented by Conway asking if a certain undirected graph exists ${ }^{\text {[10] }}$
- Conway's constant - a constant used in the study of the Look-and-say sequence ${ }^{[11]}$
- Conway's dead fly problem - does there exist a Danzer set whose points are separated at a bounded distance from each other?
- Conway's Game of Life - a cellular automaton defined on the two-dimensional orthogonal grid of square cells ${ }^{[9]}$
- Conway's Soldiers - a one-person mathematical game resembling peg solitaire ${ }^{[12]}$
- Conway's thrackle conjecture - In graph theory, the conjecture that no thrackle has more edges than vertices
- Alexander-Conway polynomial - a knot invariant which assigns a polynomial to each knot type in knot theory ${ }^{[7]}$

Conway group

The Conway group Co_{1} is the quotient of index 2 of the automorphism group of the 24-dimensional Leech lattice.

Conway group

The Conway group Co_{1} is the quotient of index 2 of the automorphism group of the 24-dimensional Leech lattice.
The group has 4157776806543360000 elements.

Conway group

The Conway group Co_{1} is the quotient of index 2 of the automorphism group of the 24-dimensional Leech lattice.
The group has 4157776806543360000 elements. It is one of three Conway groups among the 26 sporadic groups in the classifications of finite simple groups.

Conway polynomial: Knots and Links

Conway polynomial: Knots and Links

Knot

Conway polynomial: Knots and Links

Knot

Link

Theresia Eisenkölbl, Université Lyon 1

Conway polynomial: Knot diagram

Conway polynomial: Definition

Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the Alexander polynomial) is defined by

Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the Alexander polynomial) is defined by

$$
\nabla(O)=1
$$

Conway polynomial：Definition

The Conway polynomial ∇（a variant of the Alexander polynomial）is defined by

$$
\nabla(O)=1
$$

$$
\nabla(凡)=\nabla(刃 \uparrow)-z \cdot \nabla(\zeta \text { な })
$$

Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the Alexander polynomial) is defined by

$$
\nabla(O)=1
$$

$$
\nabla(\uparrow \uparrow)=\nabla(\aleph \uparrow)-z \cdot \nabla(\zeta \text { な })
$$

The Conway polynomial is a knot invariant, i.e., it does not change when the knot is continuously deformed in three dimensions.

$$
\text { carcancur z } \operatorname{sac}
$$

Conway polynomial: Hopf Link

Conway polynomial: Hopf Link

$$
\nabla(\text { 凡 })=\nabla(\boldsymbol{\lambda})-z \cdot \nabla(\zeta \text { て })
$$

$$
\nabla(\mathbb{O})=\nabla\left(\alpha_{0}^{*}\right)-z \cdot \nabla(ब 0)
$$

Conway polynomial: Hopf Link

$$
\nabla(\text { 凡 })=\nabla(\boldsymbol{\lambda})-z \cdot \nabla(\zeta \text { 「 })
$$

$$
\begin{aligned}
\nabla(C D) & =\nabla(C O)-z \cdot \nabla(\Phi 0) \\
1 & =1 \quad-z \cdot \nabla(\circlearrowleft 0)
\end{aligned}
$$

Conway polynomial：Hopf Link

$$
\nabla(\Uparrow)=\nabla(\nwarrow \pi)-z \cdot \nabla(5 \text { な })
$$

$$
\begin{aligned}
\nabla\left(C_{0}\right) & =\nabla\left(\text { Co }^{3}\right)-z \cdot \nabla(\text { GO }) \\
1 & =1-z \cdot \nabla(G 0) \\
& \Rightarrow \nabla(G 0)=0 .
\end{aligned}
$$

$$
4 \text { ロ } 4 \text { 司 } 1 \text { 三• }
$$

Conway polynomial: Hopf Link

$$
\nabla(\tau)=\nabla\left(x^{x}\right)-z \cdot \nabla(5 x),
$$

Conway polynomial: Hopf Link

$$
\begin{aligned}
& \nabla(凡)=\nabla\left(\aleph^{\pi}\right)-z \cdot \nabla\left(\boldsymbol{J}^{\imath}\right), \\
& \nabla(\sigma)=1 \text { and } \nabla(\sigma \geqslant)=0 .
\end{aligned}
$$

Conway polynomial: Hopf Link

$$
\begin{gathered}
\nabla(凡)=\nabla(\aleph)-z \cdot \nabla\left(5 \aleph^{\pi}\right), \\
\nabla(0)=1 \text { and } \nabla(\sigma 0)=0 . \\
\nabla(\square)=\nabla(1)-z \cdot \nabla(\text { Q })
\end{gathered}
$$

Conway polynomial: Hopf Link

$$
\begin{aligned}
& \nabla(\circlearrowleft)=1 \text { and } \nabla(\circlearrowleft 0)=0 . \\
& \nabla(G)=\nabla(\text { C })-z \cdot \nabla(\text { SQ }) \\
& =\nabla(\bigcirc)-z \cdot \nabla(O)
\end{aligned}
$$

Conway polynomial: Hopf Link

$$
\begin{aligned}
& \nabla(\circlearrowleft)=1 \text { and } \nabla(\circlearrowleft 0)=0 . \\
& \nabla(9)=\nabla(\text { C) }-z \cdot \nabla(\text { Q }) \\
& =\nabla(\bigcirc)-z \cdot \nabla(O) \\
& =0-z \cdot 1=-z \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Theresa Eisenkölb, Université Lyon } 1 \text { Homage to John Conway }
\end{aligned}
$$

Conway polynomial: Hopf Link

Conway polynomial: Hopf Link

Conway polynomial: Hopf Link

$$
\begin{aligned}
& \nabla(?)=-z . \\
& \nabla(\square)=0 .
\end{aligned}
$$

Two rings linked together cannot be separated in three dimensions without cutting them.

Conway polynomial: Trefoil knot

Exercise

Conway sequence

1

Conway sequence

1

11

Conway sequence

$$
\begin{gathered}
1 \\
11 \\
21
\end{gathered}
$$

Conway sequence

1
 11
 21
 1211

Conway sequence

$$
\begin{gathered}
1 \\
11 \\
21 \\
1211 \\
111221
\end{gathered}
$$

Conway sequence

$$
\begin{gathered}
1 \\
11 \\
21 \\
1211 \\
111221 \\
312211
\end{gathered}
$$

Conway sequence

$$
\begin{gathered}
1 \\
11 \\
21 \\
1211 \\
111221 \\
312211 \\
13112221
\end{gathered}
$$

Conway sequence

$$
\begin{gathered}
1 \\
11 \\
21 \\
1211 \\
111221 \\
312211 \\
13112221 \\
1113213211
\end{gathered}
$$

Conway sequence

Conway sequence: Conway constant

$$
\lim _{n \rightarrow \infty} \frac{\ell_{n+1}}{\ell_{n}}=\lambda
$$

Conway sequence: Conway constant

$$
\lim _{n \rightarrow \infty} \frac{\ell_{n+1}}{\ell_{n}}=\lambda
$$

with the Conway constant

$$
\lambda=1.303577269034 \ldots,
$$

the only positive root of

Conway sequence: Conway constant

$$
\begin{aligned}
& x^{71}-x^{69}-2 x^{68}-x^{67}+2 x^{66}+2 x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}-x^{59} \\
&+ 2 x^{58}+5 x^{57}+3 x^{56}-2 x^{55}-10 x^{54}-3 x^{53}-2 x^{52}+6 x^{51}+6 x^{50}+x^{49} \\
&+ 9 x^{48}-3 x^{47}-7 x^{46}-8 x^{45}-8 x^{44}+10 x^{43}+6 x^{42}+8 x^{41}-5 x^{40}-12 x^{39} \\
&+ 7 x^{38}-7 x^{37}+7 x^{36}+x^{35}-3 x^{34}+10 x^{33}+x^{32}-6 x^{31}-2 x^{30}-10 x^{29} \\
&- 3 x^{28}+2 x^{27}+9 x^{26}-3 x^{25}+14 x^{24}-8 x^{23}-7 x^{21}+9 x^{20}+3 x^{19}-4 x^{18} \\
&-10 x^{17}-7 x^{16}+12 x^{15}+7 x^{14}+2 x^{13}-12 x^{12}-4 x^{11}-2 x^{10}+5 x^{9}+x^{7} \\
&-7 x^{6}+7 x^{5}-4 x^{4}+12 x^{3}-6 x^{2}+3 x-6 .
\end{aligned}
$$

Conway sequence: Atoms

1

Conway sequence: Atoms

1
11

Conway sequence: Atoms

1
11
21

Conway sequence: Atoms

$$
\begin{gathered}
1 \\
11 \\
21 \\
12 \mid 11
\end{gathered}
$$

Conway sequence: Atoms

$$
1
$$

$$
11
$$

$$
21
$$

$$
12 \mid 11
$$

$$
111221
$$

Conway sequence: Atoms

$$
\begin{aligned}
& 1 \\
& 11 \\
& 21 \\
& 12 \text { | } 11 \\
& 111221 \\
& 31 \text { | } 22 \text { | } 11
\end{aligned}
$$

Conway sequence: Atoms

$$
\begin{aligned}
& 1 \\
& 11 \\
& 21 \\
& 12 \text { | } 11 \\
& 111221 \\
& 31 \text { | } 22 \text { | } 11 \\
& 13|11|_{2} 2221
\end{aligned}
$$

Conway sequence: Atoms

$$
\begin{gathered}
1 \\
11 \\
21 \\
12 \mid 11 \\
111221 \\
31|22| 11 \\
13|11|_{2} 2221 \\
\left.\left.1113\right|_{2} 21\right|_{3} 32 \mid 11
\end{gathered}
$$

Conway sequence: Atoms

$$
\begin{aligned}
& 1 \\
& 11 \\
& 21 \\
& 12 \mid 11 \\
& 111221 \\
& 31|22| 11 \\
& 13|11|_{2} 2221 \\
& \left.\left.1113\right|_{2} 21\right|_{3} 32 \mid 11 \\
& \left.3113\right|_{3} 12|11|_{4} 13 \mid 1221
\end{aligned}
$$

Conway sequence: Atoms

$$
\begin{gathered}
1 \\
11 \\
21 \\
12 \mid 11 \\
111221 \\
31|22| 11 \\
13|11|_{2} 2221 \\
\left.\left.1113\right|_{2} 21\right|_{3} 32 \mid 11 \\
\left.3113\right|_{3} 12|11|_{4} 13 \mid 1221 \\
\left.13|2113|_{4} 1112\right|_{2} 3113|11| 22 \mid 12
\end{gathered}
$$

Conway sequence: Atoms

Theresia Eisenkölbl, Université Lyon 1

Conway sequence: Atoms

1113213211
311312| 11131221
$\left.1321131112\right|_{2} 3113$ | 112212
$\left.11131221133112\right|_{3} 13211321221112$
$\left.3113212221232112\right|_{4} 1113122113121122$
$\left.132113121132111213122112\right|_{5} 31131122211311122122$ $\left.111312211311122113123112111311222112\right|_{6} 1321132132211331221122$

Conway sequence: Atoms

\author{

| 11132 | 13211 |
| :--- | :--- |
 311312| 11131221
 $\left.1321131112\right|_{2} 3113112212$
 $\left.11131221133112\right|_{3} 13211321221112$
 $\left.3113212221232112\right|_{4} 1113122113121122$
 $\left.132113121132111213122112\right|_{5} 31131122211311122122$ $\left.111312211311122113123112111311222112\right|_{6} 1321132132211331221122$

}

Conway sequence: Atoms

11132 and 13211 are 2 of 92 atoms. It just remains to show how each atom decays into other atoms. The Conway constant λ is the largest eigenvalue of the transition matrix.

Conway sequence: Atoms

11132 and 13211 are 2 of 92 atoms. It just remains to show how each atom decays into other atoms. The Conway constant λ is the largest eigenvalue of the transition matrix.
λ is the growth constant for any starting string of positive integers with one exception:

Conway sequence: Atoms

11132 and 13211 are 2 of 92 atoms. It just remains to show how each atom decays into other atoms. The Conway constant λ is the largest eigenvalue of the transition matrix.
λ is the growth constant for any starting string of positive integers with one exception:

22

Sprouts: Rules

Example with $n=3$.

Sprouts: Rules

Example with $n=3$.

- Two players alternate.

Sprouts: Rules

Example with $n=3$.

- Two players alternate.
- Start with $n \in \mathbb{N}$ vertices.

튼 \quad Qの

Sprouts: Rules

Example with $n=3$.

- Two players alternate.
- Start with $n \in \mathbb{N}$ vertices.
- A move consists of connecting two vertices and placing a new vertex on the new edge.

Sprouts: Rules

Example with $n=3$.

■ Two players alternate.

- Start with $n \in \mathbb{N}$ vertices.
- A move consists of connecting two vertices and placing a new vertex on the new edge.
- The new edge may return to the starting vertex.

Sprouts: Rules

Example with $n=3$.

- Two players alternate.
- Start with $n \in \mathbb{N}$ vertices.
- A move consists of connecting two vertices and placing a new vertex on the new edge.
- The new edge may return to the starting vertex.
- Edges must not cross.

Sprouts: Rules

Example with $n=3$.

- Two players alternate.
- Start with $n \in \mathbb{N}$ vertices.
- A move consists of connecting two vertices and placing a new vertex on the new edge.
- The new edge may return to the starting vertex.
- Edges must not cross.
- The maximal degree of each vertex is three.

Sprouts: Rules

Example with $n=3$.

- Two players alternate.
- Start with $n \in \mathbb{N}$ vertices.
- A move consists of connecting two vertices and placing a new vertex on the new edge.
- The new edge may return to the starting vertex.
- Edges must not cross.
- The maximal degree of each vertex is three.
- A player who does not have a legal move loses.

Sprouts: Does it end?

Does the game always end?

Sprouts: Does it end?

Does the game always end?
Each move uses up two free spots and provides one new spot.

Sprouts: Who wins?

Sprouts: Who wins?

Let A and B be the players and let A be the starting player. The table lists the winner for the given number n of starting vertices.

Vertices	0	1	2	3	4	5	6	7	8	9	10	11

Sprouts: Who wins?

Let A and B be the players and let A be the starting player. The table lists the winner for the given number n of starting vertices.

Vertices	0	1	2	3	4	5	6	7	8	9	10	11
Winner	B	B	B	A	A	A	B	B	B	A	A	A

Sprouts: Who wins?

Let A and B be the players and let A be the starting player. The table lists the winner for the given number n of starting vertices.

Vertices	0	1	2	3	4	5	6	7	8	9	10	11
Winner	B	B	B	A	A	A	B	B	B	A	A	A

True up to $n=32$.

Sprouts: Who wins?

Let A and B be the players and let A be the starting player. The table lists the winner for the given number n of starting vertices.

Vertices	0	1	2	3	4	5	6	7	8	9	10	11
Winner	B	B	B	A	A	A	B	B	B	A	A	A

True up to $n=32$. And for $n=47$.

Sprouts: Who wins?

Let A and B be the players and let A be the starting player. The table lists the winner for the given number n of starting vertices.

Vertices	0	1	2	3	4	5	6	7	8	9	10	11
Winner	B	B	B	A	A	A	B	B	B	A	A	A

True up to $n=32$. And for $n=47$.
Open problem.

Brussels Sprouts

Like Sprouts, but instead of vertices, we use crosses that mark four free ends for edges. On a new edge, we place a notch that provides two new free ends, one in each direction from the edge.

Brussels Sprouts: Does it end?

Each move removes two free ends and introduces two free ends, so there are always $4 n$ free ends. A face contains at least one free end, so there can be at most $4 n$ faces. However, it is not possible to play indefinitely without drawing more than $4 n$ faces.

Brussels Sprouts: Who wins?

Brussels Sprouts: Who wins?

>	Vertices	0	1	2	3	4	5	6	7	8	9	10	11

Brussels Sprouts: Who wins?

Vertices	0	1	2	3	4	5	6	7	8	9	10	11
Winner	B	A										

Brussels Sprouts: Who wins?

Game ends when each face contains exactly one free end after m moves. There are $2 m$ edges and $n+m$ vertices in the end. Each move removes two free ends and introduces two free ends, so there are always $4 n$ free ends and therefore $4 n$ faces in the end.

Brussels Sprouts: Who wins?

Euler's formula

$(n+m)-2 m+4 n=2$.

Brussels Sprouts: Who wins?

Euler's formula

$$
(n+m)-2 m+4 n=2
$$

$$
m=5 n-2
$$

Brussels Sprouts: Who wins?

Euler's formula

$$
(n+m)-2 m+4 n=2 .
$$

$$
m=5 n-2 .
$$

Players win according to the parity of n independently of their chosen moves.

Planted Brussels Sprouts

Like Brussels Sprouts, but we start with a circle that only contains some free ends towards the inner face.

Planted Brussels Sprouts

Like Brussels Sprouts, but we start with a circle that only contains some free ends towards the inner face.

As before, we can determine the number of moves ($n-1$, easily proved by induction) and the winner does not depend on the choices of the players.

Planted Brussels Sprouts

Like Brussels Sprouts, but we start with a circle that only contains some free ends towards the inner face.

As before, we can determine the number of moves ($n-1$, easily proved by induction) and the winner does not depend on the choices of the players.

Boring.

Planted Brussels Sprouts

Planted Brussels Sprouts

Caleb Ji, James Propp: Brussels Sprouts, Noncrossing Trees, and Parking Functions, arxiv.org/1805.03608.

Planted Brussels Sprouts

Caleb Ji, James Propp: Brussels Sprouts, Noncrossing Trees, and Parking Functions, arxiv.org/1805.03608.
Nonetheless, games that are trivial from the point of view of strategy may still pose interesting questions for enumerative combinatorics. ("If you can't beat 'em, count how many ways they can beat you.")

Planted Brussels Sprouts

Caleb Ji, James Propp: Brussels Sprouts, Noncrossing Trees, and Parking Functions, arxiv.org/1805.03608.
Nonetheless, games that are trivial from the point of view of strategy may still pose interesting questions for enumerative combinatorics. ("If you can't beat 'em, count how many ways they can beat you.")

We show that the endstates of the game are in natural bijection with noncrossing trees and that the game histories are in natural bijection with both parking functions and factorizations of a cycle of \mathcal{S}_{n}.

Game of Life: Rules

Game of Life: Rules

On an infinite square grid some square cells are "alive" and the rest are "dead". The neighbors of a cell are the 8 cells that share at least a point with the cell.

Game of Life: Rules

On an infinite square grid some square cells are "alive" and the rest are "dead". The neighbors of a cell are the 8 cells that share at least a point with the cell.

- A dead cell with exactly 3 living neighbors will be reborn in the next generation.

Game of Life: Rules

On an infinite square grid some square cells are "alive" and the rest are "dead". The neighbors of a cell are the 8 cells that share at least a point with the cell.

- A dead cell with exactly 3 living neighbors will be reborn in the next generation.
- A living cell with 2 or 3 living neighbors survives into the next generation.

Game of Life：Rules

On an infinite square grid some square cells are ＂alive＂and the rest are＂dead＂．The neighbors of a cell are the 8 cells that share at least a point with the cell．
－A dead cell with exactly 3 living neighbors will be reborn in the next generation．
－A living cell with 2 or 3 living neighbors survives into the next generation．
－All other cells will be dead in the next generation．
ィロ〉4司〉4 三ㅏ

Game of Life: Rules

On an infinite square grid some square cells are "alive" and the rest are „dead". The neighbors of a cell are the 8 cells that share at least a point with the cell.

- A dead cell with exactly 3 living neighbors will be reborn in the next generation.
- A living cell with 2 or 3 living neighbors survives into the next generation.
- All other cells will be dead in the next generation.

Is this really a game?

Game of Life: Rules

On an infinite square grid some square cells are "alive" and the rest are "dead". The neighbors of a cell are the 8 cells that share at least a point with the cell.

- A dead cell with exactly 3 living neighbors will be reborn in the next generation.
- A living cell with 2 or 3 living neighbors survives into the next generation.
- All other cells will be dead in the next generation.

Is this really a game? „Zero-player game"

Game of Life

Balanced rules allow complex behavior: Glider

Game of Life

Balanced rules allow complex behavior: Glider
Conway promised $50 \$$ for someone who could find a configuration that leads to an unbounded number of alive cells. The prize was claimed in 1970 by Bill Gosper for his Gliding Gun that shoots out an endless chain of gliders.

Game of Life

Balanced rules allow complex behavior: Glider
Conway promised $50 \$$ for someone who could find a configuration that leads to an unbounded number of alive cells. The prize was claimed in 1970 by Bill Gosper for his Gliding Gun that shoots out an endless chain of gliders.

Example of changed rules.

Video interviews

Several video interviews with John Conway are available on Numberphile.

Homework: Conway Circle

