The existence of a cyclic sieving phenomenon for permutations via a bound on the number of border strip tableaux and invariant theory

joint work with Per Alexandersson, Stephan Pfannerer and Joakim Uhlin

8.9.2020

A mystery group action

joint with Per Alexandersson, Stephan Pfannerer and Joakim Uhlin

8.9.2020

Part -I preliminaries

▶ a representation of a group G on a vector space V is a group homomorphism $G \rightarrow \text{End}V$. Notation: $g \cdot \vec{v} \in V$.

▶ a representation of a group G on a vector space V is a group homomorphism $G \to \text{End}V$. Notation: $g \cdot \vec{v} \in V$.

• an action of a finite group G on a finite set \mathcal{X} is a group homomorphism $G \to \mathfrak{S}_{\mathcal{X}}$. Notation: $g \cdot x \in \mathcal{X}$.

▶ a representation of a group G on a vector space V is a group homomorphism $G \to \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$. A morphism $\phi : V \to W$ of representations is a linear map with

$$\mathbf{g}\cdot\phi(\mathbf{\vec{v}})=\phi(\mathbf{g}\cdot\mathbf{\vec{v}}).$$

 an action of a finite group G on a finite set X is a group homomorphism G → 𝔅_X. Notation: g ⋅ x ∈ X.

▶ a representation of a group G on a vector space V is a group homomorphism $G \to \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$. A morphism $\phi : V \to W$ of representations is a linear map with

$$\mathbf{g} \cdot \phi(\mathbf{\vec{v}}) = \phi(\mathbf{g} \cdot \mathbf{\vec{v}}).$$

an action of a finite group G on a finite set X is a group homomorphism G → G_X. Notation: g · x ∈ X.
A morphism φ : X → Y of group actions is a map with

$$\mathbf{g} \cdot \phi(\mathbf{x}) = \phi(\mathbf{g} \cdot \mathbf{x}).$$

Brauer's Permutation Lemma

• the character of a representation $\rho: G \to \operatorname{End}(V)$ is the map

 χ_{ρ} : (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \operatorname{tr} \rho(g)$

• the character of a group action $\rho : G \to \mathfrak{S}_{\mathcal{X}}$ is the character of the associated 'permutation representation':

$$\chi_{\rho}$$
: (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \text{fix } \rho(g)$

Brauer's Permutation Lemma

• the character of a representation $\rho : G \to End(V)$ is the map

 χ_{ρ} : (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \operatorname{tr} \rho(g)$

• the character of a group action $\rho : G \to \mathfrak{S}_{\mathcal{X}}$ is the character of the associated 'permutation representation':

$$\chi_{\rho}$$
: (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \text{fix } \rho(g)$

Lemma

Two representations are isomorphic if and only if their characters coincide.

Brauer's Permutation Lemma

• the character of a representation $\rho : G \to End(V)$ is the map

 χ_{ρ} : (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \operatorname{tr} \rho(g)$

• the character of a group action ρ : G → G_X is the character of the associated 'permutation representation':

 χ_{ρ} : (conjugacy classes of) $G \to \mathbb{C}$, $g \mapsto \text{fix } \rho(g)$

Lemma

Two representations are isomorphic if and only if their characters coincide.

Lemma (Brauer)

Two cyclic group actions are isomorphic if and only if they are isomorphic as linear representation.

Cyclic sieving

Given

- a finite set $\mathcal X$
- a cyclic group $\langle c
 angle$ of order r acting on ${\mathcal X}$
- a polynomial $f \in \mathbb{N}[q]$ such that for any $d \in \mathbb{N}$

$$f(\xi^d) = \mathsf{fix}\left(c^d\right)$$

(ξ a primitive *r*-th root of unity) Then ($\mathcal{X}, \langle c \rangle, f$) exhibits the cyclic sieving phenomenon.

Cyclic sieving

Given

- a finite set $\mathcal X$
- a cyclic group $\langle c
 angle$ of order r acting on ${\mathcal X}$
- a polynomial $f \in \mathbb{N}[q]$ such that for any $d \in \mathbb{N}$

$$f(\xi^d) = \mathsf{fix}\left(c^d\right)$$

(ξ a primitive *r*-th root of unity)

Then $(\mathcal{X}, \langle c \rangle, f)$ exhibits the cyclic sieving phenomenon. Note that

- $f(1) = |\mathcal{X}|$
- $f(q) \mod (q^r 1)$ is the character of the group action
- mostly, one is interested in 'nice' f

Part O summary of results

Let ${\rm BST}(\lambda/\mu,k)$ be the set of border strip tableaux of shape λ/μ with strips of size k.

Theorem

$$\#BST(\lambda/\mu, k) \ge \sum_{d>1} \#BST(\lambda/\mu, kd), \text{ if } \#BST(\lambda/\mu, k) \ge 2$$

Let ${\rm BST}(\lambda/\mu,k)$ be the set of border strip tableaux of shape λ/μ with strips of size k.

Theorem

$$\#BST(\lambda/\mu, k) \ge \sum_{d>1} \#BST(\lambda/\mu, kd), \text{ if } \#BST(\lambda/\mu, k) \ge 2$$

Example

$$\lambda/\mu = (5,4^3)/(2^2,1)$$
, $k=2$, English notation.

Let $\operatorname{SYT}(\lambda/\mu)$ be the set of standard Young tableaux of shape λ/μ and let $S_{\lambda/\mu} = \bigoplus_{\nu} S_{\nu}^{\oplus c_{\mu,\nu}^{\lambda}}$ be the corresponding representation.

Theorem

 $S_{\lambda/\mu} \otimes S_{\lambda/\mu} \downarrow_{\langle (1,...,|\lambda/\mu|) \rangle}$ is isomorphic to a cyclic group action.

Let $\operatorname{SYT}(\lambda/\mu)$ be the set of standard Young tableaux of shape λ/μ and let $S_{\lambda/\mu} = \bigoplus_{\nu} S_{\nu}^{\oplus c_{\mu,\nu}^{\lambda}}$ be the corresponding representation.

Theorem

 $S_{\lambda/\mu} \otimes S_{\lambda/\mu} \downarrow_{\langle (1,...,|\lambda/\mu|) \rangle}$ is isomorphic to a cyclic group action.

Example

Let $\lambda/\mu = (3,2)/(1)$. The character of $S_{\lambda/\mu} \otimes S_{\lambda/\mu} \downarrow_{\langle (1,...,|\lambda/\mu|) \rangle}$ is

Let $\operatorname{SYT}(\lambda/\mu)$ be the set of standard Young tableaux of shape λ/μ and let $S_{\lambda/\mu} = \bigoplus_{\nu} S_{\nu}^{\oplus c_{\mu,\nu}^{\lambda}}$ be the corresponding representation.

Theorem

 $S_{\lambda/\mu} \otimes S_{\lambda/\mu} \downarrow_{\langle (1,...,|\lambda/\mu|) \rangle}$ is isomorphic to a cyclic group action.

Example

Let $\lambda/\mu = (3,2)/(1)$. The character of $S_{\lambda/\mu} \otimes S_{\lambda/\mu} \downarrow_{\langle (1,...,|\lambda/\mu|) \rangle}$ is

which means that the group action has one orbit of size 1 and six orbits of size 4. Let rot be the rotation of the chord diagram of a permutation.

Theorem

 $\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$

- *s* ∘ rot = *s*
- s is equidistributed with the Robinson-Schensted shape

• rot restricted to
$$\mathfrak{S}_r^{\lambda} = \{\sigma \in \mathfrak{S}_r | s(\sigma) = \lambda\}$$
 has character
 $f^{\lambda}(q)^2 = \left(\sum_{T \in \text{SYT}(\lambda)} q^{\text{maj } T}\right)^2$

Let rot be the rotation of the chord diagram of a permutation.

Theorem

 $\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$

- s ∘ rot = s
- s is equidistributed with the Robinson-Schensted shape

• rot restricted to
$$\mathfrak{S}_r^{\lambda} = \{\sigma \in \mathfrak{S}_r | s(\sigma) = \lambda\}$$
 has character
 $f^{\lambda}(q)^2 = \left(\sum_{T \in SYT(\lambda)} q^{\operatorname{maj} T}\right)^2$

Example

Let rot be the rotation of the chord diagram of a permutation.

Theorem

 $\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$

- s ∘ rot = s
- s is equidistributed with the Robinson-Schensted shape

► rot restricted to
$$\mathfrak{S}_r^{\lambda} = \{\sigma \in \mathfrak{S}_r | s(\sigma) = \lambda\}$$
 has character
 $f^{\lambda}(q)^2 = \left(\sum_{T \in SYT(\lambda)} q^{\operatorname{maj} T}\right)^2$

Example

Part I invariant theory

or: why bother?

Invariants of the adjoint representation of GL_n Let V be the vector representation of GL_n :

$$\begin{aligned} \mathrm{GL}_n &\to \mathrm{End}(V) \\ T \cdot \vec{v} &= T \vec{v} \end{aligned}$$

Let $\mathfrak{gl}_n \cong V \otimes V^*$ be the adjoint representation of GL_n :

 $\operatorname{GL}_n \to \operatorname{End}(\mathfrak{gl}_n)$ $T \cdot A = TAT^{-1}$

Invariants of the adjoint representation of GL_n Let V be the vector representation of GL_n :

$$\begin{aligned} \mathrm{GL}_n &\to \mathrm{End}(V) \\ T \cdot \vec{v} &= T \vec{v} \end{aligned}$$

Let $\mathfrak{gl}_n \cong V \otimes V^*$ be the adjoint representation of GL_n :

$$\begin{aligned} \mathrm{GL}_n &\to \mathrm{End}(\mathfrak{gl}_n) \\ T \cdot A &= TAT^{-1} \end{aligned}$$

 GL_n acts diagonally on $\mathfrak{gl}_n^{\otimes r}$:

$$T \cdot (A_1 \otimes \cdots \otimes A_r) = (T \cdot A_1) \otimes \cdots \otimes (T \cdot A_r)$$

Invariants of the adjoint representation of GL_n Let V be the vector representation of GL_n :

$$\begin{aligned} \mathrm{GL}_n &\to \mathrm{End}(V) \\ T \cdot \vec{v} &= T \vec{v} \end{aligned}$$

Let $\mathfrak{gl}_n \cong V \otimes V^*$ be the adjoint representation of GL_n :

$$\begin{aligned} \mathrm{GL}_n &\to \mathrm{End}(\mathfrak{gl}_n) \\ T \cdot A &= TAT^{-1} \end{aligned}$$

 GL_n acts diagonally on $\mathfrak{gl}_n^{\otimes r}$:

$$T \cdot (A_1 \otimes \cdots \otimes A_r) = (T \cdot A_1) \otimes \cdots \otimes (T \cdot A_r)$$

The *invariants* of this representation are

$$\left(\mathfrak{gl}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} = \left\{ \mathbf{w} \in \mathfrak{gl}_{n}^{\otimes r} \mid \forall T \in \mathrm{GL}_{n} : T \cdot \mathbf{w} = \mathbf{w} \right\}$$

They are hard to describe explicitely.

- let A_r⁽ⁿ⁾ be the set of gl_n-highest weight words of weight zero: sequences (0=µ⁰, µ¹,..., µ^{2r}=0) of vectors in Zⁿ such that
 - each vector has weakly decreasing entries

•
$$(-)^{+}\mu^{i+1}$$
 $(-)^{-}\mu^{i}$ is a unit vector for i even (odd)

• $\mathcal{A}_r^{(n)}$ is a natural indexing set for a basis of $(\mathfrak{gl}_n^{\otimes r})^{\operatorname{GL}_n}$

e.g.

$$\begin{array}{ll} r=2 & n=1: & (0,1,0,1,0) \\ & n=2: & (00,10,00,10,00) \\ & (00,10,1\overline{1},10,00) \\ r=3 & n=1: & (0,1,0,1,0,1,0) \\ & n=2: & (00,10,00,10,00,10,00) \\ & (00,10,1\overline{1},2\overline{1},1\overline{1},10,00) \\ & \cdots \\ & n=3: & \cdots \\ & (000,100,10\overline{1},11\overline{1},10\overline{1},100,000) \end{array}$$

- let A_r⁽ⁿ⁾ be the set of gl_n-highest weight words of weight zero: sequences (0=µ⁰, µ¹,..., µ^{2r}=0) of vectors in Zⁿ such that
 - each vector has weakly decreasing entries
 - $(\stackrel{+}{_{(-)}}\mu^{i+1} \stackrel{-}{_{(+)}}\mu^i$ is a unit vector for i even (odd)
- $\mathcal{A}_r^{(n)}$ is a natural indexing set for a basis of $(\mathfrak{gl}_n^{\otimes r})^{\operatorname{GL}_n}$
- promotion is a natural (but complicated) operation on A⁽ⁿ⁾_r, isomorphic to rotation of tensor positions in (gl^{⊗r}_n)^{GLn}
 [Westbury]
- for n ≥ r, a variant of the Robinson-Schensted correspondence yields an isomorphism between promotion and rotation of permutations as chord diagrams [Pfannerer-R.-Westbury]

Theorem (Pfannerer-R.-Westbury)

There is an explicit bijection $\mathcal{P}: \mathcal{A}_r^{(r)} \to \mathfrak{S}_r \quad \text{with} \quad \mathcal{P} \circ \mathsf{pr} = \mathsf{rot} \circ \mathcal{P}.$

We want the same for $\mathcal{A}_r^{(n)}$ with n < r!

Theorem (Pfannerer-R.-Westbury)

There is an explicit bijection $\mathcal{P}: \mathcal{A}_r^{(r)} \to \mathfrak{S}_r \quad \text{with} \quad \mathcal{P} \circ \text{pr} = \text{rot} \circ \mathcal{P}.$

We want the same for $\mathcal{A}_r^{(n)}$ with n < r!

Theorem

There are sets $\mathfrak{S}_r^{(1)} \subseteq \mathfrak{S}_r^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_r^{(r)} = \mathfrak{S}_r$ and a bijection $\mathcal{P} : \mathcal{A}_r^{(r)} \to \mathfrak{S}_r^{(r)}$ with $\mathcal{P} \circ \mathsf{pr} = \mathsf{rot} \circ \mathcal{P}$ and $\mathcal{P}(\mathcal{A}_r^{(n)}) = \mathfrak{S}_r^{(n)}$.

Theorem (Pfannerer-R.-Westbury)

There is an explicit bijection $\mathcal{P}: \mathcal{A}_r^{(r)} \to \mathfrak{S}_r \quad \text{with} \quad \mathcal{P} \circ \text{pr} = \text{rot} \circ \mathcal{P}.$

We want the same for $\mathcal{A}_r^{(n)}$ with n < r!

Theorem

There are sets $\mathfrak{S}_r^{(1)} \subseteq \mathfrak{S}_r^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_r^{(r)} = \mathfrak{S}_r$ and a bijection $\mathcal{P} : \mathcal{A}_r^{(r)} \to \mathfrak{S}_r^{(r)}$ with $\mathcal{P} \circ \mathsf{pr} = \mathsf{rot} \circ \mathcal{P}$ and $\mathcal{P}(\mathcal{A}_r^{(n)}) = \mathfrak{S}_r^{(n)}$.

The symmetric group \mathfrak{S}_r acts on $(\mathfrak{gl}_n^{\otimes r})^{\operatorname{GL}_n}$ permuting positions:

$$\sigma \cdot (A_1 \otimes \cdots \otimes A_r) = A_{\sigma^{-1}1} \otimes \cdots \otimes A_{\sigma^{-1}r}$$

The symmetric group \mathfrak{S}_r acts on $(\mathfrak{gl}_n^{\otimes r})^{\operatorname{GL}_n}$ permuting positions:

$$\sigma \cdot (A_1 \otimes \cdots \otimes A_r) = A_{\sigma^{-1}1} \otimes \cdots \otimes A_{\sigma^{-1}r}$$

Schur-Weyl duality yields the \mathfrak{S}_r -character of this action:

Proposition

$$\left(\mathfrak{gl}_{n}^{\otimes r}\right)^{\operatorname{GL}_{n}} \cong \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda},$$

where S_{λ} is the Specht module corresponding to λ .

The symmetric group \mathfrak{S}_r acts on $(\mathfrak{gl}_n^{\otimes r})^{\operatorname{GL}_n}$ permuting positions:

$$\sigma \cdot (A_1 \otimes \cdots \otimes A_r) = A_{\sigma^{-1}1} \otimes \cdots \otimes A_{\sigma^{-1}r}$$

Schur-Weyl duality yields the \mathfrak{S}_r -character of this action:

Proposition

$$\left(\mathfrak{gl}_{n}^{\otimes r}\right)^{\operatorname{GL}_{n}} \cong \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda},$$

where S_{λ} is the Specht module corresponding to λ .

Corollary

The character of pr on
$$\mathcal{A}_{r}^{(n)}$$
 is $\sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \Big(\sum_{T \in \mathrm{SYT}(\lambda)} q^{majT}\Big)^{2}$.

Proof.

Let V be the vector representation of GL_n

$$\left(\mathfrak{gl}_n^{\otimes r} \right)^{\operatorname{GL}_n} \quad \cong \quad \left(\operatorname{End}(V)^{\otimes r} \right)^{\operatorname{GL}_n}$$

Proof.

Let V be the vector representation of GL_n

$$\begin{aligned} \left(\mathfrak{gl}_n^{\otimes r}\right)^{\operatorname{GL}_n} &\cong & \left(\operatorname{End}(V)^{\otimes r}\right)^{\operatorname{GL}_n} \\ &\cong & \operatorname{End}_{\operatorname{GL}_n}(V^{\otimes r}) \end{aligned}$$

Proof.

Let V be the vector representation of GL_n and let V_{λ} be the irreducible representation of GL_n in Schur-Weyl duality with S_{λ} .

$$\begin{pmatrix} \mathfrak{gl}_n^{\otimes r} \end{pmatrix}^{\operatorname{GL}_n} \cong \left(\operatorname{End}(V)^{\otimes r} \right)^{\operatorname{GL}_n} \\ \cong \operatorname{End}_{\operatorname{GL}_n}(V^{\otimes r}) \\ \overset{\text{Schur-Weyl}}{\underset{duality}{\cong}} \operatorname{End}_{\operatorname{GL}_n} \left(\bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leq n}} V_\lambda \otimes S_\lambda \right)$$

Invariants of the adjoint representation of GL_n

Proof.

Let V be the vector representation of GL_n and let V_{λ} be the irreducible representation of GL_n in Schur-Weyl duality with S_{λ} .

$$\begin{pmatrix} \mathfrak{gl}_{n}^{\otimes r} \end{pmatrix}^{\operatorname{GL}_{n}} \cong \left(\operatorname{End}(V)^{\otimes r} \right)^{\operatorname{GL}_{n}} \\ \cong \operatorname{End}_{\operatorname{GL}_{n}}(V^{\otimes r}) \\ \overset{\text{Schur-Weyl}}{\underset{\operatorname{duality}}{\cong}} \operatorname{End}_{\operatorname{GL}_{n}}\left(\bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} V_{\lambda} \otimes S_{\lambda} \right) \\ \overset{\text{Schur's}}{\underset{\operatorname{Lemma}}{\cong}} \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \operatorname{End}(S_{\lambda})$$

Proof.

Let V be the vector representation of GL_n and let V_{λ} be the irreducible representation of GL_n in Schur-Weyl duality with S_{λ} .

$$\begin{pmatrix} \mathfrak{gl}_{n}^{\otimes r} \end{pmatrix}^{\operatorname{GL}_{n}} \cong \left(\operatorname{End}(V)^{\otimes r} \right)^{\operatorname{GL}_{n}} \\ \cong \operatorname{End}_{\operatorname{GL}_{n}}(V^{\otimes r}) \\ \overset{\operatorname{Schur-Weyl}}{\stackrel{\cong}{\operatorname{duality}}} \operatorname{End}_{\operatorname{GL}_{n}}\left(\bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} V_{\lambda} \otimes S_{\lambda} \right) \\ \overset{\operatorname{Schur's}}{\underset{\operatorname{Lemma}}{\cong}} \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \operatorname{End}(S_{\lambda}) \\ \cong \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda}.$$

Theorem

$$\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$$

- ▶ *s* ∘ rot = *s*
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_r^{\lambda} = \{ \sigma \in \mathfrak{S}_r | \mathbf{s}(\sigma) = \lambda \}$ has character $f^{\lambda}(q)^2 := \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{\operatorname{maj} T} \right)^2$

Theorem

$$\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$$

- s ∘ rot = s
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_r^{\lambda} = \{ \sigma \in \mathfrak{S}_r | \mathbf{s}(\sigma) = \lambda \}$ has character $f^{\lambda}(q)^2 := \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{\operatorname{maj} T} \right)^2$

Proof.

There is a group action ρ_{λ} on $SYT(\lambda) \times SYT(\lambda)$ with character $f^{\lambda}(q)^2$

Theorem

$$\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$$

- s ∘ rot = s
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_r^{\lambda} = \{ \sigma \in \mathfrak{S}_r | \mathbf{s}(\sigma) = \lambda \}$ has character $f^{\lambda}(q)^2 := \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{\mathsf{maj} T} \right)^2$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^2$, so $\rho := \bigoplus_{\lambda \vdash r} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r} (f^{\lambda}(q))^2$.

Theorem

$$\exists s : \mathfrak{S}_r \rightarrow integer \ partitions \ of \ size \ r$$

- *s* ∘ rot = *s*
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_r^{\lambda} = \{ \sigma \in \mathfrak{S}_r | \mathbf{s}(\sigma) = \lambda \}$ has character $f^{\lambda}(q)^2 := \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{\operatorname{maj} T} \right)^2$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^2$, so $\rho := \bigoplus_{\lambda \vdash r} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r} (f^{\lambda}(q))^2$. rot on \mathfrak{S}_r has the same character.

Theorem

$$\exists\,s:\mathfrak{S}_r\to \textit{integer partitions of size }r$$

- s ∘ rot = s
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_r^{\lambda} = \{ \sigma \in \mathfrak{S}_r | \mathbf{s}(\sigma) = \lambda \}$ has character $f^{\lambda}(q)^2 := \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{\operatorname{maj} T} \right)^2$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^2$, so $\rho := \bigoplus_{\lambda \vdash r} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r} (f^{\lambda}(q))^2$. rot on \mathfrak{S}_r has the same character. By Brauer's lemma there is an isomorphism $\phi : (\mathfrak{S}_r, \operatorname{rot}) \cong (\mathfrak{S}_r, \rho)$. Define $s(\sigma) := \operatorname{sh}(\phi(\sigma))$

Theorem

There are sets $\mathfrak{S}_r^{(1)} \subseteq \mathfrak{S}_r^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_r^{(r)} = \mathfrak{S}_r$ and a bijection $\mathcal{P} : \mathcal{A}_r^{(r)} \to \mathfrak{S}_r^{(r)}$ with $\mathcal{P} \circ \mathsf{pr} = \mathsf{rot} \circ \mathcal{P}$ and $\mathcal{P}(\mathcal{A}_r^{(n)}) = \mathfrak{S}_r^{(n)}$.

Proof.
rot on
$$\mathfrak{S}_r^{(n)} := \bigcup_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \mathfrak{S}_r^{\lambda}$$
 has character $\sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \Big(\sum_{T \in \mathrm{SYT}(\lambda)} q^{majT}\Big)^2$.

Theorem

There are sets $\mathfrak{S}_r^{(1)} \subseteq \mathfrak{S}_r^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_r^{(r)} = \mathfrak{S}_r$ and a bijection $\mathcal{P} : \mathcal{A}_r^{(r)} \to \mathfrak{S}_r^{(r)}$ with $\mathcal{P} \circ \text{pr} = \text{rot} \circ \mathcal{P}$ and $\mathcal{P}(\mathcal{A}_r^{(n)}) = \mathfrak{S}_r^{(n)}$.

Proof. rot on $\mathfrak{S}_r^{(n)} := \bigcup_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \mathfrak{S}_r^{\lambda}$ has character $\sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \left(\sum_{T \in \mathrm{SYT}(\lambda)} q^{majT}\right)^2$. pr on $\mathcal{A}_r^{(n)}$ has the same character. By Brauer's lemma there is an isomorphism \mathcal{P} of group

actions.

Part II border strip tableaux and the main theorems

How to recognise a cyclic group action

Proposition (Alexandersson-Amini)

Given

- a polynomial $f \in \mathbb{N}[q]$ such that $f(\xi^d) \in \mathbb{N}$ for any $d \in \mathbb{N}$
- \mathcal{X} any set of size f(1)

Then there exists an action of \mathbb{Z}_r on \mathcal{X} such that $(\mathcal{X}, \mathbb{Z}_r, f)$ exhibits the cyclic sieving phenomenon, if and only if

$$S_k = \sum_{d|k} \mu(k/d) f(\xi^d) \geqslant 0$$
 for every $k|r$

where

$$\mu(m) = \begin{cases} (-1)^{\# prime \ factors \ of \ m} & if \ m \ is \ square-free \\ 0 & otherwise. \end{cases}$$

is the Möbius function. In this case, S_k is the number of elements in orbits of length k. How to recognise a cyclic group action

Proposition (Alexandersson-Amini)

A polynomial $f \in \mathbb{N}[q]$ such that $f(\xi^d) \in \mathbb{N}$ for any $d \in \mathbb{N}$ is the character of a cyclic group action, if and only if

$$S_k = \sum_{d|k} \mu(k/d) f(\xi^d) \geqslant 0$$
 for every $k|r$

where

$$\mu(m) = \begin{cases} (-1)^{\# prime \ factors \ of \ m} & if \ m \ is \ square-free \\ 0 & otherwise. \end{cases}$$

is the Möbius function. In this case, S_k is the number of elements in orbits of length k.

Theorem

 $S_{\lambda/\mu}\otimes S_{\lambda/\mu}\downarrow_{\langle (1,...,|\lambda/\mu|)
angle}$ is isomorphic to a cyclic group action.

We have to show that

$$\sum_{d|k} \mu(k/d) f^{\lambda}(\xi^d)^2 \geqslant 0$$
 for every $k|r$.

Theorem

 $S_{\lambda/\mu}\otimes S_{\lambda/\mu}\downarrow_{\langle (1,...,|\lambda/\mu|)
angle}$ is isomorphic to a cyclic group action.

We have to show that

$$\sum_{d|k} \mu(k/d) f^{\lambda}(\xi^{d})^{2} \geqslant 0 \quad \text{for every } k|r.$$

Theorem

For a skew shape
$$\lambda/\mu$$
 of size r , $f^{\lambda/\mu}(q) := \sum_{T \in SYT(\lambda/\mu)} q^{\text{maj } T}$,
and $d|r$ we have $|f^{\lambda/\mu}(\xi^d)| = \#BST(\lambda/\mu, r/d)$.

Theorem

 $\mathcal{S}_{\lambda/\mu}\otimes \mathcal{S}_{\lambda/\mu}\downarrow_{\langle (1,...,|\lambda/\mu|)
angle}$ is isomorphic to a cyclic group action.

We have to show that

$$\sum_{d|k} \mu(k/d) f^{\lambda}(\xi^{d})^{2} \geqslant 0 \quad \text{for every } k|r.$$

Theorem

For a skew shape
$$\lambda/\mu$$
 of size r , $f^{\lambda/\mu}(q) := \sum_{T \in SYT(\lambda/\mu)} q^{\text{maj } T}$,
and $d|r$ we have $|f^{\lambda/\mu}(\xi^d)| = \#BST(\lambda/\mu, r/d)$.

Theorem

If $\#BST(\lambda/\mu, k) \ge 2$, then $\#BST(\lambda/\mu, k) \ge \sum_{d>1} \#BST(\lambda/\mu, kd)$.

Theorem

 $\mathcal{S}_{\lambda/\mu}\otimes \mathcal{S}_{\lambda/\mu}\downarrow_{\langle (1,...,|\lambda/\mu|)
angle}$ is isomorphic to a cyclic group action.

We have to show that

$$\sum_{d|k} \mu(k/d) f^{\lambda}(\xi^{d})^{2} \geqslant 0 \quad \text{for every } k|r.$$

Theorem

For a skew shape
$$\lambda/\mu$$
 of size r , $f^{\lambda/\mu}(q) := \sum_{T \in SYT(\lambda/\mu)} q^{\text{maj } T}$,
and $d|r$ we have $|f^{\lambda/\mu}(\xi^d)| = \#BST(\lambda/\mu, r/d)$.

Theorem

If $\#BST(\lambda/\mu, k) \ge 2$, then $\#BST(\lambda/\mu, k) \ge \sum_{d>1} \#BST(\lambda/\mu, kd)$.

(therefore also
$$\#BST(\lambda/\mu, k)^2 \ge \sum_{d>1} \#BST(\lambda/\mu, kd)^2$$
)

The base case

Theorem (Fomin-Lulov) #BST $(\lambda, d) \leq \left(\frac{d^r}{\binom{r}{(r/d, ..., r/d)}} \# SYT(\lambda)\right)^{1/d}$

Lemma

$$\#BST(\lambda, 1) \ge \sum_{d>1} \#BST(\lambda, d)$$
 unless $\lambda = (r)$ or $\lambda = (1^r)$

The base case

Theorem (Fomin-Lulov) #BST $(\lambda, d) \leq \left(\frac{d^r}{\binom{r}{(r/d, \dots, r/d)}} \# SYT(\lambda)\right)^{1/d}$

Lemma

$$\#BST(\lambda, 1) \ge \sum_{d>1} \#BST(\lambda, d)$$
 unless $\lambda = (r)$ or $\lambda = (1^r)$

Proof strategy.

- check hooks and computer check partitions λ with $|\lambda| \leq 8$
- use Fomin-Lulov to turn inequality into a function $B_r(\# SYT(\lambda)) = \sum_{d|r} Q_{r,d} \# SYT(\lambda)^{\frac{1}{d}-1}$
- $B_r(x)$ is strictly decreasing in x
- $B_r\left(\frac{r^2}{3}\right) \leqslant 2$ and $\# \mathrm{SYT}(\lambda) \geqslant \frac{r^2}{3}$ for non-hooks

Lemma (essentially James-Kerber)

$$\#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k \#BST(\mu_j, d).$$

Lemma (essentially James-Kerber)

$$\#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k \#BST(\mu_j, d).$$

Thus,
$$\#BST(\lambda, k) = \binom{r/k}{|\mu_1|, \dots, |\mu_k|} \prod_j \#BST(\mu_j, 1)$$

Lemma (essentially James-Kerber)

$$\#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k \#BST(\mu_j, d).$$

Thus,
$$\#BST(\lambda, k) = \binom{r/k}{|\mu_1|, \dots, |\mu_k|} \prod_j \#BST(\mu_j, 1)$$

$$\geq \left(\bullet\right) \prod_j \sum_{d>1} \#BST(\mu_j, d)$$

Lemma (essentially James-Kerber)

$$\#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k \#BST(\mu_j, d).$$

Thus,
$$\#BST(\lambda, k) = {\binom{r/k}{|\mu_1|, \dots, |\mu_k|}} \prod_j \#BST(\mu_j, 1)$$

$$\geq {\left(\bullet\right)} \prod_j \sum_{d>1} \#BST(\mu_j, d)$$

$$\geq {\left(\bullet\right)} \sum_{d>1} \prod_j \#BST(\mu_j, d)$$

Lemma (essentially James-Kerber)

$$#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k #BST(\mu_j, d).$$

Thus,
$$\#BST(\lambda, k) = {\binom{r/k}{|\mu_1|, \dots, |\mu_k|}} \prod_j \#BST(\mu_j, 1)$$

 $\ge {\left(\bullet \right)} \prod_j \sum_{d>1} \#BST(\mu_j, d)$
 $\ge {\left(\bullet \right)} \sum_{d>1} \prod_j \#BST(\mu_j, d)$
 $\ge {\left(\bullet \right)} \sum_{d>1} \#BST(\lambda, kd) {\binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d}}^{-1}$

Lemma (essentially James-Kerber)

$$#BST(\lambda, kd) = \binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d} \prod_{j=1}^k #BST(\mu_j, d).$$

Thus,
$$\#BST(\lambda, k) = {\binom{r/k}{|\mu_1|, \dots, |\mu_k|}} \prod_j \#BST(\mu_j, 1)$$

$$\geq {\binom{\bullet}{\prod_j \sum_{d>1} \#BST(\mu_j, d)/(\tau(|\mu_j|) - 1)}}$$

$$\geq {\binom{\bullet}{\sum_{d>1} \prod_j \#BST(\mu_j, d)/(\tau(|\mu_j|) - 1)}}$$

$$\geq {\binom{\bullet}{\sum_{d>1} \frac{\#BST(\lambda, kd)}{\prod_j (\tau(|\mu_j|) - 1)} {\binom{r/kd}{|\mu_1|/d, \dots, |\mu_k|/d}}^{-1}}$$

Idea of proof for d = 1.

Idea of proof for d = 1.

moving a bead up is the same as removing a border strip:

Idea of proof for d = 1.

moving a bead up is the same as removing a border strip:

Idea of proof for d = 1.

moving a bead up is the same as removing a border strip:

