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Research areas

Group theory

Knot theory
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Number theory
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. . .
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On Numbers and Games (1976)

(with Berlekamp and Guy)
Winning Ways for your Mathematical Plays (1982)
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John Horton Conway

Bio

b26. 12. 1937

PhD 1964

Cambridge

Princeton

d11. 4. 2020
(Covid-19)

Photo:
Princeton University
Denise Applewhite

Research areas

Group theory

Knot theory

Game theory

Number theory

Monstrous Moonshine

. . .

Books

On Numbers and Games (1976)

(with Berlekamp and Guy)
Winning Ways for your Mathematical Plays (1982)

(with Norton, Wilson and Parker)
Atlas of finite groups (1985)

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway
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John Horton Conway

In an interview, John Conway said that after he
made his name with his work on the classification of
finite simple groups he felt that he was now free to
do whatever he liked.

His advisor, Harold Davenport, said that when he
would give John Conway a problem to solve,

”
he

would return with a very good solution to another
problem.“
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Motivation

German version of
Scientific American

Martin Gardner
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Motivation

German version of
Scientific American

Martin Gardner

Photo: Wikimedia Commons
Konrad Jacobs

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway
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Themes of this talk

Conway group

Conway polynomial

Conway sequence
and constant

Sprouts and variants

Game of life

Conway circle
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Things Named After John Conway
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Conway group

The Conway group Co1 is the quotient of index 2 of
the automorphism group of the 24-dimensional
Leech lattice.

The group has 4 157 776 806 543 360 000 elements.
It is one of three Conway groups among the 26
sporadic groups in the classifications of finite simple
groups.
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Conway polynomial: Knots and Links
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Conway polynomial: Knot diagram
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Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the
Alexander polynomial) is defined by

∇
( )

= 1

∇
( )

= ∇
( )

− z · ∇
( )

The Conway polynomial is a knot invariant, i.e., it
does not change when the knot is continuously
deformed in three dimensions.
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Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the
Alexander polynomial) is defined by

∇
( )

= 1

∇
( )

= ∇
( )

− z · ∇
( )

The Conway polynomial is a knot invariant, i.e., it
does not change when the knot is continuously
deformed in three dimensions.

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway



Conway polynomial: Definition

The Conway polynomial ∇ (a variant of the
Alexander polynomial) is defined by

∇
( )

= 1

∇
( )

= ∇
( )

− z · ∇
( )

The Conway polynomial is a knot invariant, i.e., it
does not change when the knot is continuously
deformed in three dimensions.

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway
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Conway polynomial: Hopf Link

∇
( )

= ∇
( )

− z · ∇
( )

∇
( )

= ∇
( )

− z · ∇
( )

1 = 1 − z · ∇
( )

⇒ ∇
( )

= 0.
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Conway polynomial: Hopf Link

∇
( )

= ∇
( )

− z · ∇
( )

,

∇
( )

= 1 and ∇
( )

= 0.

∇
( )

= ∇
( )

− z · ∇
( )

= ∇
( )

− z · ∇

( )
= 0− z · 1 = −z .
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Conway polynomial: Hopf Link

∇
( )

= −z .

∇
( )

= 0.

Two rings linked together cannot be separated in
three dimensions without cutting them.
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Conway polynomial: Trefoil knot

Exercise

∇


 =?
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Conway sequence

1

11
21

1211
111221
312211

13112221
1113213211
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Conway sequence

Conway sequence Length

1 1
11 2
21 2

1211 4
111221 6
312211 6

13112221 8
1113213211 10

31131211131221 14
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Conway sequence: Conway constant

lim
n→∞

`n+1

`n
= λ

with the Conway constant

λ = 1.303577269034 . . . ,

the only positive root of
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Conway sequence: Conway constant

x71−x69−2x68−x67+2x66+2x65+x64−x63−x62−x61−x60−x59

+2x58 +5x57 +3x56−2x55−10x54−3x53−2x52 +6x51 +6x50 +x49

+9x48−3x47−7x46−8x45−8x44+10x43+6x42+8x41−5x40−12x39

+7x38−7x37 +7x36 +x35−3x34 +10x33 +x32−6x31−2x30−10x29

−3x28+2x27+9x26−3x25+14x24−8x23−7x21+9x20+3x19−4x18

−10x17−7x16 +12x15 +7x14 +2x13−12x12−4x11−2x10 +5x9 +x7

− 7x6 + 7x5 − 4x4 + 12x3 − 6x2 + 3x − 6.
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Conway sequence: Atoms

1

11

21

12 | 11

111221

31 | 22 | 11

13|11 |2 2221

1113|221 |3 32 | 11

3113|312|11 |4 13 | 1221

13 | 2113 |41112|23113 | 11 | 22 | 12

1113 |2 1221133112|313 | 2113 |2 21 |2 22 |2 1112
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Conway sequence: Atoms
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Conway sequence: Atoms

11132 and 13211 are 2 of 92 atoms. It just
remains to show how each atom decays into other
atoms. The Conway constant λ is the largest
eigenvalue of the transition matrix.

λ is the growth constant for any starting string of
positive integers with one exception:

22
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Sprouts: Rules

Example with n = 3.

Two players alternate.

Start with n ∈ N vertices.

A move consists of connecting two vertices and placing a
new vertex on the new edge.

The new edge may return to the starting vertex.

Edges must not cross.

The maximal degree of each vertex is three.

A player who does not have a legal move loses.
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Sprouts: Does it end?

Does the game always end?

Each move uses up two free spots and provides one
new spot.
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Sprouts: Who wins?

Let A and B be the players and let A be the starting
player. The table lists the winner for the given
number n of starting vertices.

Vertices 0 1 2 3 4 5 6 7 8 9 10 11

Winner B B B A A A B B B A A A

True up to n = 32. And for n = 47.
Open problem.
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Brussels Sprouts

Like Sprouts, but instead of vertices, we use crosses
that mark four free ends for edges. On a new edge,
we place a notch that provides two new free ends,
one in each direction from the edge.
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Brussels Sprouts: Does it end?

Each move removes two free ends and introduces
two free ends, so there are always 4n free ends. A
face contains at least one free end, so there can be
at most 4n faces. However, it is not possible to play
indefinitely without drawing more than 4n faces.

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway
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Brussels Sprouts: Who wins?

Game ends when each face contains exactly one free
end after m moves. There are 2m edges and n + m
vertices in the end. Each move removes two free
ends and introduces two free ends, so there are
always 4n free ends and therefore 4n faces in the
end.
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Brussels Sprouts: Who wins?

Euler’s formula

(n + m)− 2m + 4n = 2.

m = 5n − 2.

Players win according to the parity of n
independently of their chosen moves.
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Planted Brussels Sprouts

Like Brussels Sprouts, but we start with a circle that
only contains some free ends towards the inner face.

As before, we can determine the number of moves
(n − 1, easily proved by induction) and the winner
does not depend on the choices of the players.

Boring.
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Planted Brussels Sprouts

Caleb Ji, James Propp: Brussels Sprouts,
Noncrossing Trees, and Parking Functions,
arxiv.org/1805.03608.

Nonetheless, games that are trivial from the point of
view of strategy may still pose interesting questions
for enumerative combinatorics. (“If you can’t beat
’em, count how many ways they can beat you.”)

We show that the endstates of the game are in
natural bijection with noncrossing trees and that the
game histories are in natural bijection with both
parking functions and factorizations of a cycle of Sn.

Theresia Eisenkölbl, Université Lyon 1 Homage to John Conway
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Game of Life: Rules

On an infinite square grid some square cells are

”
alive“ and the rest are

”
dead“. The neighbors of a

cell are the 8 cells that share at least a point with
the cell.

A dead cell with exactly 3 living neighbors will
be reborn in the next generation.

A living cell with 2 or 3 living neighbors survives
into the next generation.

All other cells will be dead in the next
generation.

Is this really a game?
”
Zero-player game“
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Game of Life

Balanced rules allow complex behavior: Glider

Conway promised 50$ for someone who could find a
configuration that leads to an unbounded number of
alive cells. The prize was claimed in 1970 by Bill
Gosper for his Gliding Gun that shoots out an
endless chain of gliders.

Example of changed rules.
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Video interviews

Several video interviews with John Conway are
available on Numberphile.
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Homework: Conway Circle
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