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Presentation

@ Part I: Quantum computation, quantum communication: Entanglement,
non-locality and contextuality

o Part Il: The geometry of quantum states: complex projective geometry,
invariants of tensors and projective duality

o Part Ill: The geometry of operators: symplectic geometry over Iy,
Kochen-Specker Theorem and Mermin's polynomials
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Part I: Quantum compuation, quantum communication: Entanglement,
non-locality and contextuality
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Axioms of quantum computing

In quantum computation, information is encoded in a quantum state [¢)) € H, it
evolves by unitary transformations and part of the information can be recovered

by measurement
[}

e Axiom 1 (superposition principle): A quantum state is a unit vector in a
complex vector space H equiped with an inner product

@ Axiom 2 (unitary evolution): The evolution of a quantum state is described
by a unitary transformation

o Axiom 3 (measurement principle): Measuring a quantum state consists in
projecting the state to an orthonormal basis of . Given an orthonormal
basis |e1),...,|e,) of H and assuming |1)) = > a;|e;), the probability that
|b) is projected to |e;) after measurement in the basis B is |a;|>. Morevoer
after measurement ) ~~ |e;)

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, U September 7-8, 2020, Strobl, Austria 85th Séminaire L



Example: The qubit (vector representation)

H = C? with standard basis |0) = (é) 1) = (?)

A qubit is 1)) = a |0) + B 1) with |o|* + [B]* = 1. p(|¢) = |0)) = |af?,
p(l¥) = 1)) = |BI>

@ Transformation M € U,(C), example

(00 r=( 9)2- 6 2 emnn-5( L)

e Example |¢) = % |0) + i? |1). Measuring [¢) in the |[+) = %UO) +11)),

=)= \%00) —[1)) basis. p(|¢) = [+)) = [([+)[* = 1/2 and
(1Y) =1-)) = [(¥|-)]* =1/2
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The qubit (Bloch Sphere representation)
@ Global phase are irrelevant

[¥) = @|0) + B 1) ~ cos(8/2) |0) + €' sin(6/2) |1)

a= )

@ In the Bloch pircutre, unitary transformations correspond to rotations

@ An observable O is an hermitian operator whose eigenvalues are the
outcomes of a measurement and its eigenstates are the projected state after
1

0 _01> is the observable for measuring the qubit in the

measurement Z = (

Z direction (standard basis) while X = ((1) (1)> corresponds to measuring

the qubit in the X direction (|+),|—) basis)

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur The Geometry of Quantum Algorithms September 7-8, 2020, Strobl, Austria 85th Séminaire L




Physical example: The Spin of a particule

The first historical example of a qubit was observed in 1922 with the
Stern-Gerlach experiment that shows for the first time that the angular
momentum of particules is quantized®

7t

=

> *3}]}<‘%‘1>
N

Figure: The Stern-Gerlach experiment: The spin is in a superposition but after
measurement in the Z-basis, the state is projected to either “up” or “down”.

L What we can learn about Quantum Physics from a single qubit, Diir, Heusler,
arxiv.1312.1463
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Example: Two-qubit system

e H=C?>xC?
) |’L/)> = ago |00> + ao1 |01> =+ aio |10> + an |11>
@ Examples of unitary transformations

000 1 100 0
0010 0100
X®X=14 1 0 0| NOT=15 0 0 1
100 0 0010

0,v) = [0,v)
ILv) = [1,Xv)

|u) lu) ——o—
v) v) ——

@ Measurement: [t)) ~ |¢') where [/') is an element of B a basis of C? @ C?
@ A measurement basis can be given as eigenvectors of O; ® O,

lu, vy — | Xu, Xv)
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Quantum computing and the circuit formalism

a0 g —?_n_?_ni
altl g _u n_ —
a2 ) — {—n—l—ni—

a3

a4 g

Theorem (D. DiVincenzio, 98)

Uz (2 x 2 unitary matrices) and CNOT are universal gates for quantum computing

f:{0,1}" — {0,1}™ a classical function. Then there exists a unitary matrix
Ur € Upniom such that

Ur Ix,y) = Ix,y @ f(x))
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Deutsch'’s algorithm?

Problem: Determine if f : {0,1} — {0,1} is constant or not.
1 /1 1
o H= 7 (1 _1) (Hadamard gate), Us : |x) |y) — |x) |y @ f(x))

2D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer Proc. R. Soc. Lond 1985
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Deutsch'’s algorithm?
Problem: Determine if f : {0,1} — {0,1} is constant or not.

o H= % G _11) (Hadamard gate), Ur : [x) |y) = |x) [y © f(x))

) )1 1) s
° |1h)y =101) = [0) ® 1),

2D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer Proc. R. Soc. Lond 1985
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Deutsch'’s algorithm?
Problem: Determine if f : {0,1} — {0,1} is constant or not.

o H= % G _11) (Hadamard gate), Ur : [x) |y) = |x) [y © f(x))

0 A,
B A ——

) )1 1) s
° |h)y =101) = [0) @1

)
o Il = 5(10) +11)) @ ((0) - 1)

2D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer Proc. R. Soc. Lond 1985
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Deutsch'’s algorithm?
Problem: Determine if f : {0,1} — {0,1} is constant or not.

o H= % G _11) (Hadamard gate), Ur : [x) |y) = |x) [y © f(x))

0y —{HI—,
)
o Ih W) 19
o [¥)y =101) = [0) ® 1),
o 93, = 5(10) +11)) ® (10) - 1)
0) + 1)

=+(
° [¢), = |0>\@|1>

H= s

00 =11y . _
)®(|O>ﬂ|l>) if £(0) = £(1)
)©( 7 ) iff(0) # (1)

2D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer Proc. R. Soc. Lond 1985
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Deutsch'’s algorithm?
Problem: Determine if f : {0,1} — {0,1} is constant or not.

o H= % G _11> (Hadamard gate), Ur : [x) |y) = |x) [y © f(x))

0 —{E;

it —{A—"
W [ W) I

o [¥) = [01) = [0) ®|1).

o 14}, = 2(0)+ |1) ® (0) — [1)

0+ 11

£

" i("’)@'”) o (101 i r0) £ (1)
V2 2

) 0 - -
o 91 = %1003 (L) o), = 1y o (21

2D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer Proc. R. Soc. Lond 1985
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Entanglement

One of the main resources in quantum computation that is non-classical is
Entanglement

Example (Entangled state)

|EPR) = —=(10408) + |1a18)). p(A= [0)) = 05, p(B = 1)) = 0.5 but
p(A=[0).B = 1)) = 0 # p(A = [0))p(B = |1))

Not all two-qubit states are entangled [¢)) = |11) ® |1),) is called separable state

%I

Example (Separable state)

as) = (4 10)+ 4 [9)® 35(10) 1)) = 5=(100) +lo) + 22
then p(A=|0)) =1/4, p(B =|1)) =1/2 and p(AB = |01)) =1/8

|10) +[11)),

Let |’(/J> = apo |00> + ao1 |01> + a1 |10> + an |11> & (C2 ® (CZ

. . a a
|1} is separable iff agga;; — ag1a10 = 0 < det 00 <ol) _g
a0 411
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Quantum Teleportation

) c = al0) + B 1), [Pag) = \/—(IOO +|11>)

|1/Jo>=7( a[0)+41))®(|00)+[11)) = —=(r|000) + [011)+ /3 [100) +3[111))

7
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Quantum Teleportation

[¥)c = all )+ B11), [Pag) = \%(IOO>+I11>)
[%0) = T( @[0)+4[1))®(00) +11)) = —5([000) +a [011)+5[100)+5 111))
[¥2) = —5(«[000) + [011) + 5 [110) + 5]101))
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Quantum Teleportation

e = al| )+ B11), [ag) = %uow + |11>>

o) = T( @10)+8 1)) (100)+[11)) = —=(a]000) + 0LL)+4]100) + 5 111)
|1) = 7( a |000) + «|011) + 3 ]110) + 3 |101))

o) = \if( o [£00) + | +11) + B|10) + 3| ~01)
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Quantum Teleportation

W’)c —
|®)5 —4
|®) 5
) = al| )+ BI1), |¢AB>=\%2(|00>+|11>)
o) = ?( 10)-+8[1))@(00)-+[11)) = —=(a[000)+:[011)+4[100) +5 111))
|1) = ﬁ( a |000) + «|011) + 3 ]110) + 3 |101))
o) = \if( o [£00) + o[ +11) + B|~10) + 4| —01))
= 1/2(a|000) + o |[100) + & [011) + ¢ |[111) + ]010) — B |110) + 3 [001) — 3 |101))
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Quantum Teleportation
1o —9 _‘

)% %L-—J
)5 — [¥)p

) = al| )+ 811, [9ag) = \%uow + |11>)
o) = ?( 10)-+8[1))@(00)-+[11)) = —=(a[000)+:[011)+4[100) +5 111))
|1) = \{_( a |000) + «|011) + 3 ]110) + 3 |101))

|12) = ﬁ( o |[+00) + o [+11) 4 B|—10) 4 B|—01))
= 1/2(|000) + o |[100) + o [011) + ¢ |[111) + 3]010) — 3 |110) + 3 |001) — B |101))

|2) = 1/2(]00) @ (@ [0) + 1)) + [01) © (a[1) + 5 0)) + |10) ® (a[0) = B 1)) +
111) @ (a[1) = 810)))
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Quantum Teleportation

W’)c —9 —

)% %L-—I ‘

)% Lo
) = al| )+ BI1), |¢AB>=\%(|00>+|11>)
o) = ?( 0)+611))(100) +[11) = —=(cx000) o [011)+3]100) 5 111))
|1) = \{_( a |000) + «|011) + 3 ]110) + 3 |101))

|12) = ﬁ( o |[+00) + o [+11) 4 B|—10) 4 B|—01))
= 1/2(|000) + o |[100) + o [011) + ¢ |[111) + 3]010) — 3 |110) + 3 |001) — B |101))

|2) = 1/2(]00) @ (@ [0) + 1)) + [01) © (a[1) + 5 0)) + |10) ® (a[0) = B 1)) +
111) @ (a[1) = 810)))

l¥)g = |0) +5]1)

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur The Geometry of Quantum Algorithms September 7-8, 2020, Strobl, Austria 85th Séminaire



Entanglement and Non-locality

When Alice measures her qubit, it fixes Bob's outcomes no matter what the

distance is between them: Einstein called it Spooky action at the distance®.

Recall that an observable is an hermitian operator that encodes the outcomes of
0 1

a mesurement. For example the observable X = |+) (+| — |=) (—| = ( )

10
encodes the measurement of a qubit in the x-direction.

Theorem (J. Bell (1960))

Let us consider the following two-qubit operator

Be//:Z®(X—J§Z)+X®(X—J§Z)+Z®(%)—X®(%)

Then (Bell)*R < 2 and (Bell)® < 2/2 (in fact (Bell)epr = 2v/2)

3Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of
physical reality be considered complete?. Physical review, 47(10),777.
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CHSH game*

Charlie

@ Alice and Bob win iff a® b = x.y
o Classical strategy pas wins < 0.75, Quantum strategy pas wins =~ 0.85:
o Alice and Bob shares an EPR state |¢ag) = ﬁ(|00) +[11))
o If x =0 Alice mesures her qubit in the Z-basis, if x = 1 she measures in the
X-basis. Then she sends a = 0 to Charlie if she got |0) or |[+) and she sends
a =1 if she got |1) or |—)
o If y = 0 Bob measures his qubit in the
7 —

+ . .
-basis, if y = 1 he measures in

Nz d

the -basis and sends b the result of his measurement

A

4Clauser, Hornev, Shimony and Holt, Proposed experiment to test local hidden-variable
theories. Phys. Rev. Letters 1969
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Grover's quantum algorithm®

Problem: Find a “marked” element in an unsorted database of N = 2" items.
Let f a classical function that recognizes the marked element |xp)

0" —[Hen - 3{Her {2107 (07 — 1 o
|
1)

Repeated

@ The gate O (for Oracle) signs the marked element
O(1x) ly)) = x) ly @ f(x)) and thus O(|x) |-)) = (=1)") |x) |-)

@ The Diffusion operator symmetrizes the amplitudes of the state with respect
to the mean value of the amplitudes

5L. Grover, A fast quantum mechanical algorithm for database search. Proc. of the 28th
annual ACM 1996
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Grover’'s quantum algorithm

1) ) [¥), )5
Evolution of Grover's algorithm
T ° [¢), =
LILILITL] 00} + B T 0,171 1) with
LT T o) > |82
S 1 @ After enough rounds we have
,,,,,,, ] B a2~ 1>> |B]2.
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Grover's quantum algorithm: complexity

r =1
07) —{He 2(0") (0"| — I H{HETF—{ A

L= 1y, L——7-1 —— ol
) )1 1Y), )3
|S> \/7 Ex OX7$X0| >
Do p® " o For N = 2" large sin(f) = 1/\/N
Tle, > ie. 0 ~1/vVN
B e, o Oracle+Diffusion=rotation by angle
“‘ 15> 20
oW = 6> o After k iterations (DO)k |+®") =

cos((2k—+1)0) |s)+sin((2k+1)6) |xo)
o sin((2k+1)0)~ 1< (2k+1)0 ~
/2

Conclusion k ~ ’”F , complexity in O(v/N) compared to O(N) (classical)
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Grover's quantum algorithm

A little bit of geometry

[ = ak |Xo) + Bk ng{o,,,,,/\/q}\xo |x) .
= (ak = Br) 1x0) + Bk Xxeqo, .. n-13 1X) = @i [x0) + Bic|[+)®"

For one marked element, the states generated by Grover's algorithm |¢), are
rank® two tensors’

Paccess

"o 20 30 40 50

Teration
Running Grover's algorithm means moving on a secant line from |+)®” to the
marked element. It gives qualitative interpretation of numerical results®
5Brylinsky, J.-L. Algebraic measures of entanglement in Mathematics of Quantum
Computation. Comput. Math. Ser. Chapman and Hall (2002)
"H-, Jaffali, Nounouh Grover’s algorithm and the Secant varieties, Quant. Inf. Proc. 2016
8Rossi, M., D. BruB, and C. Macchiavello. Scale invariance of entanglement dynamics in
Grover’s quantum search algorithm. Physical Review A 87.2 (2013): 022331.
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Studying quantum algorithms

Quantum algorithms are given by evolution of quantum states. To get a better
understanding, one can ask the following questions:
@ How can we characterize geometrically the states generated by a given
quantum algorithm ?
@ What about the non-local properties of the states generated ?

Figure: Left:Grover’s algorithm and the Secant varieties, H-, Jaffali, Nounouh, Quantum
Information Processing 2016. Middle: Quantum Entanglement involved in Grover and
Shor's algorithm: The four-qubit case, Jaffali, H-, Quantum Information Processing
2019. Right: Mermin Polynomials for Non-locality and Entanglement Detection in
Grover's algorithm and Quantum Fourier Transform, de Boutray, Jaffali, H-, Masson,
Giorgetti, submitted.

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur The Geometry of Quantum Algorithms September 7-8, 2020, Strobl, Austria 85th Séminaire L




Contextuality

A context is a set of compatible measurements, i.e. a set of mutually commuting
observables

Theorem (Kochen-Specker (1967))

There is no non-contextual deterministic theory that reproduces the outcomes of
quantum physics

@ Each node is a two qubit operators
with eigenvalues {—1,1}

@ A deterministic theory that can
assign the eigenvalues and satisfy
the row/column constrains should
be context dependent

Figure: Peres-Mermin Magic square
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Quantum pseudo-telepathy game

C LN
x'zm/"}ﬁ)“x -
w [t 1 [o]*=

1 o[ 1]
1 0 ?

Charlie sends a € {1, 2,3} to Alice and b € {1,2,3} to Bob
Alice and Bob send back triplets (x1, X2, x3), (y1,¥2,y3) . Xi,y; € {—1,1}

Alice and Bob win the game iff
o Alice sends an odd number of —1
o Bob sends an even number of —1
@ Xa=Yp

There is no classical strategy that win the game with certainty

However there is a quantum strategy that win the game with p =1
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Pseudo-telepathy game (quantum strategy)

+®9@

+

@ Alice and Bob share the following quantum state

+

1
|E'DR>AB®|EPR>AB = 5(‘OAOBOAOB>+|OA051AIB>+|1A]-BOAOB>‘H]-A]-B]-AlB>)

@ Then Alice measures her two qubit system using the context corresponding to
row a and Bob uses the context given by column b
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Recap: Entanglement, non-locality and contextuality

Geometry of quantum states Geometry of operators

P} = P(C2 ® C?)

X =P x P!

@ Pauli observables

@ W(3,2), the symplectic polar space
of rank 2

@ Hag =C%2®C?
o Entangled < det # 0
@ Separable < det =0
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Part Il: The geometry of quantum states: complex projective geometry, invariants
of tensors and projective duality
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Entanglement of pure quantum states

H=C%"®. - -®C%, Hilbert space for a n-partite system

|p) € P(H), a quantum pure state

SLOCC = SL4 (C) x - -+ x SLg,(C), reversible local operations

LU = Uy (C) % ... U4,(C), local unitary transformations

Xsep = {|¢) € P(H), |¢) = |1) ® - - - ® |[¢p) }, the variety of separable states
P(H) \ Xsep, the set of entangled states

The set Xsep is well-known to geometers as the Segre variety

Seg: Ph-lx...xPh=1l P(H)
(Vla"'vvn) = [V1®"'®VI‘I]

(1)

Seg(P%~1 x ... x P%~1) is a SLOCC closed orbit, the orbit of rank one tensors

What Mathematics (representation theory, invariant theory, geometry...) tell us
about entanglement 7
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How to study entanglement 7

@ Representation Theory perspective: study SLOCC-orbits of H (Parfenov,
Nurmiev Vinberg, Verstraete, Djokovic) ~ classes of entanglement.

o Geometric perspective: study auxiliary varieties in P(#). The variety X of
separable states is a SLOCC-closed orbit in P(#) all varieties built
geometrically from X (secant, tangent) are SLOCC-invariant (Landsberg,
Ottaviani, Heydari, H-) ~~ geometric interpretation of classes of entanglement

@ Invariant theory: compute the algebras invariants/covariants (Luque, Thibon,
Briand, Verstraete) ~~ algorithms to identify a given state with his class of
entanglement

@ Hyperdeterminant: combine geometry and invariant theory perspectives to
study specific invariants (Gelfand-Kapranov-Zelevinski, Miyake, Lévay, Duff,
Borsten, H-, Luque, Thibon, Jaffali, Oeding)
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Three qubit classification
In 2000, the physicists Diir, Vidal and Cirac® proved the existence of 6
distinguished classes of entanglement under SLOCC
@ The orbit of separable state SLOCC. |000)
1
V2
(|001) + |111))

@ Three orbits of biseparable states SLOCC.—=(|100) + |111}),

SLOCC.—(|010) + |111)), SLOCC.

1 1

V2 V2
1

@ The W state orbit SLOCC.ﬁ(\100> +]010) + |001))

@ The GHZ state orbit SLOCC.i
V2

This paper got a lot of attention in the quantum physics literature
(citations=3338)

(|000) + [111))

9Diir, W., Vidal, G. and Cirac, J.1., (2000). Three qubits can be entangled in two
inequivalent ways. Physical Review A, 62(6), p.062314.
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Secant and tangential varieties

Let X C P(V) a projective variety. Define the secant and tangential varieties
@ The secant variety o(X) = Uy yIP’l
@ The tangential variety 7(X) = Uxex TxX

X =P x P! x P! then o(X) = P(SLOCC.|GHZ)) 7(X) = P(SLOCC. |W))

Theorem (Fulton-Hansen (1979))

Let X C P(V) a projective variety of dimension d, then one of the two following
situations holds

e either dim(c(X)) =2d + 1 and 7(X) C o(X) and dim(7(X)) = 2d,

e or dim(a(X)) < 2d +1 and o(X) = 7(X)

vy

More secant varieties can be defined o(X) = Uy, xexPrit x

o
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Three qubit classiciation (revisited 1)

The fact that |GHZ) and |W) define two distinguished classes of entanglement
follows from Fulton-Hansen's Theorem

P(SLOCC. [GHZ)) = 0(Xsep) = P

P(SLOCC. W) = (Xsep)

| T

P(SLOCC. |B1)) = P! x P* P(SLOCC.|B,)) P(SLOCC.|Bs)) = P? x P

P(SLOCC. [000)) = P x P* x P!

Le Paige in 18811° computed the algebra of covariants of trilinear forms in binary
variables.

With its result, one can separate!® the different orbits by evaluating the vector
([B«], [By], [B-), [C], [A22]) where Azy, is the quartic invariant of

C[C? ® C? ® C?J3LOCC, C is a covariant polynomial of degree 3 and B,, B, and
B, are covariants of degree 2.

101 e Paige, C. (1881). Bull. Acad. Roy. Sci. Belgique (3), bf, 2, 40-53.
1H-, Luque and Thibon, 2012. Geometric descriptions of entangled states by auxiliary
varieties. Journal of mathematical physics, 53(10), p.102203.
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Hyperdeterminants

The quartic invariant Ay, is Cayley hyperdeterminant. Hyperdeterminants
generalize the notion of determinant and can be defined geometrically,
Definition

Let X C P(V) be a projective variety, the dual of X is the variety of P(V*)
defined by

XY ={H € P(V*), 3x € Xemooth, TxX C H} )

When XV is a hypersurface, its defining equation is called the X-discriminant Ax.

Example

If X =P% x .. x Pd C P(AF)-hF)=1 with o < Y., dj then XV is an
irreducible hypersurface and we call Ax = Detg, 11, ..,4,+1 the hyperdeterminant of
format (dy + 1) X (d2 +1) x -+ X (dy + 1)

4
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Hyperdeterminant (the 2 x 2 x 2)

In 1845 Cayley computed the hyperdeterminant for a hypermatrix of format

2X2x%X2
ap11 ain
7/ 7/
ao10 aro
apo1 «)» a101
@poo @100
Figure: A 2 x 2 x 2 matrix A = (ajk)
_ 2 2 2 2 2 2 2 2
Det(A) = 35002111 + 35019710 T 10101 + 1003011

—2a0003001 31104111 — 2300080103101 3111 — 23000201131003111 3)
—2a001d0103101 2110 — 23001201131103100 — 2301030113101 3100
+4a00020112101 3110 + 43001 301031008111

This polynomial is irreducible, SLOCC invariant and so is its singular locus
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Three qubit classification (revisited I1)

Miyake!? points out that this classification can be obtained by considering Detyy
and its singular locus which was studied by Weyman and Zelevinsky'3

P(SLOCC. [GHZ)) = P"

P(SLOCC. [W)) = Xdop

/ \

P(SLOCC. [By)) = Sing, XY, P(SLOCC. |By)) = Sing, XY, P(SLOCC. |B3)) = Sing; X3,

\/

Xsep = P(SLOCC. |000)) = P! x P! x P!

Figure: Stratification of P" = P(C? ® C*> ® C?)

2Miyake, A. (2003). Physical Review A, 67(1), 012108.
BWeyman, J., & Zelevinsky, A. (1996). Annales de I'institut Fourier (Vol. 46, No. 3, pp.
591-644).
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More Hyperdeterminants and more Quantum information

Finding explicit equations of dual varieties is difficult in general. Interestingly a lot
of them have interpretation in terms of quantum information

H G A Computable Authors Quantum Inf
Sym™(C") SL, Discr. n=2 Sylvester Symmetric qubits
Ch®---@C% | SLy x --- x SLy, | HDet (m, m) Multiqubit
(2,2,2) Cayley systems of format
(2,2,3) (ch,....dy)
(3,3,3) Schlafli/Bremner-Hu-Oeding
(2,2,2,2) Schlafli/Luque-Thibon
Necn SL, HPfaff | (k,n) = (2,n) k-fermions
(3,6) with n single-particle states
(3,7) Lévay-Sarosi
(3,8) Lévay-Sarosi
(3,9) H-, Oeding
(4,8) H-, Oeding
Vse E; quartic Cartan Tripartite entanglement
Duff-Ferrara/Lévay of seven qubits
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HPfaff and fermionic systems

Fermions are indistinguishable particles that are skew-symmetric, i.e. the wave
function describing the system of two (or more) fermions picks up a phase factor
(=) when we exchange two particles. For pure system with n-single particle states
one has

o H=AC"
e SLOCC=SL,

o The Grassmannian variety G(k, n) C P(A*C") is the set of separable
fermions

Recall that the Grassmannian variety is defined by its Pliicker embedding,

i,y — i Ava A e Ay 4)

The dual of G(k, n), when it is a hypersurface, is given by an invariant
polynomial: The hyperpfaffian HPfaff, ,
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The duals of G(3,9) and G(4,8)

With Luke Oeding'*, we computed HPfaff; g and HPfaff, g the defining equations
of the duals of G(3,9) and G(4,8). Those computations were possible because
@ The rings of invariant polynomials are finitely generated®
CIA’ C°)*5(©) = Cfiy, fis, foa, fro] and
CIA* C¥%(©) = C[fy, fs, s, fio, fiz, fia, fig]
o In both cases (A’ C? and A* C8) the number of orbits is infinite but there is
classification depending on parameters. In particular a description of a Cartan
subspace of semi-simple elements is known in both cases!®

@ The degree of both duals are not too big!” deg(HPfaff; 9) = 120 and
deg(HPfafF4,8) =126

4H-, Oeding. (2018). Hyperdeterminants from the Eg discriminant. arxiv.1810.05857
5Katanova, A.A., 1992. Explicit form of certain multivector invariants. Lie groups, their
discrete subgroups, and invariant theory, Adv. Soviet Math, 8, pp.87-93.
16| V. Antonyan,Classification of four-vectors of an eight-dimensional space, Trudy Sem.
Vektor. Tenzor.Anal.20(1981), 144-161. - E. B. Vinberg and A. G. Elasvili, A classification of
the three-vectors of nine-dimensional space, Trudy Sem. Vektor. Tenzor. Anal.18(1978),
197-233.
17 Alain Lascoux,Degree of the dual of a Grassmann variety, Comm. Algebra (1981), no. 11,
1215-1225
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Dual of G(3,9) in terms of the fundamental invariants

188875 44940218765172270463 522717082571600510 156259946875
HPfaffs o —fi — g — foffy + ———————— fyfighy + —————— fixf3
’ 1526823 2232199994248855116 5022449987059924011 27974261679948
20055843759677134000 5 113325067730636958495085217 , , 8007609664851700  ;
e Sy —— 44 " By
15067349961179772033 2 18 1009180965609898771226274 12 18~ 45202049883539316009 12 °°
951594557840795000 3730826003750  , ,  4631708176278228432974860 5 ,
v ——L LT L7 L5 R f12f4 — fi2figf0
135606149650617948297 327991224631970313 4541314345649544470518233
43381008724204271875 5 , ,  48098757809275002625 , 11518845001768651039
= fiofighy — ———————— fiofigfy — —————————— fiofig
2440910693711123069346 15067349961179772033 320340082758027804
1302403335812500  ,  ,  6686357462527147925300 , , , 140973248590625000

2
o @y T 222, PR 22y
135606149650617048207 12 2+'30 T 1513771448549848156830411 12 1830 T 1550455346855561534673 12 10 24130

351718750000 2133816827644645000 198339133437500
Do + flafighafio — ————————— flaffghoy
327991224631970313 135606149650617948297 741017211205562559
45601574382263590 32778366465625 14445540571041712000
S A2 fiofig fa
+ 1830 18724 12f18130
741017211205562559 48591292538069676 1513771448549848156839411
216716472500000 2371961791512500 10890275000000
e ffuf - fiahufig t ——————— figfyfy
1220455346855561534673 135606149650617948297 20007464702550189093
1250000000 g 34328756109890000 n

fo4 + f30-
327991224631970313 4541314345649544470518233

édéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur] e Geometry of Quantum Algorithms

(5)
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Dual of G(4,8) in terms of the fundamental invariants

The expression of HPfaff, g is made of 15,942 monomials and looks like

HPfaffs s = — (11228550634163820692582736367065066800237662227759449345598
861374381270810701586235392,/1900359976262346454474448419809074

880484088763429831167939681466204604687770731158447265625) £
+ -+ + (3/1690514664168754070821429178618909) £, (6)
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Proof

The proof is based on interpolation. Let V = A*>C2 or A*C8 and G = SLo(C) or
SLg(C)

@ Notice that if f in G-invariant, then f(x) = f(xs) where x; is the semi-simple
part of x
Choose a Cartan subspace of V/,
Restrict the fundamental invariants to a Cartan subspace of semi-simple
elements

Define a generic f polynomial of the degree of XV in terms of the
fundamental invariants

Choose points xs in XV to obtain enough equations f(xs) = 0,

©0 © oo

Solve the system of equation

The G(3,9) case can be worked out on a regular Laptop. The G(4,8) case,
because the large number of monomials to consider, requires to work in modulo p
arithmetic to avoid memory issues because of the large coefficient. A rationnal
reconstruction was therefore necessary to obtain the coefficients
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Interpretation

Once the equations HPfaff; g and HPfaffs g are known, we can establish an
interesting connection with the Eg-discriminant

o Consider Lie algebra eg and the adjoint action of the corresponding Lie group
Eg. The adjoint variety Xg, C P(eg) is the unique closed orbit (the highest
weight orbit) and its dual is a hypersurface. We denote its polynomial
equation by Ag,. Let us denote by h C eg a Cartan subalgebra, then it is
known that the expression of Ag, restricted to b is

AEa(XS) = Macra(xs) (7)

o A realization of eg is eg = \> C%" @ slg & A\ C°

@ Check that HPfafFég|€ = me(Ag),) where € is a Cartan subspace of Ao
~~ an expression of HPfaff; g on semi-simple elements

o Similarly Ag, = Myecra and ¢7 = slg & A C® ~» HPfaffy g
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Es-discriminant
The projection argument allows us to recover from the Eg discriminant most of
the known (non-trivial) duals of homogeneous varieties. They all have a quantum
physics interpretation

Apg —————————————> A |Ag Mg lAE, Aso(8) |2k (8)
(A €9yt TN By L J{"(c3)®3 T(c2)®4*)L
HPfafi} o m(Agy) HPfaffy g | w(AE, ) Afpz) x3|m(BEg) Bp1yxal™(Bso(e))
T(€3)®3)L T((€2)®4)L J{"(Sym%@)* )+ T (sym*(€2)*) L
B (p2)x3 | m(HPfaff3 o) A (p1) x4 | 7 (HPfaffy ) 8, 02)l2p2)x3 B, @) B E1)xa

T(sym3(c3)*)L T(symt(C2)*)L

A @2) (A p2)x3) A0l T (Bp1yxa)
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Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur



Application 1: Measuring entanglement

@ Gour and Wallach'® used the absolute value of the 2 x 2 x 2 x 2
Hyperdeterminant as a measure of entanglement. They conjectured
numerically the maximally 4-qubit entangled states and their result was
proved analytically by Chen and Djokovic °. They showed that the states
that maximize |Detyyp,| also maximize the a-Tsallis entropy

@ We have started some numerical search?® to maximize |Detss3|, |HPfaff; o
and |HPfaff, g|

o Can we confirm analytically the results ?

o Is there a physical meaning with respect to others usual measures of
entanglement 7

o Do the connections between Dety2 and HPfaffs g and the one between Detss3
and HPfaff; g manifest when we look for maximally entangled states ?

8Gour, G., & Wallach, N. R. (2010). All maximally entangled four-qubit states. Journal of
Mathematical Physics, 51(11), 112201.

9Chen, L., & Djokovi¢, D. Z. (2013). Proof of the Gour-Wallach conjecture. Physical Review
A, 88(4), 042307.
20 Jaffali, H-, Oeding. Entanglement of Fermionic systems from-Hyperpfaffian. In-preparation
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Application 2: Classifying entanglement by singularities

In his paper on hyperdeterminant and entanglement, Miyake noticed that the
singular locus of XV defines SLOCC invariants subvarieties of XV with two main
components (the cusp and node component). But we can go further and analyze
the type of singularities of the hyperplane section®!

e He X}, < XNH has a unique P\x Fu Smoon
Morse singularity =

o He XY__ < XNH has a

cusp

singularity which is not Morse i
o He XY .. < XNH has (at least) W

two Morse singularities

e He Xy < XN H has a singularity

f t tleast) T
i ifoee (et s Figure: Stratification of the 3 qutrit Hilbert

space by singularities

21H-, Luque, & Planat (2014). Singularity of type D4 arising from four-qubit systems. Journal
of Physics A: Mathematical and Theoretical, 47(13), 135301 — H-., & Jaffali (2016).
Three-qutrit entanglement and simple singularities. Journal of Physics A: Mathematical and
Theoretical, 49(46), 465301.
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Part I1l: The geometry of operators: symplectic geometry over Iy,
Kochen-Specker Theorem and Mermin polynomials
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The Mermin square and the Kochen Specker Theorem
(contextuality)
The Pauli matrices satisfy X2 = Y2 =22 =/ XY =iZ,YZ = iX,ZX =iY

@ Lines: set of mutually commuting operators

@ There is an odd number of lines whose product gives —/ ® /

@ Eigenvalues {+1,—1} at each node of the grid

@ Impossibility to pre-assign values to the 9 observables which satisfy the signs

@ ~~ Any "Hidden variables” theory should be contextual (there is no such
theory which is non-contextual)
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The Mermin pentagram

Similarly with three qubits, the Mermin pentagram is a contextual configuration

A
~/ \ 7
ik
LN

2 8

The Mermin square and Mermin pentagram?? are the smallest configurations?
providing observables based proofs of contextuality (Kochen Specker Theorem).

22Mermin, N. D. (1993). Hidden variables and the two theorems of John Bell. Reviews of
Modern Physics, 65(3), 803.
23H- & Saniga (2017). Contextuality with a small number of observables. International
Journal of Quantum Information, 15(04), 1750026.
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The generalized N-qubit Pauli group

One considers the subgroup Py of GL(2V,C) generated by the tensor products of
Pauli matrices,

AARA ® - ®Ay = AlAr ... Ay
with A; € {=£1, +il, £X, £iX, 1Y, £iY, +Z, +iZ}.
Q Z(Pn) ={x!l,£il}
@ VN = Pn/Z(Py) is an Abelian group
To any class p € Viy = Py/Z(Py) corresponds a unique element in Z2V. More
precisely for any p € Py we have p = sZM X" @ ... ZHN XN with s € {£1, i}
and (p1,v1,- -, punsvn) € Z3N.

Thus Vy is a 2N dimensional vector space over Z, and we can associate to any
p € Py \ IN a unique point in the projective space PG(2N — 1,2)

For single qubit on have | <+ (0,0), X <> (0,1), Y €< (1,1) and Z < (1,0) and
we have the projective line PG(1,2) = {X, Y, Z}.
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Commutation relations
According to the previous slide for p € Py we have p = sZM X" ® ... Z#V XN
with s € {£1,+i} and (u1,v1,- - ., un,vn) € Z3N.
Thus for p, p’ € Py we have
ppl = (SSI(_]')ZjN:1 'uj{uj7M1 + :U/?l? v+ V:Ila ceey UN + :u’;Vv vy + l/;\l)
Therefore:

two Pauli elements of Py commute if and only if Z _1(mivj + pivj) = 0.

We equiped Vjy with the symplectic form

N
= 2_ (v} + ;)
Jj=1

and let us denote by W(2N — 1, 2), the symplectic polar space of rank N, the set
of totally isotropic subspaces of (PG(2N —1,2), (,)).
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W(3,2) aka The Doily

For two qubits Pauli group, /I + (0,0,0,0), X/ «+ (0,1,0,0), IX «< (0,0,0,1),

XX + (0,1,0,1), etc...
The symplectic polar space W(3,2) accomodates the commutation relations of

the two qubit Pauli group®®. It contains
@ 15 points
@ 15 lines

24Planat, M., & Saniga, M. (2007). On the Pauli graphs of N-qudits. arXiv preprint
quant-ph/0701211.
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The doily and its hyperplanes

The hyperplanes of W(3,2) are subsets H such that all lines of the configuration
is either contained in H or has a unique intersection with H

& &
eEw
& &

Three kinds of hyperplanes?®:
@ 10 grids (Mermin squares ~ GQ(1,2) ~ Q7(3,2))
@ 15 perp-set
@ 6 ovoids

25Saniga, M., Planat, M., Pracna, P., & Havlicek, H. (2007). The Veldkamp space of
two-qubits. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 3075;
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The doily and its Veldkamp space

Let H;, Ho two hyperplanes, one defines H3 = Hy H H, = HiAH,

When a geometry G has hyperplanes one can associate its Veldkamp space V(G),
i.e. the set of its hyperplanes. One says that three hyperplanes H;, H, and Hs
make a Veldkamp line iff H; B H, = H3

e

DHOD
DOOD
DOODH

V(W(3,2)) comprises:

@ 31 points splitting in 3 orbits

@ 155 lines splitting in 5 different types
One can show that V(W(3,2)) ~ PG(4,2)
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Three qubits case: W(5,2) and the split Cayley Hexagon

The symplectic polar space W(5,2) contains 63 points, 315 lines, 135 Fano
planes, 12096 Magic pentagrams. There is also an embedding®® of the split Cayley
Hexagon which accomodates the 63 three-qubit operators (63 points, 63 lines)

X0 al 1O
PGS S
c o oWz WO o AT o
i L

26| évay, P., Saniga, M., & Vrana, P. (2008). Three-qubit operators, the split Cayley hexagon
of order two, and black holes. Physical Review D, 78(12), 124022.

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur The Geometry of Quantum Algorithms September 7-8, 2020, Strobl, Austria 85th Séminaire L




Quadrics in W(5, 2)

A three qubit observables (up to £1,+/) p = ZM X" ZF2 X2 ZH3 X3 corresponds
(p1,v1, po, V2, 3, v3) € V3 = ZS. We define a quadratic form on V3

Q(p) =D wvj 9)

One says that p is symmetric iff Qo(p) = 0 (even number of Y's) and p is
skew-symmetric iff Qo(p) = 1 (odd number of Y's).
One gets 63 alternative quadratic forms on V3 by considering

Qq(P) = Qo(p) + (9, ) (10)
Two types of quadrics, hyperbolic and elliptic
07 (5,2) = {quadrics parametrized by symmetric elements} (11)

Q7 (5,2) = {quadrics parametrized by skew-symmetric elements} (12)

In W(5,2) one finds 36 hyperbolic quadrics and 28 ellipic quadrics. Each
hyperbolic quadric contains 35 points and each elliptic quadrics contains 28 points
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Veldkamp lines in W(2N — 1, 2)

It can be proven?” that in general hyperplanes of the symplectic polar spaces can
be described as
This set corresponds to “perp-set” i.e. it is the set of elements commuting with g

Or
Ho = {p € WRN — 1,2), Qy(p) = 0} (14)

where Qq(p) = Qo(p) + (g, p) with Qo(p) = (p, p)
The set H, represents the set of observables either symmetric (containing an even

number of Y's) and commuting with g or anti-symmetric and anticommuting
with g

One also have C, B Gy = Cpiq, Ho B Hg = Cpig and C, BB Hy = Hpyg
This leads to five types of Veldkamp lines

2Vrana, P., & Lévay, P. (2010). The Veldkamp space of multiple qubits. Journal of Physics
A: Mathematical and Theoretical, 43(12), 125303.
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The Magic Veldkamp line of three qubit

Once we consider the Veldkamp line {Hy, Hyyy, Cyyy }, one gets the following
partition of W(5, 2),

quadratic
cone
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From Quantum Information to representation theory

The core set of the Veldkamp line is the set of elements commuting with YYY
(they belong to Cyyy), symmetric (they belong to Hj;). An explicit list of those
elements is given by:

YYI YIY IYY ZzZzZI ZIZ 1ZZ XXl XIX

IXX  ZXI ZIX 1ZX XZI XIZ IXZ (15)

This set of operator form a Doily that encapsulates the weight diagram of the 2nd
fundamental representation of Ag
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From Quantum Information to representation theory

This core set also encapsulates the Pfaffian of 6 x 6 skew-symmetric matrices
which is the invariant of the 15-irreducible representation of As (SLe)

Consider the observable Q =}, ;. a;Oj where Oj is a three qubit
observable located at (ij). Then the polynomial Tr(23) is proportional to Pf(A)
where A = (aj)1<i<j<6 is a skew symmetric matrix
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The magic Veldkamp Line and representation theory?®

Geometry

Representation

Branching

Doily, HN E

15 irrep of As

Quadratic cone

13156 15 rep of As

Elliptic Quadric, £

27 irrep of Eg

21 =150 6D 6 for As C Es

Hyperbolic Quadric, H

35 irrep of Ag

35 = 15 @ 20 for As C Ag

ENH

32 irrep of Dg

32=20®6® 6 for As C Ds

@ A description of the extended line as

@ Associated invariants
a 64 dimensional irrep. of D5 S

@ Finite geometric description in terms
of extended generalized quadrangle

\ Q=2 1<icjceiOj and A= (ay)
A Pf(A) = Tr(Q3)
Pf(A) has 15 variables (nodes), 15

monomials (lines)

28 évay, P., H-, & Saniga, M. (2017). Magic three-qubit Veldkamp line: A finite geometric
underpinning for form theories of gravity and black hole entropy. Physical Review D, 96(2),
026018.
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Bell's inequality and Mermin's polynomials

David Mermin proposes?® in 1990 an inductive generalization of Bell's inequalities.
Let us denote by a1, ap, ..., a,..., aj, a, dots, a}, ... two families of one qubit
observable. Then Mermin's polynomials are defined by:

o M1 = a
® My=My1®(an+aj)+ M,_; ®(an — ap)
where the prime operator interchanges primed and unprimed operators.

Foraj =Z,a = X,a) = X\%Z,a’z = zﬁx one gets
X+Z X +2 Z—X Z—X
Bell =Z @ (——— )+ XQ(——— )+ 2 (———) X (———
( 7 ) %) ( 7 ) ( 7 )
Mermin's inequalities:
<MH>LR S 2n—1 <Mn>QM S 23("—1)/2

29Mermin, N. D. (1990). Extreme quantum entanglement in a superposition of

macroscopically distinct states. Physical Review Letters, 65(15), 1838.
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Mermin's polynomials for n = 3

When we restrict the choice of observables to Pauli matrices (X, Y, Z, /) the
monomials of Mermin's polynomials M3 span a Fano plane in W(5,2)

/ / / /L
Mz = 2(a1a2a5 + a1a5a3 + ajara3 — ajapas)

Let a; = X and &} = Y This Fano plane is an isotropic subspace
Mz = 2(XXY + XYX + YXX — YYY)  of maximal dimension in W(5, 2)
VAVA The product of operator on each line

gives +Id and there exists a unique

] __ [000)+i[111)
e!genvector |v) = 5 of
VXX 771 eigenvalue +1 for all seven operators

leading to

(Y[ Ms|yp) =8> 4

XX XY X 1Z7Z

vy

Frédéric Holweck (ICB/UTBM, UMR 6303, CNRS, Ur The Geometry of Quantum Algorithms September 7-8, 2020, Strobl, Austria 85th Séminaire L



Mermin's polynomials for n = 3

Polynomials can be associated to each Fano planes of W(5,2) but not all of them
are useful to prove non-locality

Another isotropic Fano plane of W(5,2) From this Fano plane one can generate
is for instance the polynomial
IXI P3 = 2(XXI + XIX + IXX + XXX)
Because [¢)) = |4+ + +) is the unique
common eigenvector of eigenvalue +1
XTI IIX for the Fano plane one gets

(Y|Psly) =8

But because of the signs one also sees
XXI XIX IXX that

(P3)tF =8
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The Lagrangian's mapping

How to study isotropic plane of W(5,2) ?
Theorem (H-, Saniga, Lévay SIGMA (2014))

There exists a bijection between the set of generators of W(2N — 1,2) and the
variety of principal minors of symmetric matrices over Fy, Zy C PG(2N —1,2)

{er,...ren} CWEN - 1,2) — D5 LG(N,2N) c BNV FRY)

Zy C PGE2N - 1,2)

Sketch of the proof: Isotropic N-planes are mapped to the Lagrangian variety.
The Lagrangian variety is parametrized by minors of symmetric matrices and can
be projected to the variety of principal minors. Over F, this map is a bijection
Planes of mutually commuting three-qubit operators <> four-qubit symmetric

&Z
vxz  1zv vyx
w2 et cramy
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Orbits in PG(2" — 1,2)
Bremner and Stravou 3° gave a computer classification of the SLg(IFz)MXN X oy
orbits of PG(2N —1,2) for N = 3,4. In particular we have
e O%(7,2) = Z; contains 3 orbits
@ Z, contains 6 orbits
Leading to

o 3 distinguish types of polynomials in the three qubit case (only one is
relevant to prove non-locality)

@ 6 distinguish types of polynomials of operators in the four-qubit case
(probably more interesting polynomials for studying non-locality, work in
progress)

30Bremner, M. R., & Stavrou, S. G. (2013). Canonical forms of 2x 2x 2 and 2x 2x 2x 2
arrays over 2 and 3. Linear and Multilinear Algebra, 61(7), 986-997.
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Mermin's polynomials and Quantum computers

Back to quantum computer: Mermin's polynomial can be implemented on
Quantum computers to test Mermin's inequalities:
@ Test quantum properites of states generated by quantum algorithm?3!

@ Exhibit nonlocal properties of specific quantum states3?

ao1 1o [
an 1o - EHE
az1 1o [ —

v vy
< o 1 2

Further direction of research: How to evaluate algebraic invariants with a
Quantum Machine ?

3lde Boutray, Jaffali, H-, Giorgetti & Masson, (2020). Mermin Polynomials for Entanglement
Evaluation in Grover's algorithm and Quantum Fourier Transform. arXiv preprint

arXiv:2001.05192.
32 Amouzou, Boffelli, Jaffali, Atchonouglo, H-. Entanglement and Non-locality of four-qubit

hypergraph states. In preparation.
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