Promotion of Kreweras words

joint work with Sam Hopkins

9.9.2020

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

AB
$\mathrm{AABB}, \mathrm{ABAB}$
$\mathrm{AAABBB}, \mathrm{AABABB}, \mathrm{AABBAB}, \mathrm{ABAABB}, \mathrm{ABABAB}$

How many ways are there ...

for $2 n$ people to cast votes for Alice and Bob, such that

- Alice and Bob both receive n votes, and
- Alice never trails Bob?

Promotion of Dyck words

The promotion pr w of a Dyck word $w=w_{1} \ldots w_{2 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's with an A
- append B.

Promotion of Dyck words

The promotion pr w of a Dyck word $w=w_{1} \ldots w_{2 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's with an A
- append B.

Remarks:

- Dyck words of length $2 n$ are linear extensions of the poset [2] $\times[n]$
- promotion generalizes to linear extensions of arbitrary posets
- promotion is invertible

Promotion of Dyck words

Theorem (folklore)

Promotion on Dyck words has order $2 n$: $\mathrm{pr}^{2 n} w=w$.
Its character is

$$
\frac{1}{[n+1]_{q}}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q},[n]_{q}!=[n]_{q} \cdots[1]_{q}$ and $\left[\begin{array}{l}n \\ m\end{array}\right]_{q}=\frac{[n]_{q}!}{[m]_{q}![n-m]_{q}}$.

Promotion of Dyck words

 is rotation of noncrossing matchings

How many ways are there ...

for $3 n$ people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?

ABC, ACB
$A A B B C C, A A B C B C, A A B C C B, A B A B C C, A B A C B C, A B A C C B, A B C A B C, A B C A C B, \ldots$

How many ways are there ...

for $3 n$ people to cast votes for Alice, Bob and Charlie, such that

- Alice, Bob and Charlie all receive n votes, and
- Alice never trails either Bob or Charlie?

ABC, ACB

AABBCC,AABCBC,AABCCB,ABABCC,ABACBC,ABACCB,ABCABC,ABCACB,...

$$
\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}
$$

Promotion of Kreweras words

The promotion pr w of a Kreweras word $w=w_{1} \ldots w_{3 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's or more C's than A's with an A
- append w_{i}.

Promotion of Kreweras words

The promotion pr w of a Kreweras word $w=w_{1} \ldots w_{3 n}$ is:

- remove the first letter w_{1}
- replace the first letter w_{i} such that $w_{2} \ldots w_{i}$ has more B's than A's or more C's than A's with an A
- append w_{i}.

Remark:

- Kreweras words of length $3 n$ are linear extensions of the poset $V \times[n]$

Promotion of Kreweras words

Theorem

Promotion on Kreweras words almost has order $3 n$: $\mathrm{pr}^{3 n} w$ is obtained from w by switching all B 's and C 's.

Conjecture

Its character is

$$
\frac{[2]_{q}^{2 n}[3 n]_{q^{2}}!}{[n+1]_{q^{2}}![2 n+1]_{q}!}
$$

Remark:

$$
\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}=\frac{2^{2 n}(3 n)!}{(n+1)!(2 n+1)!}
$$

Promotion of Kreweras words

 is rotation of webs

Step 1: Kreweras words to permutations blue and crimson noncrossing matchings

Step 1: Kreweras words to permutations blue and crimson noncrossing matchings

Step 1: Kreweras words to permutations
rules of the road

Step 1: Kreweras words to permutations rules of the road

Lemma

$$
\begin{aligned}
\sigma_{\mathrm{pr} w} & =\operatorname{rot}\left(\sigma_{w}\right) \\
\varepsilon_{\operatorname{pr}(w)} & =\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
\end{aligned}
$$

Step 1: Kreweras words to permutations rules of the road

Lemma

$$
\begin{aligned}
\sigma_{\mathrm{pr} w} & =\operatorname{rot}\left(\sigma_{w}\right) \\
\varepsilon_{\operatorname{pr}(w)} & =\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
\end{aligned}
$$

Step 1: Kreweras words to permutations rules of the road

Lemma

$$
\begin{aligned}
\sigma_{\mathrm{pr} w} & =\operatorname{rot}\left(\sigma_{w}\right) \\
\varepsilon_{\operatorname{pr}(w)} & =\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
\end{aligned}
$$

Step 1: Kreweras words to permutations rules of the road

Lemma

$$
\begin{aligned}
\sigma_{\mathrm{pr} w} & =\operatorname{rot}\left(\sigma_{w}\right) \\
\varepsilon_{\operatorname{pr}(w)} & =\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
\end{aligned}
$$

Step 1: Kreweras words to permutations

Lemma

$$
\begin{aligned}
\sigma_{\mathrm{pr} w} & =\operatorname{rot}\left(\sigma_{w}\right) \\
\varepsilon_{\operatorname{pr}(w)} & =\left[\varepsilon_{w}(2), \varepsilon_{w}(3), \ldots, \varepsilon_{w}(3 n),-\varepsilon_{w}(1)\right]
\end{aligned}
$$

Corollary
$\mathrm{pr}^{3 n}(w)$ is obtained from w be swapping B 's and C 's.

Step 2: Kreweras words to Kuperberg webs

Step 2: Kreweras words to Kuperberg webs

Step 2: Kreweras words to Kuperberg webs

