The existence of a cyclic sieving phenomenon for permutations via a bound on the number of border strip tableaux and invariant theory

joint work with
Per Alexandersson, Stephan Pfannerer and Joakim Uhlin

8.9.2020

A mystery group action

joint with
Per Alexandersson, Stephan Pfannerer and Joakim Uhlin

8.9.2020

Part -I
 preliminaries

Group actions and representations

- a representation of a group G on a vector space V is a group homomorphism $G \rightarrow \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$.

Group actions and representations

- a representation of a group G on a vector space V is a group homomorphism $G \rightarrow \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$.
- an action of a finite group G on a finite set \mathcal{X} is a group homomorphism $G \rightarrow \mathfrak{S}_{\mathcal{X}}$. Notation: $g \cdot x \in \mathcal{X}$.

Group actions and representations

- a representation of a group G on a vector space V is a group homomorphism $G \rightarrow \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$. A morphism $\phi: V \rightarrow W$ of representations is a linear map with

$$
g \cdot \phi(\vec{v})=\phi(g \cdot \vec{v}) .
$$

- an action of a finite group G on a finite set \mathcal{X} is a group homomorphism $G \rightarrow \mathfrak{S}_{\mathcal{X}}$. Notation: $g \cdot x \in \mathcal{X}$.

Group actions and representations

- a representation of a group G on a vector space V is a group homomorphism $G \rightarrow \operatorname{End} V$. Notation: $g \cdot \vec{v} \in V$. A morphism $\phi: V \rightarrow W$ of representations is a linear map with

$$
g \cdot \phi(\vec{v})=\phi(g \cdot \vec{v}) .
$$

- an action of a finite group G on a finite set \mathcal{X} is a group homomorphism $G \rightarrow \mathfrak{S}_{\mathcal{X}}$. Notation: $g \cdot x \in \mathcal{X}$.
A morphism $\phi: \mathcal{X} \rightarrow \mathcal{Y}$ of group actions is a map with

$$
g \cdot \phi(x)=\phi(g \cdot x)
$$

Brauer's Permutation Lemma

- the character of a representation $\rho: G \rightarrow \operatorname{End}(V)$ is the map

$$
\chi_{\rho}:(\text { conjugacy classes of }) G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{tr} \rho(g)
$$

- the character of a group action $\rho: G \rightarrow \mathfrak{S}_{\mathcal{X}}$ is the character of the associated 'permutation representation':

$$
\chi_{\rho}:(\text { conjugacy classes of) } G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{fix} \rho(g)
$$

Brauer's Permutation Lemma

- the character of a representation $\rho: G \rightarrow \operatorname{End}(V)$ is the map

$$
\chi_{\rho}:(\text { conjugacy classes of) } G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{tr} \rho(g)
$$

- the character of a group action $\rho: G \rightarrow \mathfrak{S}_{\mathcal{X}}$ is the character of the associated 'permutation representation':

$$
\chi_{\rho}:(\text { conjugacy classes of) } G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{fix} \rho(g)
$$

Lemma

Two representations are isomorphic if and only if their characters coincide.

Brauer's Permutation Lemma

- the character of a representation $\rho: G \rightarrow \operatorname{End}(V)$ is the map

$$
\chi_{\rho}:(\text { conjugacy classes of }) G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{tr} \rho(g)
$$

- the character of a group action $\rho: G \rightarrow \mathfrak{S}_{\mathcal{X}}$ is the character of the associated 'permutation representation':

$$
\chi_{\rho}:(\text { conjugacy classes of }) G \rightarrow \mathbb{C}, \quad g \mapsto \operatorname{fix} \rho(g)
$$

Lemma

Two representations are isomorphic if and only if their characters coincide.

Lemma (Brauer)

Two cyclic group actions are isomorphic if and only if they are isomorphic as linear representation.

Cyclic sieving

Given

- a finite set \mathcal{X}
- a cyclic group $\langle c\rangle$ of order r acting on \mathcal{X}
- a polynomial $f \in \mathbb{N}[q]$ such that for any $d \in \mathbb{N}$

$$
f\left(\xi^{d}\right)=\operatorname{fix}\left(c^{d}\right)
$$

(ξ a primitive r-th root of unity)
Then $(\mathcal{X},\langle c\rangle, f)$ exhibits the cyclic sieving phenomenon.

Cyclic sieving

Given

- a finite set \mathcal{X}
- a cyclic group $\langle c\rangle$ of order r acting on \mathcal{X}
- a polynomial $f \in \mathbb{N}[q]$ such that for any $d \in \mathbb{N}$

$$
f\left(\xi^{d}\right)=\operatorname{fix}\left(c^{d}\right)
$$

(ξ a primitive r-th root of unity)
Then $(\mathcal{X},\langle c\rangle, f)$ exhibits the cyclic sieving phenomenon.
Note that

- $f(1)=|\mathcal{X}|$
- $f(q) \bmod \left(q^{r}-1\right)$ is the character of the group action
- mostly, one is interested in 'nice' f

Part O

summary of results

Let $\operatorname{BST}(\lambda / \mu, k)$ be the set of border strip tableaux of shape λ / μ with strips of size k.

Theorem
$\# \operatorname{BST}(\lambda / \mu, k) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda / \mu, k d)$, if $\# \operatorname{BST}(\lambda / \mu, k) \geqslant 2$

Let $\operatorname{BST}(\lambda / \mu, k)$ be the set of border strip tableaux of shape λ / μ with strips of size k.

Theorem
$\# \operatorname{BST}(\lambda / \mu, k) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda / \mu, k d)$, if $\# \operatorname{BST}(\lambda / \mu, k) \geqslant 2$
Example
$\lambda / \mu=\left(5,4^{3}\right) /\left(2^{2}, 1\right), k=2$, English notation.

Let $\operatorname{SYT}(\lambda / \mu)$ be the set of standard Young tableaux of shape λ / μ and let $S_{\lambda / \mu}=\oplus_{\nu} S_{\nu}^{\oplus c_{\mu, \nu}^{\lambda}}$ be the corresponding representation.

Theorem
$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.

Let $\operatorname{SYT}(\lambda / \mu)$ be the set of standard Young tableaux of shape λ / μ and let $S_{\lambda / \mu}=\oplus_{\nu} S_{\nu}^{\oplus c_{\mu, \nu}^{\lambda}}$ be the corresponding representation.

Theorem

$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.

Example

Let $\lambda / \mu=(3,2) /(1)$. The character of $S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 4 \\
2 & 3
\end{array} \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 \\
\hline & 4 & 4 & \begin{array}{|l|l|l|}
\hline 2 & 4 \\
1 & 3 & 2
\end{array} & \begin{array}{|l|l|l|}
\hline 1 & 4 & 3 \\
\hline
\end{array} \\
\hline
\end{array} \\
& \left(\sum_{T \in \operatorname{SYT}(\lambda / \mu)} q^{\operatorname{maj}(T)}\right)^{2}=\left(q \quad+q^{2}+q^{2}+q^{3}+q^{4}\right)^{2} \\
& \equiv 7+6 q+6 q^{2}+6 q^{3} \quad \bmod \left(q^{4}-1\right)
\end{aligned}
$$

Let $\operatorname{SYT}(\lambda / \mu)$ be the set of standard Young tableaux of shape λ / μ and let $S_{\lambda / \mu}=\oplus_{\nu} S_{\nu}^{\oplus c_{\mu, \nu}^{\lambda}}$ be the corresponding representation.

Theorem

$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.

Example

Let $\lambda / \mu=(3,2) /(1)$. The character of $S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is

$$
\begin{aligned}
& \left(\sum_{T \in \operatorname{SYT}(\lambda / \mu)} q^{\operatorname{maj}(T)}\right)^{2}=\left(q \quad+q^{2}+q^{2}+q^{3}+q^{4}\right)^{2} \\
& \equiv 7+6 q+6 q^{2}+6 q^{3} \quad \bmod \left(q^{4}-1\right)
\end{aligned}
$$

which means that the group action has one orbit of size 1 and six orbits of size 4.

Let rot be the rotation of the chord diagram of a permutation.
Theorem
$\exists s: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ \operatorname{rot}=s$
- s is equidistributed with the Robinson-Schensted shape
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid s(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {maj } T}\right)^{2}$

Let rot be the rotation of the chord diagram of a permutation.

Theorem

$\exists s: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ \operatorname{rot}=s$
- s is equidistributed with the Robinson-Schensted shape
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid s(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj} T}\right)^{2}$

Example

Q 2%
\downarrow 尼。

(4) : once
[1,2,3,4]
$(3,1)$: nine times $[1,2,4,3], \ldots$
$\left(2^{2}\right)$: four times $[2,1,4,3], \ldots$
$\left(2,1^{2}\right)$: nine times $[1,4,3,2], \ldots$
$\left(1^{4}\right)$: once
[4,3,2,1]

Let rot be the rotation of the chord diagram of a permutation.

Theorem

$\exists s: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ \operatorname{rot}=s$
- s is equidistributed with the Robinson-Schensted shape
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid s(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {maj } T}\right)^{2}$

Example

Part I
 invariant theory

or: why bother?

Invariants of the adjoint representation of GL_{n}

Let V be the vector representation of GL_{n} :

$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}(V) \\
T \cdot \vec{v}=T \vec{v}
\end{gathered}
$$

Let $\mathfrak{g l} l_{n} \cong V \otimes V^{*}$ be the adjoint representation of GL_{n} :

$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}\left(\mathfrak{g l}_{n}\right) \\
T \cdot A=T A T^{-1}
\end{gathered}
$$

Invariants of the adjoint representation of GL_{n}

Let V be the vector representation of GL_{n} :

$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}(V) \\
T \cdot \vec{v}=T \vec{v}
\end{gathered}
$$

Let $\mathfrak{g l}_{n} \cong V \otimes V^{*}$ be the adjoint representation of GL_{n} :

$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}\left(\mathfrak{g l}_{n}\right) \\
T \cdot A=T A T^{-1}
\end{gathered}
$$

GL_{n} acts diagonally on $\mathfrak{g l}{ }_{n}^{\otimes r}$:

$$
T \cdot\left(A_{1} \otimes \cdots \otimes A_{r}\right)=\left(T \cdot A_{1}\right) \otimes \cdots \otimes\left(T \cdot A_{r}\right)
$$

Invariants of the adjoint representation of GL_{n}

 Let V be the vector representation of GL_{n} :$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}(V) \\
T \cdot \vec{v}=T \vec{v}
\end{gathered}
$$

Let $\mathfrak{g l}_{n} \cong V \otimes V^{*}$ be the adjoint representation of GL_{n} :

$$
\begin{gathered}
\mathrm{GL}_{n} \rightarrow \operatorname{End}\left(\mathfrak{g l}_{n}\right) \\
T \cdot A=T A T^{-1}
\end{gathered}
$$

GL_{n} acts diagonally on $\mathfrak{g l}{ }_{n}^{\otimes r}$:

$$
T \cdot\left(A_{1} \otimes \cdots \otimes A_{r}\right)=\left(T \cdot A_{1}\right) \otimes \cdots \otimes\left(T \cdot A_{r}\right)
$$

The invariants of this representation are

$$
\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}=\left\{\mathbf{w} \in \mathfrak{g} l_{n}^{\otimes r} \mid \forall T \in \mathrm{GL}_{n}: T \cdot \mathbf{w}=\mathbf{w}\right\}
$$

They are hard to describe explicitely.

Rotation and Promotion

- let $\mathcal{A}_{r}^{(n)}$ be the set of $\mathfrak{g l}_{n}$-highest weight words of weight zero: sequences $\left(0=\mu^{0}, \mu^{1}, \ldots, \mu^{2 r}=0\right)$ of vectors in \mathbb{Z}^{n} such that
- each vector has weakly decreasing entries
- ${ }_{(-)}^{+} \mu^{i+1}{ }_{(+)} \mu^{i}$ is a unit vector for i even (odd)
- $\mathcal{A}_{r}^{(n)}$ is a natural indexing set for a basis of $\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$ e.g.

$$
\begin{array}{lll}
r=2 & n=1: & (0,1,0,1,0) \\
& n=2: & (00,10,00,10,00) \\
& & (00,10,1 \overline{1}, 10,00) \\
r=3 & n=1: & (0,1,0,1,0,1,0) \\
& n=2: & (00,10,00,10,00,10,00) \\
& (00,10,1 \overline{1}, 2 \overline{1}, 1 \overline{1}, 10,00) \\
& \ldots \\
& n=3: & \ldots \\
& & (000,100,10 \overline{1}, 11 \overline{1}, 10 \overline{1}, 100,000)
\end{array}
$$

Rotation and Promotion

- let $\mathcal{A}_{r}^{(n)}$ be the set of $\mathfrak{g l}_{n}$-highest weight words of weight zero: sequences $\left(0=\mu^{0}, \mu^{1}, \ldots, \mu^{2 r}=0\right)$ of vectors in \mathbb{Z}^{n} such that
- each vector has weakly decreasing entries
- ${ }_{(-)}^{+} \mu^{i+1}{ }_{(+)} \mu^{i}$ is a unit vector for i even (odd)
- $\mathcal{A}_{r}^{(n)}$ is a natural indexing set for a basis of $\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$
- promotion is a natural (but complicated) operation on $\mathcal{A}_{r}^{(n)}$, isomorphic to rotation of tensor positions in $\left(\mathfrak{g l} l_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$
[Westbury]
- for $n \geqslant r$, a variant of the Robinson-Schensted correspondence yields an isomorphism between promotion and rotation of permutations as chord diagrams
[Pfannerer-R.-Westbury]

Rotation and Promotion

Theorem (Pfannerer-R.-Westbury)
There is an explicit bijection
$\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r} \quad$ with $\quad \mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$.
We want the same for $\mathcal{A}_{r}^{(n)}$ with $n<r$!

Rotation and Promotion

Theorem (Pfannerer-R.-Westbury)
There is an explicit bijection
$\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r} \quad$ with $\quad \mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$.
We want the same for $\mathcal{A}_{r}^{(n)}$ with $n<r$!
Theorem
There are sets $\mathfrak{S}_{r}^{(1)} \subseteq \mathfrak{S}_{r}^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_{r}^{(r)}=\mathfrak{S}_{r}$ and a bijection $\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r}^{(r)}$ with $\mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$ and $\mathcal{P}\left(\mathcal{A}_{r}^{(n)}\right)=\mathfrak{S}_{r}^{(n)}$.

Rotation and Promotion

Theorem (Pfannerer-R.-Westbury)
There is an explicit bijection
$\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r} \quad$ with $\quad \mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$.
We want the same for $\mathcal{A}_{r}^{(n)}$ with $n<r$!
Theorem
There are sets $\mathfrak{S}_{r}^{(1)} \subseteq \mathfrak{S}_{r}^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_{r}^{(r)}=\mathfrak{S}_{r}$ and a bijection $\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r}^{(r)}$ with $\mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$ and $\mathcal{P}\left(\mathcal{A}_{r}^{(n)}\right)=\mathfrak{S}_{r}^{(n)}$.

Invariants of the adjoint representation of GL_{n}

The symmetric group \mathfrak{S}_{r} acts on $\left(\mathfrak{g}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$ permuting positions:

$$
\sigma \cdot\left(A_{1} \otimes \cdots \otimes A_{r}\right)=A_{\sigma^{-1} 1} \otimes \cdots \otimes A_{\sigma^{-1} r}
$$

Invariants of the adjoint representation of GL_{n}

The symmetric group \mathfrak{S}_{r} acts on $\left(\mathfrak{g}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$ permuting positions:

$$
\sigma \cdot\left(A_{1} \otimes \cdots \otimes A_{r}\right)=A_{\sigma^{-1} 1} \otimes \cdots \otimes A_{\sigma^{-1} r}
$$

Schur-Weyl duality yields the \mathfrak{S}_{r}-character of this action:

Proposition

$$
\left(\mathfrak{g} \mathfrak{g}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} \cong \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda},
$$

where S_{λ} is the Specht module corresponding to λ.

Invariants of the adjoint representation of GL_{n}

The symmetric group \mathfrak{S}_{r} acts on $\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}}$ permuting positions:

$$
\sigma \cdot\left(A_{1} \otimes \cdots \otimes A_{r}\right)=A_{\sigma^{-1} 1} \otimes \cdots \otimes A_{\sigma^{-1} r}
$$

Schur-Weyl duality yields the \mathfrak{S}_{r}-character of this action:

Proposition

$$
\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}} \cong \bigoplus_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda},
$$

where S_{λ} is the Specht module corresponding to λ.

Corollary

The character of pr on $\mathcal{A}_{r}^{(n)}$ is $\sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}}\left(\sum_{\substack{T \in \operatorname{SYT}(\lambda)}} q^{\text {maj } T}\right)^{2}$.

Invariants of the adjoint representation of GL_{n}

Proof.

Let V be the vector representation of GL_{n}

$$
\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} \cong\left(\operatorname{End}(V)^{\otimes r}\right)^{\mathrm{GL}_{n}}
$$

Invariants of the adjoint representation of GL_{n}

Proof.

Let V be the vector representation of GL_{n}

$$
\begin{aligned}
\left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} & \cong\left(\operatorname{End}(V)^{\otimes r}\right)^{\mathrm{GL}} \\
& \cong \operatorname{End}_{\mathrm{GL}_{n}}\left(V^{\otimes r}\right)
\end{aligned}
$$

Invariants of the adjoint representation of GL_{n}

Proof.

Let V be the vector representation of GL_{n} and let V_{λ} be the irreducible representation of GL_{n} in Schur-Weyl duality with S_{λ}.

$$
\begin{array}{rll}
\left(\mathfrak{g}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} & \cong & \left(\operatorname{End}(V)^{\otimes r}\right)^{\mathrm{GL}_{n}} \\
& \cong & \operatorname{End}_{\mathrm{GL}_{n}}\left(V^{\otimes r}\right) \\
& \underset{\substack{\text { Schur-Weyl } \\
\text { duality }}}{=} \operatorname{End}_{\mathrm{GL}_{n}}\left(\bigoplus_{\substack{\lambda \mid r \\
\ell(\lambda) \leqslant n}} V_{\lambda} \otimes S_{\lambda}\right)
\end{array}
$$

Invariants of the adjoint representation of GL_{n}

Proof.

Let V be the vector representation of GL_{n} and let V_{λ} be the irreducible representation of GL_{n} in Schur-Weyl duality with S_{λ}.

$$
\begin{aligned}
& \left(\mathfrak{g}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} \cong\left(\operatorname{End}(V)^{\otimes r}\right)^{\mathrm{GL}_{n}} \\
& \cong \quad \operatorname{End}_{\mathrm{GL}_{n}}\left(V^{\otimes r}\right) \\
& \underset{\text { duality }}{\stackrel{\text { Schur-Weyl }}{=} \operatorname{End}_{\mathrm{GL}_{n}}\left(\bigoplus_{\substack{\lambda \vdash r \\
\ell(\lambda) \leqslant n}} V_{\lambda} \otimes S_{\lambda}\right)} \\
& \underset{\text { Lemma }}{\text { Schur's }} \underset{\substack{\lambda \vdash r \\
\ell(\lambda) \leqslant n}}{\bigoplus} \operatorname{End}\left(S_{\lambda}\right)
\end{aligned}
$$

Invariants of the adjoint representation of GL_{n}

Proof.

Let V be the vector representation of GL_{n} and let V_{λ} be the irreducible representation of GL_{n} in Schur-Weyl duality with S_{λ}.

$$
\begin{aligned}
& \left(\mathfrak{g l}_{n}^{\otimes r}\right)^{\mathrm{GL}_{n}} \cong\left(\operatorname{End}(V)^{\otimes r}\right)^{\mathrm{GL}_{n}} \\
& \cong \quad \operatorname{End}_{\mathrm{GL}_{n}}\left(V^{\otimes r}\right) \\
& \underset{\text { duality }}{\stackrel{\text { Schur-Weyl }}{=} \operatorname{End}_{\mathrm{GL}_{n}}\left(\bigoplus_{\substack{\lambda \vdash r \\
\ell(\lambda) \leqslant n}} V_{\lambda} \otimes S_{\lambda}\right)} \\
& \underset{\text { Lemma }}{\stackrel{\text { Schur's }}{=}} \bigoplus_{\substack{\lambda \perp-r \\
\ell(\lambda) \leqslant n}} \operatorname{End}\left(S_{\lambda}\right) \\
& \cong \bigoplus_{\substack{\lambda \vdash r \\
\ell(\lambda) \leqslant n}} S_{\lambda} \otimes S_{\lambda} .
\end{aligned}
$$

A combinatorial mystery

Theorem

$\exists \mathrm{s}: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ r o t=s$
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid \mathbf{s}(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}:=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj} T}\right)^{2}$

A combinatorial mystery

Theorem

$\exists \mathrm{s}: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ$ rot $=s$
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid \boldsymbol{s}(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}:=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\operatorname{maj} T}\right)^{2}$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^{2}$

A combinatorial mystery

Theorem

$\exists \mathrm{s}: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ$ rot $=s$
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid \boldsymbol{s}(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}:=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {maj } T}\right)^{2}$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^{2}$, so $\rho:=\bigoplus_{\lambda \vdash r} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r}\left(f^{\lambda}(q)\right)^{2}$.

A combinatorial mystery

Theorem

$\exists \mathrm{s}: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ \mathrm{rot}=s$
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid \boldsymbol{s}(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}:=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {maj } T}\right)^{2}$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^{2}$, so $\rho:=\underset{\lambda \vdash r}{\bigoplus} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r}\left(f^{\lambda}(q)\right)^{2}$.
rot on \mathfrak{S}_{r} has the same character.

A combinatorial mystery

Theorem

$\exists \mathrm{s}: \mathfrak{S}_{r} \rightarrow$ integer partitions of size r

- $s \circ \mathrm{rot}=s$
- s is equidistributed with the Robinson-Schensted shape sh
- rot restricted to $\mathfrak{S}_{r}^{\lambda}=\left\{\sigma \in \mathfrak{S}_{r} \mid \boldsymbol{s}(\sigma)=\lambda\right\}$ has character $f^{\lambda}(q)^{2}:=\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {maj } T}\right)^{2}$

Proof.

There is a group action ρ_{λ} on $\operatorname{SYT}(\lambda) \times \operatorname{SYT}(\lambda)$ with character $f^{\lambda}(q)^{2}$, so $\rho:=\bigoplus_{\lambda \vdash r} \rho_{\lambda}$ has character $\sum_{\lambda \vdash r}\left(f^{\lambda}(q)\right)^{2}$.
rot on \mathfrak{S}_{r} has the same character.
By Brauer's lemma there is an isomorphism $\phi:\left(\mathfrak{S}_{r}\right.$, rot $) \cong\left(\mathfrak{S}_{r}, \rho\right)$.
Define $\mathrm{s}(\sigma):=\operatorname{sh}(\phi(\sigma))$

Invariants of the adjoint representation of GL_{n}

Theorem
There are sets $\mathfrak{S}_{r}^{(1)} \subseteq \mathfrak{S}_{r}^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_{r}^{(r)}=\mathfrak{S}_{r}$ and a bijection $\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r}^{(r)}$ with $\mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$ and $\mathcal{P}\left(\mathcal{A}_{r}^{(n)}\right)=\mathfrak{S}_{r}^{(n)}$.

Proof.

$$
\text { rot on } \mathfrak{S}_{r}^{(n)}:=\bigcup_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \mathfrak{S}_{r}^{\lambda} \text { has character } \sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}}\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {majT }}\right)^{2} \text {. }
$$

Invariants of the adjoint representation of GL_{n}

Theorem

There are sets $\mathfrak{S}_{r}^{(1)} \subseteq \mathfrak{S}_{r}^{(2)} \subseteq \cdots \subseteq \mathfrak{S}_{r}^{(r)}=\mathfrak{S}_{r}$ and a bijection $\mathcal{P}: \mathcal{A}_{r}^{(r)} \rightarrow \mathfrak{S}_{r}^{(r)}$ with $\mathcal{P} \circ \mathrm{pr}=\operatorname{rot} \circ \mathcal{P}$ and $\mathcal{P}\left(\mathcal{A}_{r}^{(n)}\right)=\mathfrak{S}_{r}^{(n)}$.

Proof.
rot on $\mathfrak{S}_{r}^{(n)}:=\bigcup_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}} \mathfrak{S}_{r}^{\lambda}$ has character $\sum_{\substack{\lambda \vdash r \\ \ell(\lambda) \leqslant n}}\left(\sum_{T \in \operatorname{SYT}(\lambda)} q^{\text {majT } T}\right)^{2}$.
pr on $\mathcal{A}_{r}^{(n)}$ has the same character.
By Brauer's lemma there is an isomorphism \mathcal{P} of group actions.

Part II
 border strip tableaux and the main theorems

How to recognise a cyclic group action

Proposition (Alexandersson-Amini)

Given

- a polynomial $f \in \mathbb{N}[q]$ such that $f\left(\xi^{d}\right) \in \mathbb{N}$ for any $d \in \mathbb{N}$
- \mathcal{X} any set of size $f(1)$

Then there exists an action of \mathbb{Z}_{r} on \mathcal{X} such that $\left(\mathcal{X}, \mathbb{Z}_{r}, f\right)$ exhibits the cyclic sieving phenomenon, if and only if

$$
S_{k}=\sum_{d \mid k} \mu(k / d) f\left(\xi^{d}\right) \geqslant 0 \quad \text { for every } k \mid r
$$

where

$$
\mu(m)= \begin{cases}(-1)^{\# p r i m e ~ f a c t o r s ~ o f ~} m & \text { if } m \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

is the Möbius function.
In this case, S_{k} is the number of elements in orbits of length k.

How to recognise a cyclic group action

Proposition (Alexandersson-Amini)

A polynomial $f \in \mathbb{N}[q]$ such that $f\left(\xi^{d}\right) \in \mathbb{N}$ for any $d \in \mathbb{N}$ is the character of a cyclic group action, if and only if

$$
S_{k}=\sum_{d \mid k} \mu(k / d) f\left(\xi^{d}\right) \geqslant 0 \quad \text { for every } k \mid r
$$

where

$$
\mu(m)= \begin{cases}(-1)^{\# p r i m e ~ f a c t o r s ~ o f ~} m & \text { if } m \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

is the Möbius function.
In this case, S_{k} is the number of elements in orbits of length k.

Border strip tableaux and the main theorems

Theorem
$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.
We have to show that

$$
\sum_{d \mid k} \mu(k / d) f^{\lambda}\left(\xi^{d}\right)^{2} \geqslant 0 \quad \text { for every } k \mid r
$$

Border strip tableaux and the main theorems

Theorem

$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.
We have to show that

$$
\sum_{d \mid k} \mu(k / d) f^{\lambda}\left(\xi^{d}\right)^{2} \geqslant 0 \quad \text { for every } k \mid r
$$

Theorem
For a skew shape λ / μ of size $r, f^{\lambda / \mu}(q):=\sum_{T \in \operatorname{SYT}(\lambda / \mu)} q^{\text {maj } T}$, and $d \mid r$ we have $\left|f^{\lambda / \mu}\left(\xi^{d}\right)\right|=\# \operatorname{BST}(\lambda / \mu, r / d)$.

Border strip tableaux and the main theorems

Theorem

$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.
We have to show that

$$
\sum_{d \mid k} \mu(k / d) f^{\lambda}\left(\xi^{d}\right)^{2} \geqslant 0 \quad \text { for every } k \mid r
$$

Theorem
For a skew shape λ / μ of size $r, f^{\lambda / \mu}(q):=\sum_{T \in \operatorname{SYT}(\lambda / \mu)} q^{\text {maj } T}$,
and $d \mid r$ we have $\left|f^{\lambda / \mu}\left(\xi^{d}\right)\right|=\# \operatorname{BST}(\lambda / \mu, r / d)$.
Theorem
If $\# \operatorname{BST}(\lambda / \mu, k) \geqslant 2$, then $\# \operatorname{BST}(\lambda / \mu, k) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda / \mu, k d)$.

Border strip tableaux and the main theorems

Theorem

$S_{\lambda / \mu} \otimes S_{\lambda / \mu} \downarrow\langle(1, \ldots,|\lambda / \mu|)\rangle$ is isomorphic to a cyclic group action.
We have to show that

$$
\sum_{d \mid k} \mu(k / d) f^{\lambda}\left(\xi^{d}\right)^{2} \geqslant 0 \quad \text { for every } k \mid r
$$

Theorem

For a skew shape λ / μ of size $r, f^{\lambda / \mu}(q):=\sum_{T \in \operatorname{SYT}(\lambda / \mu)} q^{\text {maj } T}$,
and $d \mid r$ we have $\left|f^{\lambda / \mu}\left(\xi^{d}\right)\right|=\# \operatorname{BST}(\lambda / \mu, r / d)$.
Theorem
If $\# \operatorname{BST}(\lambda / \mu, k) \geqslant 2$, then $\# \operatorname{BST}(\lambda / \mu, k) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda / \mu, k d)$.
(therefore also $\left.\# \operatorname{BST}(\lambda / \mu, k)^{2} \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda / \mu, k d)^{2}\right)$

The base case

Theorem (Fomin-Lulov)

$$
\# \operatorname{BST}(\lambda, d) \leqslant\left(\frac{d^{r}}{(r / d, \ldots, r / d)} \# \operatorname{SYT}(\lambda)\right)^{1 / d}
$$

Lemma

$$
\# \operatorname{BST}(\lambda, 1) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda, d) \quad \text { unless } \lambda=(r) \text { or } \lambda=\left(1^{r}\right)
$$

The base case

Theorem (Fomin-Lulov)

$$
\# \operatorname{BST}(\lambda, d) \leqslant\left(\frac{d^{r}}{\binom{r}{r / d, \ldots, r / d}} \# \operatorname{SYT}(\lambda)\right)^{1 / d}
$$

Lemma

$\# \operatorname{BST}(\lambda, 1) \geqslant \sum_{d>1} \# \operatorname{BST}(\lambda, d) \quad$ unless $\lambda=(r)$ or $\lambda=\left(1^{r}\right)$
Proof strategy.

- check hooks and computer check partitions λ with $|\lambda| \leqslant 8$
- use Fomin-Lulov to turn inequality into a function

$$
B_{r}(\# \operatorname{SYT}(\lambda))=\sum_{d \mid r} Q_{r, d} \# \operatorname{SYT}(\lambda)^{\frac{1}{d}-1}
$$

- $B_{r}(x)$ is strictly decreasing in x
- $B_{r}\left(\frac{r^{2}}{3}\right) \leqslant 2$ and $\# \operatorname{SYT}(\lambda) \geqslant \frac{r^{2}}{3}$ for non-hooks

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right)
$$

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right) .
$$

Thus, $\# \operatorname{BST}(\lambda, k)=\binom{r / k}{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, 1\right)$

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right) .
$$

Thus, $\# \operatorname{BST}(\lambda, k)=\binom{r / k}{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, 1\right)$

$$
\geqslant(\bullet) \prod_{j} \sum_{d>1} \# \operatorname{BST}\left(\mu_{j}, d\right)
$$

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right) .
$$

Thus, $\# \operatorname{BST}(\lambda, k)=\binom{r / k}{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, 1\right)$
$\geqslant(\cdot) \prod_{j} \sum_{d>1} \# \operatorname{BST}\left(\mu_{j}, d\right)$
$\geqslant(\cdot) \sum_{d>1} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, d\right)$

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right) .
$$

Thus, $\# \operatorname{BST}(\lambda, k)=\binom{r / k}{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, 1\right)$

$$
\geqslant(\bullet) \prod_{j} \sum_{d>1} \# \operatorname{BST}\left(\mu_{j}, d\right)
$$

$$
\geqslant(\bullet) \sum_{d>1} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, d\right)
$$

$$
\geqslant(\bullet) \sum_{d>1} \# \operatorname{BST}(\lambda, k d)\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d}^{-1}
$$

A reduction using the abacus

Lemma (essentially James-Kerber)
Let μ_{1}, \ldots, μ_{k} be the k-quotient of λ. Then

$$
\# \operatorname{BST}(\lambda, k d)=\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d} \prod_{j=1}^{k} \# \operatorname{BST}\left(\mu_{j}, d\right) .
$$

Thus, $\# \operatorname{BST}(\lambda, k)=\binom{r / k}{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, 1\right)$
$\geqslant(\bullet) \prod_{j} \sum_{d>1} \# \operatorname{BST}\left(\mu_{j}, d\right) /\left(\tau\left(\left|\mu_{j}\right|\right)-1\right)$
$\geqslant(\cdot) \sum_{d>1} \prod_{j} \# \operatorname{BST}\left(\mu_{j}, d\right) /\left(\tau\left(\left|\mu_{j}\right|\right)-1\right)$
$\geqslant(\bullet) \sum_{d>1} \frac{\# \operatorname{BST}(\lambda, k d)}{\prod_{j}\left(\tau\left(\left|\mu_{j}\right|\right)-1\right)}\binom{r / k d}{\left|\mu_{1}\right| / d, \ldots,\left|\mu_{k}\right| / d}^{-1}$

A reduction using the abacus

Idea of proof for $d=1$.

A reduction using the abacus

Idea of proof for $d=1$.

moving a bead up is the same as removing a border strip:

A reduction using the abacus

Idea of proof for $d=1$.

0	1	(2)	there are
(3)	4	5	$\# \operatorname{SYT}\left(\mu_{j}\right)$
(6)	(7)	8	many pos-
+	1		sibilities
9	(10)		to move
$\mu_{1}=\frac{2}{1}$	$\mu_{2}=\frac{3}{3} \begin{aligned} & 3 \\ & 2\end{aligned}$	$\mu_{3}=\varnothing$	beads up

moving a bead up is the same as removing a border strip:

A reduction using the abacus

Idea of proof for $d=1$.

10						
7						
6						
3						
2						

$\stackrel{+}{0}$	i	(2)	there are
)	4	5	$\# \operatorname{SYT}\left(\mu_{j}\right)$
)	(7)	8	many pos-
	10		sibilities
9	10		to move
$\mu_{1}=\frac{2}{1}$	$\stackrel{3}{3}$	$\mu_{3}=\varnothing$	beads up

moving a bead up is the same as removing a border strip:

