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Let C, denote the n-th Catalan number n}rl (2n”). Then

det(Ci-&-j)?,j_:lo =1

and
det (Giyj1)] 2o = 1.

Cvetkovi¢, Rajkovi¢ and lvkovi¢ proved
det (C,'+j + C;+j+1)7jzzl0 = Fant1

and
det(Ci+j+1 + Ci+j+2)7’;:10 = F2n+2-

Johann Cigler and Christian Krattenthaler Hankel determinants



hann Cigler and Christian Krattenthaler Hankel determin




Dougherty, French, Saderholm and Qian proved

det(C,+J + 2C,+J+1 + C/+j+2 ij= 0 Z F2_j+1
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Dougherty, French, Saderholm and Qian proved

det(C,+J + 2C,+J+1 + C/+j+2 ij= 0 Z F2_j+1

Cigler saw

i+j+1 i+j+2 i+j+3

on Z L2_/+1

det<(2(+gj+2)+2(2(+gj+4)+ (2I+21+6)) -1

on a Facebook group (without proof).
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Dougherty, French, Saderholm and Qian proved that

n—1

det ()‘CH—J' + Ci+j+1 ij=0

satisfies a linear recurrence with constant coefficients of order 2,
that
n—1
det (ACiyj + pCirjur + Ciji2); 5o
satisfies a linear recurrence with constant coefficients of order 4,
that

n—1

det (ACiyj + 1Citjyr + vCivjro + Cinjrs)i 2o

satisfies a linear recurrence with constant coefficients of order 8.
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More generally, Dougherty, French, Saderholm and Qian
conjectured that

det (Ao Cipj + MCipjp1 + -+ Ad-1Ciyjra—1+ Cijrd)] o

satisfies a linear recurrence with constant coefficients of order 2.
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More generally, Dougherty, French, Saderholm and Qian
conjectured that

-1
det (Mo Citj + M1 Cigjr + -+ + Ag—1Citjra—1 + Citjra) oo
satisfies a linear recurrence with constant coefficients of order 2.

Cigler decided to search for the general background of this kind of
determinant evaluations.
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Consider Motzkin paths, where up-steps have weight 1, horizontal
steps at height h have weight s, and down-steps which end at
height h have weight t,. Let m, denote the corresponding
generating function for Motzkin paths of length n.
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Consider Motzkin paths, where up-steps have weight 1, horizontal
steps at height h have weight s, and down-steps which end at
height h have weight t,. Let m, denote the corresponding
generating function for Motzkin paths of length n.

Cigler found (experimentally) that

det (aBmjyj + (v + B)mjyjp1 + m:+1+2),j 1o - -
ey e = G ]t
et (ml-H)i,j:O J=0 (=j
where

fn(a) = (Oé + Sn_l)f,-,_l(a) — tn_gfn_z(a),
with fo(a) =1 and f_1(a) = 0.
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Facts.
Ifsop=1,s;=2fori>1, and t; = 1 for all i, then m, = C,.

If s; =2forall i, tp=2,and t; =1 for i > 1, then m, = (2").

n
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Some background on orthogonal polynomials

Why “moments of orthogonal polynomials”?
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Some background on orthogonal polynomials

Why “moments of orthogonal polynomials”?
It is classical that the polynomials p,(x) defined recursively by
pn(X) = (X - 5n—1)pn—1(X) - tn—2pn—2(X)v

with initial values p_1(x) = 0 and pp(x) = 1 are orthogonal with
respect to the linear functional L defined by L(p(x)) = dn0. Their

moments are L(x"), n=0,1,.... Viennot showed that L(x")
equals the generating function for Motzkin paths denoted here by
my.
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Some background on orthogonal polynomials

Why “moments of orthogonal polynomials”?

It is classical that the polynomials p,(x) defined recursively by
pn(X) = (X - 5n—1)pn—1(X) - tn—2pn—2(X)a

with initial values p_1(x) = 0 and pp(x) = 1 are orthogonal with
respect to the linear functional L defined by L(p(x)) = dn0. Their

moments are L(x"), n=0,1,.... Viennot showed that L(x")
equals the generating function for Motzkin paths denoted here by
my.

Remark. It is well-known that

det (mj4)7 e 0 Ht” -1
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The formula: proof by non-intersecting lattice paths

Consider Motzkin paths, where up-steps have weight 1, horizontal
steps at height h have weight s, and down-steps which end at
height h have weight t,. Let m, denote the corresponding
generating function for Motzkin paths of length n.

Cigler found (experimentally) that

det (O‘Bmiﬂ' + (o + 5)m1+1+1 + m:+1+2), 10 n n—1
——— D RACIAC)E | B2
et (m/Jrj)i’j:o =0 =

where
fn(a) = (Oz + Sn_1)fn_1(a) — th—2 f,,_g(a),

with fo(a) =1 and f_1(a) = 0.
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The formula: proof by non-intersecting lattice paths

Consider Motzkin paths, where up-steps have weight 1, horizontal
steps at height h have weight s, and down-steps which end at
height h have weight t,. Let m, denote the corresponding
generating function for Motzkin paths of length n.

Cigler found (experimentally) that

det (afmiyj + (o + B)misji1 + miyji2)] 2y & o
d o 1 J = fj-(a)fj-(ﬂ)H t@a
et (mlJrJ)i,j:O Jj=0 t=j

where
fn(a) = (Oz + Sn_1)fn_1(a) — th—2 f,,_g(a),

with fo(a) =1 and f_1(a) = 0.

We figured out that the above identity can be proved “in one
picture” by using non-intersecting lattice paths.
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An important special case

Facts.
If so=1,s;=2fori>1, and t; =1 for all i, then m, = C,,.
If s; =2 for all i, to = 2, and t; = 1 for i > 1, then m, = (%).

n
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An important special case

Facts.
Ifso=1,s;=2fori>1, and t; =1 for all i, then m, = C,.
If s; =2 forall i, ty =2, and t; = 1 for i > 1, then m, = (*").

More generally, if s = s and t; =t for i > 1, then

fole) = £72U, (852) — € D/2(s - so)Up 1 (522)

+ 1022t — 1)U, (‘21—:;;) , forn>1.

where U, (x) is the n-th Chebyshev polynomial of the second kind

o) = S0 (" Y

k>0
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An important special case

Facts.
Ifso=1,s;=2fori>1, and t; =1 for all i, then m, = C,.
If s; =2 forall i, ty =2, and t; = 1 for i > 1, then m, = (*").

More generally, if s = s and t; =t for i > 1, then

fole) = £72U, (852) — € D/2(s - so)Up 1 (522)

+ 1022t — 1)U, (‘21—:;;) , forn>1.

where U, (x) is the n-th Chebyshev polynomial of the second kind

o) = S0 (" Y

k>0
Recall:

sin((j + 1)0) elU+1)0 _ o—i(j+1)0
Uj(cos0) = sind = el _ o—if
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The formula again

Consider Motzkin paths, where up-steps have weight 1, horizontal
steps at height h have weight s, and down-steps which end at
height h have weight t,. Let m, denote the corresponding
generating function for Motzkin paths of length n.

Cigler found (experimentally) that

det (aBmitj + (o + B)miqjy1 + mI+J+2),j 1o - & fla)F .
det (myp-1 = f(@)f8) [
et (mi1)); =0 =)

where
fn(a) = (Of + 5n—1)fn—1(a) - tn—2fn—2(a)7

with fo(a) =1 and f_1(a) = 0.
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An alternative formula in this special case

Moreover, in that case we have

det (aBmiyj + (a+ B)miyji1 + misji2)l g _ Num(a, 8)

det (miy); ;10 a—f3

where
Num(a, 8) = t2C"(U, — Up)
X (1— 1/2( So)Ua +t_1(t— to)U(;z)
x (1- t71/2(s — so)UB_1 +t71(t - to)UﬁTZ) Us,

with

Ui = Un (57):

Un(x) being the n-th Chebyshev polynomial of the second kind,

Uno) = 0"

k>0
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Generalisation of that formula, still in that special case

For the case where s; = s and t; = t for i > 1, we have

-1
i+j 119 !
det (m [Ty (o + m)) ij=0 _ Num(ag, ..., aq)

det (mi+j)7,j_:10 H1§i<j§d(ai —aj)’

where
Num(ai,...,aq) = £3(dn+(5)) H (Ua; — Uy;)
1<i<j<d
d
< [T (1 t7Y2(s — so) Uz + t72(t — 1) U5 2) U2,

i=1

with

Uz=Un (572).

Un(x) being the n-th Chebyshev polynomial of the second kind,

U = 0" a2

k>0
Johann Cigler and Christian Krattenthaler Hankel determinants



Generalisation of that formula, still in that special case

For the case where s; = s and t; = t for i > 1, we have

det (m I [T y(artm) |, det (farica(e)
det(m,-+j),'-7zj.;10 1<H-<d(aj_ai) :
SI<Us
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Generalisation of that formula, still in that special case

For the case where s; = s and t; = t for i > 1, we have

det (m I [T y(artm) |, det (farica(e)
det(m,-+j),'-7zj.;10 1<H-<d(aj_ai) :
SI<Us

Maybe this holds without the restriction s; = s and t; = t for
i>17?
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det (m I [T y(artm) |, det (farica(e)
det(m,-+j),'-7zj.;10 1<H-<d(aj_ai) :
SI<Us

Maybe this holds without the restriction s; = s and t; = t for
i>17?

The computer says “yes".
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Generalisation of that formula, still in that special case

For the case where s; = s and t; = t for i > 1, we have

det (m I [T y(artm) |, det (farica(e)
det (my1)7 2, T (e

1<i<j<d

Maybe this holds without the restriction s; = s and t; = t for
i>17?
The computer says “yes".

This should be known.

— Gabor Szegd: Orthogonal Polynomials (1939)
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Gabor Szego: Orthogonal Polynomials (1939)

AMERICAN MATHEMATICAL SOCIETY
COLLOQUIUM PUBLICATIONS
VOLUME XXIII

ORTHOGONAL POLYNOMIALS

BY

GABOR SZEGO

PROFESSOR OF MATHEMATICS
STANFORD UNIVERSITY
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24 DEFINITION OF ORTHOGONAL POLYNOMIALS [11)

‘ and, forn 20,
217 Dy = [(f, fudbwmorz,ecom > 0.
We write D_y = 1 and Dy(z) = fo(z). The determinant (2.1.7) corresponds
to the positive definite quadratic form
[luofo + wfi + - + unfall
(2.1.8) b 2
- / [efo@) + @) + -+ + unfa(2)]* da(a),

| so that D, > 0 for each n.
Furthermore, the following integral representations can be established:

| folw)  filzd)  or falm)
ol folz)  film) - fala)
nor-2[ [ / [l e e
Jo(@n) filga) o fal@aar)
(2.1.9) fol)  filz) o fal@)
folmo)  filme) o0 faaa(mo)
S Bl Alw) o fal®) | daln) da(z) - da(zan), n 21,
fo(@as) filzas) oo faa(zao)
1
D=y

(2.1.10) fol@)  filze) oo falzo) [
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[2.2] ORTHOGONAL POLYNOMIALS 27

C € C  +  Cn

C1
(2.2.6) pa(z) = (Daca D)7} -

where for n = 0
(2.2.7) Dr = [errudoumonz,com > 0.

In addition to (2.2.6) we have po(z) = D* = ;' The determinant (2.2.7) is
associated with the positive definite quadratic form

. on s
(2.2.8) 2; Z; Copnllly = / (wo +wmz + w2’ + -+ 4 u2") dalz),

which is called a form of Hankel or of recurrent type. (See Szegd 1.) |
The determinant in (2.2.6) can be transformed by multiplying the next to the

last column by z, subtracting it from the last column, and repeating this opera- |

tion for each of the preceding columns. In this way we obtain,n =1, |

G — € €T =~ Cp A Cn—1T — Cn

@229 pal@) = DaD)?| GFT =0 @z—a Gz =
....................................... ‘
Cna1T = Cn CaZ — Cay1  *** Can—2T — Con |

Furthermore, according to (2.1.9) and (2.1.10), we have the following integral
representations:

(D,

Pa(z)

ann Cigler and Christian Kratte|
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30 DEFINITION OF ORTHOGONAL POLYNOMIALS [11])

(2.5.1) p(z) = clz — )T — ) -+ (z — ), c# 0,
be a w, which is non-negative in this interval. Then the orthogonal polynomials
{gn(z)}, associated with the distribution p(z) da(z), can be represented in terms
of the polynomials p.(x) as follows:

Pal2)  Pan®) oo panl) |

(2.5.2) p(@)galz) = |Pr(@)  Pria(z) Prgi(m) |

2@ Paa@) o pada)|
In case of a zero =z, of multiplicity m, m > 1, we replace the corresponding
rows of (2.5.2) by the derivatives of order 0, 1, 2, ... ,m — 1 of the polynomials

Pa(@), Prna(@), o, Pari(x) at T = .

This important result is due to.Christoffel (see 1, actually only in the special
case a(z) = z). The polynomials ¢.(x) are in general not normalized.

The proof is almost obvious. The right-hand member of (2.5.2) is a mnys
which is evidently divisible by p(z). Hence it has the form p(z)ga(z), where
gn(z) is a m,. Moreover, it is a linear combination of the polynomials p.(z),
Paia(T), -+ -, Pasi(z), S0 that if ¢(z) is an arbitrary ., , then

b b
(2.5.3) _/; p(2)ga(2)q(2) da(z) = [ 9n(2)q(2)p(2) da(z) = 0.

Finally, the right side of (2.5.2) is not identically zero. To show this, it suffices
to prove that the coefficient of p,..(z), that is, the determinant [Py (zui1)],
vyu=0,1,2 ... ,1 — 1, does not vanish. Suppose it to vanish; then certain
real constants Xo, A1, A2, -, My exist, not all zero, such that

ann Cigler and Christian Kratte|
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188 INEQUALITIES [VII]

tively. (Cf. §3.4 (3).) If p denotes the greatest zero of p(z), it is seen from
(7.72.3) that the maximum of (7.72.2) is, in this special case,

max (Pmsa, Gm) if n=2m,
(7.72.8) o )

max (Fmis, Smia) if n=2m+ 1.
The result for the minimum is similar.
| (3) Here the general discussion of Tchebichef ends (cf. 7, p. 395). We can
‘ prove, however, that the expressions (7.72.8) are Dmy1 and Py, respectively,

50 that the following theorem holds:

| THEOREM 7.72.1. Let w(z) be a weight function on the interval [— 1, + 1].
| Let f(z) be an arbitrary =, , not identically zero, and non-negative in [— 1, + 1].
Then the mazimum of

1 +1
(7.72.9) -/; f(@)zw(z) dx :'[ f(@)w(z) dx

1s the greatest 210 of P s () f n = 2m, and the grealest zero of Pmya(—1)pmis(z) —
| Prsi(=1)Pmia(z) if n = 2m + 1. Here {Pa(2)} is the set of the orthonormal
polynomials associated with w(zx) wn the interval [-1, +1].

According to Theorem 2.5,
Pm(2) Ponia(2) Drnsa(z)
(1 = &)gn(2) = const. | pn(=1)  prya(=1)  pusa(~1)|,
Pn(1) Pmta(1) Prmaa(1)
Pn(@)  priaa)
Pu(=1) papa(=1)

(7.72.10) (1 4+ 2)r,(z) = const.

i

aler Hankel determi
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An equivalent statement

Experimentally, we found

det (frri-1(;))

i+j 114 )
det (m He=(ae +m) ij=0 _ 1<ij<d

det (mj )72 T (- a)

n—1
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An equivalent statement

Experimentally, we found

n—1
i+j 179 . .
det (m il + m))i,j:o _ 1sol'3tﬁd (frsi-1(05))

det (mj )72 I (aj—ai)

Equivalently,

et (fayi-a(ay)) =

I

det  (m [ (ar+ m)
< 11 (Oéj—a/)> o5t 1<det — )

o
1<i<j<d ogi,jgn—l( i+i)

where

det (mjyj)1 2y = Ht” 1
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An equivalent statement

Equivalently,

lécf.gtgd(fnw—l(aj)) =

Y

det (' TTa(ee + m)
< I1 (aj—ozi)> Osijsn-l (det =1 )

e
1<i<j<d ogiJgn—l( i+)
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An equivalent statement

Equivalently,
L det  (mHIL (ar+m))
<ij<n—

SIS 1<i<j<d o<ijen—1' '

Proposition (JACOBI)

Let A be an N x N matrix. Denote the submatrix of A in which

rows iy, ip, . . ., ix and columns ji, j», ..., jx are omitted by
ALk, Then we have

det A-det A} = det A] - det A — det A} - det A},.
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An equivalent statement

Equivalently,

lécf.gtgd(fnw—l(aj)) =

Y

det (' TTa(ee + m)
< I1 (aj—ozi)> Osijsn-l (det =1 )

e
1<i<j<d ogiJgn—l( i+)
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An equivalent statement

Equivalently,

Y

det (' TTa(ee + m)
< I1 (aj—ozi)> Osijsn-l (det =1 )

1<i<j<d 0<ij<n—1

det (fri_1(a;)) =
ISiJSd( n+i 1( J)) (mi+j)
By Jacobi's condensation formula, the left-hand side satisfies a
certain recurrence formula. If we manage to prove that the

right-hand side satisfies the same recurrence, then we are done.
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Proof by condensation

By Jacobi's condensation formula, the left-hand side satisfies a
certain recurrence formula. If we manage to prove that the
right-hand side satisfies the same recurrence, then we are done.

Johann Cigler and Christian Krattenthaler Hankel determinants



Proof by condensation

By Jacobi's condensation formula, the left-hand side satisfies a
certain recurrence formula. If we manage to prove that the
right-hand side satisfies the same recurrence, then we are done.

If one works it out, then one sees that we need to prove

d d—1
_ i+j i+j
(ag—a1) ogig'%tnfl <m E(ay + m)) ogdi(j"cgn <m g(ag + m))

d—1 d
_ det i+j det i+j
ocdet |\ m Zl_Il(ag + m) oJet (m H(O[g + m)

(=2
d d—-1
— d t i+j d t i+j
Ogi,j%n—l m Z_H2(a£ + m) Ogi,ejgn m H(aﬁ + m)
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Proof by condensation

By Jacobi's condensation formula, the left-hand side satisfies a
certain recurrence formula. If we manage to prove that the
right-hand side satisfies the same recurrence, then we are done.

If one works it out, then one sees that we need to prove

d d—1
_ i+j i+j
(ag—a1) ogig'%tnfl m E(ay + m) ogdi(j"cgn m g(ag + m)

d—1 d
= det m'+ H(ae +m)| det [m™ H(Ozg + m)
/=1

0<ij<n—1 0<ij<
Sysn Siysn =2
d d-1
—  det m't H(ag +m)| det [m'™ H(ag + m)
0<ij<n—1 e 0<iy<n =1

If one looks at this properly, then it turns out that this is another
instance of Jacobi's condensation formula. O
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Great, but . ..

Great! We found a proof.
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Great, but . ..

Great! We found a proof.

But still, is this really new? Hard to believe ...
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Great, but . ..

Great! We found a proof.
But still, is this really new? Hard to believe ...

What about “non-classical” sources?
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Great, but . ..

Great! We found a proof.
But still, is this really new? Hard to believe ...

What about “non-classical” sources?

Alain Lascoux:
— Symmetric functions &
combinatorial operators on polynomials (2003)
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Alain Lascoux: Symmetric functions and ... (2003)

SYMMETRIC FUNCTIONS &
COMBINATORIAL OPERATORS ON
POLYNOMIALS

Alain Lascoux

CNRS, INSTITUT GASPARD MONGE, UNIVERSITE DE MARNE-LA-VALLEE,
77454 MARNE-LA-VALLEE CEDEX, FRANCE

Current address: Center for Combinatorics, Nankai University, Tianjin 300071,
P.R. China
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Alain Lascoux: Symmetric functions and ... (2003)

CHAPTER 1

Symmetric functions

o83~
o83~
o83+
o83~
o83~
o83~
o83~
o83~
o83~
o83~
o83~
o83~
o83~
o83~
o83~

o8
8
o

o8

1.1. Alphabets

We shall handle functions on different sets of indeterminates (called alphabets,
though we shall mostly use commutative indeterminates for the moment).

A symmetric function of an alphabet A is a function of the letters which is
invariant under permutation of the letters of A.

The simpler symmetric functions are best defined through generating functions.
We shall not use the classical notations for symmetric functions (as they can be
found in Macdonald’s book [135]), because it will become clear in the course of
these lectures that we need to consider symmetric functions as functors, and connect
them with operations on vector spaces and representations. It is a small burden
imposed on the reader, but the compact notations that we propose greatly simplify
manipulations of symmetric functions. Notice that exponents are used for products,
and that S7 is different from S, except when J is of length one (i.e. is an integer).

J=[j1,ja,--]=> AT =AAR. & ST =GNGh... & B =g
are different from Sy, ¥5 ete.
In case of length 1, we shall indifferently write indices or exponents for the
same functions : ) ) )
ST=8;, N=A;, W =0;.

‘We need operations on alphabets, the first one being the addition, that is the
disjoint union that we shall denote by a ‘+’-sign :

ann Cigler and Christian Krattenthaler Hankel determin
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4 1. SYMMETRIC FUNCTIONS

Pushing a box down gives a smaller partition, but it is not true that it gives

a pair of consecutive partitions : E S E and E E E are not consecutive, because

oon ooom
the move of the black box can be performed in two steps:
om m) a

Let J, I be a pair of partitions such that the diagram of .J contains the diagram
of I. Then the set difference of the two diagrams is called a skew diagram and
denoted J/I ( adding common boxes to I and J does not change J/I. In some
problems, one has to consider pairs (J,I) rather than J/I).

If J/I contains no 2 x 2 sub-diagram and is connected (resp. J/I contains no
two boxes in the same column, res. no two boxes in the same row), then J/I is
called a ribbon (resp. horizontal strip, resp. vertical strip). There are strips which
are both vertical and horizontal, for example a single box.

m m om
OEEN ooog ooog
[mpuiuy § | oooOm oooCOm
ooood ooogd ooog
ribbon horizontal strip vertical strip

A partition of the type [1°, a+1] is called a hook and is denoted (a&f3). The
decomposition of the diagram of a partition I into its diagonal hooks (i.e. hooks
having their head on the diagonal) is called the Frobenius code of I and denoted
Frob(I) = (ai,az,...,a,&B1,B2,---,b,) (where r, the number of boxes in the
main diagonal, is called the rank of the partition).

om
I=[2,456 =0 aam &ives §rob([2,4,5,6]) = (531 & 320) .
oooooo
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are all 0 for p > r, then the greatest common divisor of S™(x — B) and S™(z — A)
is of degree n — r and equal to D, (A, B).

Let us notice that the determinant D,.(A, B) also furnishes Euler’s multiplica-
tors, i.e. the polynomials Ca, Cg such that

Dr(A,B) = Cp R(z,A) + Cs R(z,B) .
Indeed, evaluating D,(A, B) modulo R(z,A) consists in changing the last column
into [Smir—1(z — B),...,Sm(z — B),0,...,0]. Subtracting z to the alphabets in
the first r — 1 rows, one gets, as a last column,
[Smtr-1(=B),...,Sm-1(=B), Sm(z — B),0,...,0]

that is, [0,...,0,R(z — B),0,...,0], because the Sy(—B) are + the elementary
symmetric functions of an alphabet of cardinality m, and therefore are null for
k>m.

Now the cofactor of R(z — B) is the determinant

So(—w—B) -+ Sp(-z—B)
s,r+z(:—z -B - skfm(:—z - B
So(—A) Sp(—A)

Swromer(=h) o Sea(oh)

Expanding this last determinant according to the first 7 — 1 rows, one recognize
that it is equal to Sg(A — 2 —B), with O= (m —n+7)"" Y k=m—n+2r —2.
By symmetry changing A, B, one therefore gets

(3.1.5) D,(A,B) = £S(m_niryr—1 (A-z-B)R(2,B) £ Spm—nsr1(B-z-A)R(x,A) ,
with signs that specialists will know how to write. This can also be written
(3.1.6) Dr(AB) = £S(m—ntr)r-1;m(A-B; 2-B) £ Spmntr-1,(B-A;z-A) .

In particular, when the two polynomials are relatively prime, then the last

remainder is equal to the resultant and one has the identit
hann Cigler and Christian Krattenthaler Hankel determinants
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symmetrlc functions of an alphabet of cardlnahty m, and therefore are null for
k>m.

Now the cofactor of R(z — B) is the determinant

So(—x—]B) Sk(—SL'—]B)
Sorpa(-2=B) - Sepra(—z—B)
So(—A) o Sk(=A)

Sutimor(—A) - Sei(—A)

Expanding this last determinant according to the first 7 — 1 rows, one recognize
that it is equal to Sg(A —z —B), withO=(m —n+7)""L, k=m —n+2r—2.
By symmetry changing A B, one therefore gets
(3.1.5) Dr(AB) = £S5 pgryr—1 (A-2-B)R(z,B) £ Spm—ntr-1(B-2-A)R(z,A) ,
with signs that specialists will know how to write. This can also be written
(3.1.6) Dp(AB) = £S(m—npr)yr-1;m(A-B; 2-B) £ Spm—ntr-1,,(B-A;2- A) .

In particular when the two polynomials are relatively prime, then the last
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CHAPTER 8

Orthogonal Polynomials

8.1. Orthogonal Polynomials as Symmetric Functions

To any “generic” linear functional [ on Pol(z), with [ 1 = 1, is associated a
(unique) family of orthogonal polynomials:

8.1.1) /Pm(z)Pn(z) —0ifm#n, /Pn(z)Pn(r) —1.

We shall treat this subject having only in mind to show algebraic identities.
The reader will find a broader point of view in the book of Andrews, Askey, Roy
[5], and the one of Szegd [167].

One can formally suppose that there exists an alphabet A such that the mo-
ments [ z" be the complete functions of A, i.e.

/z”:S"(A),HZO.

Now [ is a linear functional, that we shall note |, x> With values in symmetric
functions:

/ : Pol(z) > Gym(A) .
A

The linear functional can be thought as a quadratic form on the space of poly-
nomials in , compatible with product :

(812) (f@), 9(2)) = /Af(r)y(z) = (f(@)g9(x), 1) .
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116 8. ORTHOGONAL POLYNOMIALS

This determinant vanishes for m < n, having two identical columns. Moreover,

/ S (A-) S (A- ) = / Sy (A1) (—2)" Sy (A)
A A
= Snn,n(A) Stn-1)n (A) .

The notation Sp» (A-x) encodes the classical determinantal expressions of or-
thogonal polynomials in terms of moments [23] :

S (A-z) S*(A-z) SP(A-w

)
Ssz3(A-z) = |S?(A-z) SP(A-z) S*(A-1z)
St(A-z) S%*(A-z) S3(A-7)

SY(A) SUA) SO(A) omt

m S2(A)  S3(A) SA) am*?

T"Suss(A-2) = [ a) g2(a) () gt

o4 SUA) S2(a)  om

Notice that the functional [, can also be interpreted as a symmetrizing oper-
ator. Indeed, when A is of finite cardinality n, let w be the maximal permutation
in &,. Then

akm, =Sk(A) L k=0,1,2,...,
and thus, for any polynomial f(z) , one has

(8.1.6) / fl=

Since a’ m, = Ss(A), J € N, there is no difficulty in extending the definition of
7, to an alphabet of infinite cardinality, as is needed in the theory of orthogonal
polynomials.
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One can “shift” the linear functional [, [, by a finite alphabet B, defining

(8.4.3) Vf € Pol(x) , /wf::/Af(z) R, B) .

Christoffel obtained the associated orthogonal polynomials. A remarkable feature of
his result, stated in the following proposition, is that it connects two determinants
of different orders (n and k+1).

PROPOSITION 8.4.1. Let B = {by,..., by}. Then the orthogonal polynomials
relative to [, 5 are
P (@) = Snynyn (A —B—a) ,
and P, x(z) R(z,B) is proportional, up to a factor independent of x and B, to the
Christoffel determinant
‘P"’”j(bi)‘lsmsml )
with by 1= .

Proof. The verification that P, () is orthogonal to z°,..., "' is the same as
in the case of P,(z) and [, apart from changing A into A—B, and shifting indices.

The determinant is divisible by the Vandermonde A(B + z). Evaluating the
image of the quotient multiplied by a function of z under |, I is the same as
computing the image of the last row, multiplied by the same function, under |, "
Therefore Py, k(<) is orthogonal (with respect to [, ) to 2%,...,2""1, while being
of degree n in . Tt must be proportional to S(n4x)» (A—B—x). The explicit factor
is explained by the Bazin formula and is equal to

£S (k)2 () - S(no2)n-1 (8) S(n_1)» (A) .
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It can contain only those powers of z which are congruent to n (mod 2). In- ‘
deed, we have fory = 0,1,2, ... ,n — 1

Consequently, p.(—z) possesses the same orthogonality property as p,(z) (in
the wider sense). Therefore, comparing the coefficients of z", we obtain
Pa(=2) = const. pa(z) = (—1)"pu(z).

The linear transformation z = kx’ 4+ I, k » 0, carries over the interval
[a, b] into an interval [a', b'] (or [V, @]), and the weight function w(z) into
w(kz’ + 1). Then the polynomials

23.4) (sgn )" |k P palha’ + 1) ?

are orthonormal on [a’, ¥'] (or [, a]) with the weight function w(kz' + ).

f_: pa(=2) w(z) dz = (—=1)" /ﬂ Palx)2’w(z) dz = 0. )
|

2.4. The classical orthogonal polynomials

LLeta=—-1Lb=+41Lwe)=(0<-20+2"a>-1,8> -1 ]
Then, except for a constant factor, the orthogonal polynomial p,(z) is the
Jacobi polynomial PS*?(z) (see §4.1). \

2. Leta =0,b =4, wx) = ez o« > —1. In this case pa(z) is,
except for a constant factor, the Laguerre polynomial L{(z) (see §5.1).

3. Leta= —w, b= +w, wz) = In this case Pa(z) is, save for a
constant factor, the Hermite polynomial H.(z) (see §5.5).

Some special cases of 1, except for constant factors, are:

The ultraspherical polynomials, for « = 8.

The Tchebichef polynomials of the first kind, T.(z) = cos nf, x = cos 0,
for a = 8 = —4 (see (1.12.3)).

The Tchebichef polynomials of the second kind, U/.(z) = sin (n + 1)6/(sin 6),
z = cos 6, fora = 8 = +14 (see (1.12.3)).

The polynomials Uz, (cos (6/2)) = sin (n + 4)8/sin (6/2) of cos 6 = z, for
o= —f =} (see §1.12).

The Legendre polynomials P,(z), fora = g = 0.

A detailed investigation of these polynomials will be given in later chapters.

2.5. A formula of Christoffel

(1) TueoreM 2.5. Let {pu(x)} be the orthomormal polynomials associated
with the distribution da(z) on the interval [a, b]. Also let

Hankel determi
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(2.5.1) p(z) = clz — )T — ) -+ (z — ), c# 0,
be a w, which is non-negative in this interval. Then the orthogonal polynomials
{gn(z)}, associated with the distribution p(z) da(z), can be represented in terms
of the polynomials p.(x) as follows:

Pal2)  Pan®) oo panl) |

(2.5.2) p(@)galz) = |Pr(@)  Pria(z) Prgi(m) |

2@ Paa@) o pada)|
In case of a zero =z, of multiplicity m, m > 1, we replace the corresponding
rows of (2.5.2) by the derivatives of order 0, 1, 2, ... ,m — 1 of the polynomials

Pa(@), Prna(@), o, Pari(x) at T = .

This important result is due to.Christoffel (see 1, actually only in the special
case a(z) = z). The polynomials ¢.(x) are in general not normalized.

The proof is almost obvious. The right-hand member of (2.5.2) is a mnys
which is evidently divisible by p(z). Hence it has the form p(z)ga(z), where
gn(z) is a m,. Moreover, it is a linear combination of the polynomials p.(z),
Paia(T), -+ -, Pasi(z), S0 that if ¢(z) is an arbitrary ., , then

b b
(2.5.3) _/; p(2)ga(2)q(2) da(z) = [ 9n(2)q(2)p(2) da(z) = 0.

Finally, the right side of (2.5.2) is not identically zero. To show this, it suffices
to prove that the coefficient of p,..(z), that is, the determinant [Py (zui1)],
vyu=0,1,2 ... ,1 — 1, does not vanish. Suppose it to vanish; then certain
real constants Xo, A1, A2, -, My exist, not all zero, such that
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Second proof by theory of orthogonal polynomials
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Second proof by theory of orthogonal polynomials

We prove
i+j d _ ) dt . .
sodet (M T (m —ar) _(_1)nd1§i3.§d<pn+,1(aj)>
08, (mivi) [1 (o) —ay)

1<i<j<d
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Second proof by theory of orthogonal polynomials

We prove
i+i 1 _ ) ) .
sodet (M T (m —ar) _(_1)nd153.t§d<pn+,1(aj)>
08, (mivi) [1 (o) —ay)

1<i<j<d

Lemma

Let M be a linear functional on polynomials in x with moments v,
n=20,1,.... Then the determinants

det Vigit1l — VigjX
ogi,jgn—l( i+j+ i+jX)

are a sequence of orthogonal polynomials with respect to M.
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Second proof by theory of orthogonal polynomials

Proof of the lemma.

det  (Vitj+1 — VitjX)

0<ij<n—1
1 0 0 .. 0
Vg V1 — pX Vp — 11X ... Vp — Vp_1X
=det| 11 Vo — U1X V3 — X ... Vnt1l — VnX
Vn-1 Vn—Vp_1X Vpyl —VUpX ... V2p_1— V2p-2X
1 x  x? x"
v Y1 Vo ... Uy
=det| 1 1 V3 ... VUpy1
Vn-1 Vn Vpy1 ... V2p-1
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Second proof by theory of orthogonal polynomials

Using the lemma with v, = m" Hf;ll(m — ay), we see that the
determinants in the numerator of the left-hand side of our identity
to be proven,

d
d t H’j _
0<ij<n-1 (m E(m ad) ’

seen as polynomials in ay, are a sequence of orthogonal
polynomials for the linear functional with moments
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Second proof by theory of orthogonal polynomials

We are considering a functional with moments

d—1

m"H(m—ag), n=20,1,....

(=1
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Second proof by theory of orthogonal polynomials

We are considering a functional with moments

d—1

m"H(m—ag), n=20,1,....

/=1
In terms of the functional L of orthogonality for the polynomials
(pn(aq)) >0 this linear functional can be expressed as

d—1
pag) L<p(ad) JJ(ea - a£)>.
(=1
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Second proof by theory of orthogonal polynomials

We are considering a functional with moments

d—1

m"H(m—ag), n=20,1,....

/=1
In terms of the functional L of orthogonality for the polynomials
(pn(aq)) >0 this linear functional can be expressed as

d—1
pag) L<p(ad) JJ(ea - a£)>.
(=1

We claim that also the right-hand side,

lgstgd (Pnti-1(a)))

II (oj—ai)

1<i<j<d

Y

gives a sequence of orthogonal polynomials (in «g) with respect to
this linear functional.
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Second proof by theory of orthogonal polynomials

We consider the linear functional

d—1
p(ag) — L(p(ad) . H(ad — ag)>.
=1
We claim that also the right-hand side,
lgdii'.tgd (Pnvi—1(;))
qn(ad) = 3
[ (oj—ai)

1<i<j<d

gives a sequence of orthogonal polynomials (in ay) with respect to
this linear functional.
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Second proof by theory of orthogonal polynomials

We consider the linear functional

d—1
p(ag) — L(p(ad) . H(ad — ag)>.
=1
We claim that also the right-hand side,
lgdl.(j.tgd (Pnvi—1(;))
qn(ad) = 3
[ (oj—ai)

1<i<j<d

gives a sequence of orthogonal polynomials (in ay) with respect to
this linear functional.

Application of the functional to a3 qn(ay) is proportional (up to
factors that are independent of ay) to

L (a3, det (pria(a)).

1<ij<d
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Second proof by theory of orthogonal polynomials

We consider the linear functional

plag) — L(p(ad) : df[l(ad - ag)>.

=1
Application of the functional to afg,(aqy) is proportional (up to
factors that are independent of ay) to

L (a3, det (priia(a)).

1<iy
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Second proof by theory of orthogonal polynomials

We consider the linear functional

plag) — L(p(ad) : df[l(ad - ag)>.

=1
Application of the functional to afg,(aqy) is proportional (up to
factors that are independent of ay) to

L (a3, det (priia(a)).

1<iy

For 0 < s <n-—1, this vanlshes.
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Second proof by theory of orthogonal polynomials

We consider the linear functional

plag) — L(p(ad) : df[l(ad - ag)>.

=1
Application of the functional to afg,(aqy) is proportional (up to
factors that are independent of ay) to

L (a3, det (priia(a)).

For 0 < s < n—1, this vanishes.

By symmetry, the same argument can also be made for any ay
with 1 <ay <d-—1.
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Second proof by theory of orthogonal polynomials

Uniqueness of orthogonal polynomials up to scalar factors then

implies
det (pn+i-1(;))
det ( i+j H —ay ) _ C].SI,JSCI :

0<ij<n—1 H (aj — ai)
1<i<j<d
where C is independent of the variables ay, ap, ..., ag.
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Second proof by theory of orthogonal polynomials

Uniqueness of orthogonal polynomials up to scalar factors then

implies
det (pnri-1(ay))
1<ij<d
det [ mit H g | = =S ,
0<ij<n—1 H (aj — ai)
1<i<j<d
where C is independent of the variables ay, ap, ..., ag.

In order to compute C, we divide both sides by ajaj---al), and
then compute the limits as ag — 00, ...ap — 00, @1 — 00, Iin
this order. It is not difficult to see that in this manner the above
equation reduces to

det ( : -—1d):Cth
ogi,jeén—l mij(=1) 4

where A is a lower triangular matrix with ones on the diagonal.

Hence, we get C = (—1)" deto<i j<n—1(mjy;j), as desired. O
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Fine, but still ...

Our identity:
. . d - . .
det (mlﬂ iz (e + m)>i,j:0 B 130!3tgd (frti-1(j))
-1 - .
det (mj+)i ;= [ (oj—ai)
1<i<j<d

Johann Cigler and Christian Krattenthaler Hankel determinants



Fine, but still ...

Our identity:
. . d - . .
det (mlﬂ iz (e + m))i,j:O B 130!3tgd (frti-1(j))
-1 - .
det (mj+)i ;= [ (oj—ai)
1<i<j<d

| asked Mourad Ismail. His replies seem to indicate that he was
not aware of any source where the identity is stated in full.
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icle by Mohamed Elouafi

L (pnpm) =0 for n #m.

”
We remark that b, = Y Apanyr = £ (2"q), where
k=0

g@)=a" + Mz L+ Ao

The r-kernel /CfT)P of P = {pn},cy is defined by

v,

B det ((p,1+1—1 (ﬁi))lgi,]gr)

I G-

1<i<j<r

for r > 2 and }Ci,l)P (z) = pn (). As it will be shown latter, IC,(,::)P (z1,22,...,2,) is a polynomial of the
variables x1,xs,... and x,.
The following theorem constitutes our main result:
Theorem 1. We have
det (Ha () = (—1)™" det (M () K p (01, a2, . 00r) (1.1)
where a1, g, . .., are the zeros of q.

In most examples considered in the existing literature, b,, has a specific pattern. Namely

by = ap., —cap, 1. withce C
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Okay, but still . ..
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What can one do with this formula?

Remember:
Dougherty, French, Saderholm and Qian conjectured that

n—1

det (Mo Cij + A Cijrr + -+ + Aa—1Cigjrd—1 + Citjrd); 2o

satisfies a linear recurrence with constant coefficients of order 2.
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What can one do with this formula?

Remember:
Dougherty, French, Saderholm and Qian conjectured that

n—1

det (Ao Gipj + M Cigjar + -+ + Ad—1Cijrd—1 + Gipjra)i 120

satisfies a linear recurrence with constant coefficients of order 2.

Our formula:

n—1

det (m"HH;’:l(awm))iFo et (friica(e)

det(m/'H)/,J 0 1<H.<d(aj - Oé,')
AYAUAS
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What can one do with this formula?

Remember:
Dougherty, French, Saderholm and Qian conjectured that

n—1

det (Ao Gipj + M Cigjar + -+ + Ad—1Cijrd—1 + Gipjra)i 120

satisfies a linear recurrence with constant coefficients of order 2.

Our formula:

- n—1
det (m'ﬂnzﬂ(awm))uzo et (friica(e)
det(m’+J)I,J 0 H (aj _Oéi)
1<i<j<d

The above conjecture now becomes trivial.
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What can one do with this formula?

More generally:

Corollary

If s; = s and t; = t for large enough i, then

det <mi+j ngl(az + m)) "*1

ij=0

n—1

det (mi+j)i,J:0

(considered as a sequence in n) satisfies a linear recurrence with
constant coefficients of order 29 for large enough n.
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What can one do with this formula?

More generally:

Corollary

If s; = s and t; = t for large enough i, then

det <mi+j ngl(az + m)) "*1

ij=0

n—1

det (mi+j)i,_/:0

(considered as a sequence in n) satisfies a linear recurrence with
constant coefficients of order 29 for large enough n.

Our formula:

det <m"+j ngl(ag + m))

-1
det (mi )7 1<H<d(aj — ;)
<i<j<
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det (fp+i-1(y))

n—1
ij=0 _ 1<ij<d




