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For any n > 1, we define and study and a family of polynomials
in q, the remixed Eulerian numbers A.(q) indexed by
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PLAN
1) Mixed Eulerian numbers A, := Ac(1).

2) Definition of A.(q) and probabilistic interpretation.

3) Special subfamilies.

4) General properties.
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Permutahedron

Let ()\1,)\2,. : -7>\n—|—1) c R™ 1 with M A > > )\n—l—l-

Definition The permutahedron Perm(A1, Ao, ..., A\p11) is the
convex hull of the points (Ay(1),..., As(nt1)) for o € S,q1.
A
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Let ()\1,)\2,. : -7>\n—|—1) c R™ 1 with M A > > )\n—l—l-

Definition The permutahedron Perm(A1, Ao, ..., A\p11) is the
convex hull of the points (Ay(1),..., As(nt1)) for o € S,q1.
A
(1,0,2) (0,1,2)

Perm(2,1,0) (2,0.1) o2y V(2,1,0) = 3.

A= (2,1,0) (1,2,0)

The volume V (A1, Ao, ..., Ani1) is the volume of the
permutahedron projected on {\,11 = 0}.
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The following results come from (Postnikov '09).

® V(A1,...,A\pa1) is a polynomial in the )\;,
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Mixed Eulerian numbers

The following results come from (Postnikov '09).

® V(A1,...,A\pa1) is a polynomial in the )\;,
homogeneous of degree n.

Ex: V()\l, Ao, )\3) = % + A Ao — 2A1 A3 — 2% + AoA3 + %

® V(A1,---,A,11) only depends on the differences

M = Ay — Ajy1. )
— V(:ula oo 7,un) L= V(>\1, s 7>\n—|—1)-

N //l‘2 U2
Ex: V(u1,p2) = 5+ 2p1p2 + 3

Definition The mixed Eulerian numbers A. are the normalized

coefficients of V JCT Ly
Vg, pn) = ) A"

ci!---¢cp!
ceW, 1 n
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n! times the mixed volume of hypersimplices, with Ag 41
occurring ci times.

(Corollary: the A are positive integers.)



Mixed 7 Eulerian 7

One has the decomposition
Perm(Ay, - - , Api1) =
1AL 1 + 22 py1 + -+ pnAp g1 (Hpoint)

with Ay, = Perm(1%,07FT1=%) the k' hypersimplex.

e By taking volumes in this decomposition, it expresses A, as
n! times the mixed volume of hypersimplices, with Ag 41
occurring ci times.

(Corollary: the A are positive integers.)

e One has n!V(Ag ny1) = AF~1 (known already to Laplace).
Ak=1is an Eulerian number: it counts permutations of S,
with k& — 1 descents.

It follows that A...,O,n,O... — Ag_l
W kth position
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Fix n. For any ¢ € W,,, define L;(c), Ri(c) € W,
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Remixed Eulerian numbers

Fix n. For any ¢ € W,,, define L;(c), R;(c) € W,

,
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Definition-Theorem [N .-Tewari '21] There exists a unique
family Ac(q) with ¢ € W, that satisfies

(g +1)Ac(q) = qArL,(c)(@) + AR, c)(q) Vc,i with ¢; > 2
with the normalization A; . 1(q) = [n],!.

Ac(q) are the remixed Eulerian numbers.



Remixed Eulerian numbers

~ix n. For any ¢ € W,,, define L;(c), R;(c) € W,

,
< Lz(C) = ( .. ,Ci_1—|—1,Ci—1,Ci_|_1, .. )
Ri(c):=(...,ci_1,¢—1,¢01+1,...) (c; > 1)

\

Definition-Theorem [N .-Tewari '21] There exists a unique
family Ac(q) with ¢ € W, that satisfies

(g +1)Ac(q) = qArL,(c)(@) + AR, c)(q) Vc,i with ¢; > 2
with the normalization A; . 1(q) = [n],!.

Ac(q) are the remixed Eulerian numbers.

One must show that this system of linear equations has indeed
a unique solution (necessarily in Q(q)).



Ac(q) forn =3

A111(Q) — [S]q' =1+ 2q + 2(]2 -+ C]3

As10(q) =1+¢q A120(q) = 142q+¢°

Ao21(q9) = ¢+ 2¢* + ¢° Ao12(q) = ¢* + ¢°
Aspo(g) =1 , A102(q) = q+¢* +¢°
AOSO(CI) = 2q + 2q A201(q) =1+q-+ q2
AOOS(Q) — Q3

(The sum in each group is [3],!; we will explain that later.)
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First properties

Recall the definition
(q + 1)Ac((1) — qAL,L.(C)(q) + AR@.(C)(C]) Ve, 1 with ¢; > 2
with 41 . 1(q) = [n],!.

There holds A¢(1) = Ac in general.

The proof goes by finding an alternative, direct definition of
Ac(q) that uses “g-divided symmetrization”, which is a
g-deformation of a linear form defined by Postnikov to give a
formula for V( A1, -+, Aa1).

Remark: From that alternative definition follows moreover the
existence of A.(q), and the fact that Ac(q) € Zl|q|.
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States: Sequences ¢ = (c¢;)iez with sum ) . ¢c; = n,
seen as particle configurations

c=(...,0,3,0,1,1,2,0,2,0,...)




Probabilistic model for A.(q) (¢ > 0)

States: Sequences ¢ = (c¢;)iez with sum ) . ¢c; = n,
seen as particle configurations

c=(...,0,3,0,1,1,2,0,2,0,...)
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Transitions: [f ¢; > 2, particle at site 4 can jump:
o left with probability %}rq (reaches L;(c))

e right with probability qu (reaches R;(c))
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Probabilistic model (¢ > 0)

Model: Start with an initial configuration c. Then “let
particles jump” until a stable configuration is reached.

(stable = at most one particle per site, identified with I C Z, |I| < +o0)
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(abelianness) The order in which particles jump does
not change the probability of the final configuration.



Probabilistic model (¢ > 0)

Model: Start with an initial configuration c. Then “let
particles jump” until a stable configuration is reached.

(stable = at most one particle per site, identified with I C 7Z, |I]| < +o0)

Facts:

(termination) The process stabilizes almost surely.

(abelianness) The order in which particles jump does
not change the probability of the final configuration.

Definition Let P(c — I) be the probability that, starting
from c, the final stable configuration is I.

Theorem (N.-Tewari '21)

IfceW,, Plc—{1,...,n}) =

Clearly P(c = {1,...,n}) =0if c &€ W,.
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llustration ¢ = (3,0, 0)
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llustration ¢ = (3,0, 0)
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Proof

Theorem (N.-Tewari '21) P(c — {1,...,n}) =

Proof e If ¢; > 2, then (abelian+transition)
P(c — I) = - P(Li(c) = I) + 75 P(Ri(c) — I)
o If cstable, P(c—>1)=1ifc=1,0ifc# 1.

n|,P(c+—{1,...,n}) satisfies the
conditions of the definition of Ac(q). o

—>




Proof

Theorem (N.-Tewari '21) P(c — {1,...,n}) =

Proof e If ¢; > 2, then (abelian+transition)
P(c — I) = - P(Li(c) = I) + 75 P(Ri(c) — I)
o If cstable, P(c—>1)=1ifc=1,0ifc# 1.

n|,P(c+—{1,...,n}) satisfies the
conditions of the definition of Ac(q). o

—>

This is an example of Internal Diffusion Limited Aggregation
process, introduced in (Diaconis-Fulton '93).



Special cases

Let ¢ = (¢1,...,¢n) € W,
ec=1(...,0,n,0,...), nin kth position.

Ac(q) = polynomial enumerating
permutations in S,, with k& — 1 descents
according to their inversion number.
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Special cases

Let ¢ = (c1,...,cn) € Wi
ec=1(...,0,n,0,...), nin kth position.

Ac(gq) = polynomial enumerating Refined

permutations in S,, with k — 1 descents eulerian

according to their inversion number. numbers
ec=(n—k00,...,0,k)

y g-binomials aka
Aclq) = q(z) [k]q![?n],q—!k]q! Gaussian coefficients.

oc=(c1, - ,cp) With Y ., ¢; >k for all k.

Ac(q) = an explicit product of g-integers.

Exercise



he interval case

We assume ¢ = (c1,¢a, ..., cr, 0" F).

> ()




he interval case

We assume ¢ = (c1,¢a, ..., cx, 077F).
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he interval case

We assume ¢ = (c1,¢a, ..., cx, 077F).

> 0

Theorem (N.-Tewari '20+)

Z[j+1]cl R = Zoﬁién—k AOi,Cl""’Ck’O"_k_i(Q)ti
q q - _ _ e (1 — tag™
= (1 =0)(L —tg)--- (1 —tq")

q = 1. (Berget-Spink-Tseng '20)

k = 1: special case of identity of MacMahon-Carlitz

In fact by comparison with work of (Garsia-Remmel '84), one
recovers precisely the family of hit polynomials coming from
rook theory.



A cyclic rule

e Write ¢ ~ ¢’ if (c,0) is a cyclic shift of (c’,0).
(3,0,1,1,0) ~ (0,3,0,1,1) ~ (1,1,0,0, 3)

(There are Catalan,, equivalence classes)
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Proof sketch: Consider the previous process on a discrete ring
Z/(n+1)Z=40,1,...,n}.



A cyclic rule

e Write ¢ ~ ¢’ if (c,0) is a cyclic shift of (c’,0).
(3,0,1,1,0) ~ (0,3,0,1,1) ~ (1,1,0,0, 3)

(There are Catalan,, equivalence classes)

Proposition For any C' € W,,/ ~, Z Ac(q) = [n],!
ceC
Proof sketch: Consider the previous process on a discrete ring

7)(n+1)2Z = {0,1,...,n}.

For ¢ = 1, conjectured by Stanley, proved by Postnikov using
the Coxeter arrangement of affine type A,, .



Polynomial properties

C = (0,3,070,071,3) EW7

Ac(q) = 2¢%° + 640 + 11¢'8 + 18¢'7 + 27¢'6 + 35¢*5 + 40¢™* +
42¢'3 4 40" + 35¢"" +27¢"° +18¢° + 11¢° + 64" + 2¢°



Polynomial properties

C — (07370707071,3) - W7
Ac(q) = 2¢%° + 6¢"° + 118 + 18¢'7 + 27¢*¢ + 35¢'° + 40¢** +
42¢" + 40¢'2 + 35¢" + 27¢'° + 18¢° + 11¢® + 647 + 2¢°

Proposition For any ¢ € W,,, Ac(q) has coefficients in N.

One can prove this by finding a recurrence relation from which it
follows immediately.



Polynomial properties

C — (07370707071,3) - W7
Ac(q) = 2¢% + 64" + 11¢"8 + 18¢'7 + 27¢"6 + 35¢™ + 40¢'* +
42¢" + 40¢'2 + 35¢" + 27¢'° + 18¢° + 11¢® + 647 + 2¢°

Proposition For any ¢ € W,,, Ac(q) has coefficients in N.

One can prove this by finding a recurrence relation from which it
follows immediately.

Proposition For any c € W,,, Ac(q) is palindromic.

This means A.(q) = ¢t A.(qg~ '), where v, is the valuation
of Ac(q) and d. its degree.

In the example, v = 6, d. = 20.



Polynomial properties

For c € W,,, define h(c) = (hq, ha,..., hy)

by h; == (c1 +co+ -+ ¢;) —1. for all q.

Proposition For any ¢ € W,,, there holds

n
U = Z lhi| and dec = (2) = h;

1,h; <0 1,h; >0



Polynomial properties

For c € W,,, define h(c) = (hq, ha,..., hy)

by h; == (c1 +co+ -+ ¢;) —1. for all q.

Proposition For any ¢ € W,,, there holds

U = Z |hi|  and dc::(?;)— Z h;

1,h; <0 1,h; >0

C:(07370707O7173) 1 3 4 5 6 7
h(c) = (-1,1,0,—1,-2,-2,0)

successive heights



Combinatorial interpretation

Given ¢ = (¢1,...,c,) define ly :=1,15,...,1,11 by
li_|_1 —l@' :C@—Fl

Consider complete, plane binary trees with n + 1 leaves (thus
n internal nodes) labeled with {1,2,...,2n + 1}:
(1) Leaves are labeled I, ...,[,, .1 from left to right.

(2) Each internal node has label larger than its left child and

smaller than its right child.
6 T (c) = {these trees}




Combinatorial interpretation

Theorem (Liu '16 (q=1), N.-Tewari '20+)

Ac(1) is the number of pairs (T, w) where :
(1) T e T(c)

(2) w is a decreasing labeling on the nodes of c.

Moreover, Ac(q) is obtained by counting each such (T, w)
with weight g/Tv(w)l,

W w viewed as permutation via projection.

w <+ 35124

q5
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How we got into this



A one-page summary

Let P,, be the permutahedral variety over C. It is a subvariety,
of dimension n, inside the larger flag variety Flags(C™"1).

To get some information on it, we intersect it with some
special subvarieties, the Schubert varieties X, indexed by

w € S,1 with n inversions.

The intersection consists of a bunch of points: our leading
question is how many ?

—» Gy = H#H (PN Xy) €N



A one-page summary

Let P,, be the permutahedral variety over C. It is a subvariety,
of dimension n, inside the larger flag variety Flags(C™"1).

To get some information on it, we intersect it with some
special subvarieties, the Schubert varieties X, indexed by

w € S,1 with n inversions.

The intersection consists of a bunch of points: our leading
question is how many ?

—» Gy = H#H (PN Xy) €N

Using a rather long and winding road, these can be
decomposed as follows:

1
(N-Tewari '20) ‘aw=— > = Ac(l).
" i€Red(w)



From 1 to g

1
Ay — ﬁ Z Ac(l)(l)

" i€Red(w)

It follows immediately a,, > 0 and a,, = a,,—1 from this
formula. (No proof known yet using algebraic geometry)
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Why the g-deformation? Reasonably motivated a posteriori
by probabilistic and combinatorial reasons...



From 1 to g

1
O ﬁ Z Ac(l)(l)

" icRed(w)
It follows immediately a,, > 0 and a,, = a,,—1 from this
formula. (No proof known yet using algebraic geometry)

Why the g-deformation? Reasonably motivated a posteriori
by probabilistic and combinatorial reasons...

1
.. there’'s more:  Gw(q) := ], Z Aci)(9)-
q- .

turns out to solve an analogous intersection problem in
characteristic p > 0 when ¢ = p/.

(P, replaced with a Deligne-Lusztig variety).



