Symplectic left and right keys Type C Willis' direct way

João Miguel Santos

CMUC, University of Coimbra

86th Séminaire Lotharingien de Combinatoire September 07, 2021

Overview

- Mashiwara-Nakashima tableaux
- ② Demazure and opposite Demazure crystals
- Cocrystals of tableaux
- Right key map: direct way
- 6 Left key map: direct way

Notation

- $n \in \mathbb{N}_{>0}$;
- $[n] := \{1 < \cdots < n\}$
- $[\pm n] := \{1 < \cdots < n < -n < \cdots < -1\};$

Young diagram

Definition (Partition)

A vector $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ is a partition if $\lambda_1 \ge \dots \ge \lambda_n \ge 0$.

Young diagram of shape $\lambda = (4, 4, 2, 0)$, n = 4:

Semi standard Young tableau

Definition (Semi standard Young tableaux)

A semi standard Young tableau (SSYT) of shape λ is a filling of the boxes of the Young diagram of shape λ with elements from an ordered alphabet such that they are non-decreasing in each row and strictly increasing in each column.

$$T = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 3 & 3 & 3 & 4 \end{bmatrix}$$
. T is a SSYT, sh(T) = (4,4,2,0), wtT = (3,0,4,3).

Symplectic tableaux: Kashiwara-Nakashima tableaux

Admissible columns - De Concini 1979, Lakshmibai, Musili, Seshadri 1979

A column is a word whose letters are strictly increasing according to the alphabet $[\pm n] = \{1 < 2 < \cdots < n < \overline{n} < \cdots < \overline{1}\}.$

$$C_{1} = \begin{bmatrix} \frac{2}{4} \\ \frac{5}{5} \\ \frac{\overline{5}}{4} \end{bmatrix} & 0 & 2 & 0 & 4 & 5 \\ 0 & 0 & 0 & \overline{4} & \overline{5} \\ 0 & 0 & 0 & \overline{4} & \overline{5} \end{bmatrix} \qquad C_{2} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{4} \\ \frac{\overline{4}}{\overline{3}} \end{bmatrix} & 0 & 2 & 3 & 4 & 0 \\ 0 & 0 & \overline{3} & \overline{4} & 0 \end{pmatrix} \qquad C_{3} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{1} & 0 & 0 & 0 & \overline{5} \\ \overline{5} & \overline{1} \end{bmatrix}$$

A column is an admissible column if the diagram is such that there is a matching which sends each full slot to an empty slot to its left.

$$\ell C_{1} = \begin{bmatrix} \frac{1}{2} \\ \frac{3}{5} \\ \frac{1}{4} \end{bmatrix} \xrightarrow{\begin{array}{c} 1 & 2 & 3 & \emptyset & \emptyset \\ \emptyset & \emptyset & \emptyset & \overline{4} & \overline{5} \end{array}} rC_{1} = \begin{bmatrix} \frac{2}{4} \\ \frac{5}{5} \\ \frac{3}{1} \end{bmatrix} \xrightarrow{\begin{array}{c} \emptyset & 2 & \emptyset & 4 & 5 \\ \overline{1} & \emptyset & \overline{3} & \emptyset & \emptyset \end{array}} \ell C_{3} = C_{3} = rC_{3}$$

Symplectic tableaux: Kashiwara-Nakashima tableaux

Admissible columns - De Concini 1979, Lakshmibai, Musili, Seshadri 1979

A column is a word whose letters are strictly increasing according to the alphabet $[\pm n] = \{1 < 2 < \cdots < n < \overline{n} < \cdots < \overline{1}\}.$

$$C_{1} = \begin{bmatrix} \frac{2}{4} \\ \frac{5}{5} \\ \frac{\overline{5}}{4} \end{bmatrix} & \begin{cases} 0 & 2 & \emptyset & 4 & 5 \\ 0 & \emptyset & \emptyset & \emptyset & \overline{4} & \overline{5} \end{cases} \qquad C_{2} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{4} \\ \frac{\overline{4}}{\overline{3}} \end{bmatrix} & \begin{cases} 0 & 2 & 3 & 4 & \emptyset \\ 0 & \emptyset & \overline{3} & \overline{4} & \emptyset \end{cases} \qquad C_{3} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{5} \\ \overline{5} \\ \overline{1} \end{bmatrix} & \begin{cases} 0 & 2 & 3 & 4 & \emptyset \\ \overline{1} & \emptyset & \emptyset & \overline{5} \end{cases}$$

A column is a **coadmissible** column if the diagram is such that there is a matching which sends each full slot to an empty slot to its **right**.

$$\Phi(C_1) = \begin{array}{|c|c|}\hline 1\\\hline 2\\\hline \hline 3\\\hline \hline \hline \end{array} \begin{array}{|c|c|c|}\hline 1\\\hline 1\\\hline 2\\\hline \hline \end{array} \begin{array}{|c|c|c|c|}\hline 1\\\hline 1\\\hline 0\\\hline \hline \end{array} \begin{array}{|c|c|c|c|}\hline 3\\\emptyset\\\emptyset\\\hline \end{array}$$

 $\boldsymbol{\Phi}$ is a bijection between admissible and coadmissible columns

Symplectic tableaux: Kashiwara-Nakashima tableaux

KN tableaux

Let T be a tableau with all columns admissible. spl(T) is the tableau obtained after replacing each column C by the pair of columns ℓC , rC. T is a Kashiwara-Nakashima (KN) tableau if spl(T) is a SSYT.

Example

$$T_1 = egin{array}{c|c} \hline 3 & 3 \ \hline \hline 3 & \hline 3 \ \hline \hline 1 \ \end{array}$$
 , $spl(T_1) = egin{array}{c|c} \hline 2 & 3 & 2 & 3 \ \hline \hline \hline 3 & \hline 2 & \hline 3 & \hline \hline 2 \ \hline \end{array}$ is not a KN tableau.
$$\hline T_2 = egin{array}{c|c} \hline 2 & 3 \ \hline \hline \hline 3 & \hline \hline \end{array}$$
 , $spl(T_2) = egin{array}{c|c} \hline 1 & 2 & 3 & 3 \ \hline \hline \hline \hline \hline 3 & \hline \hline \end{array}$ is a KN tableau; $wt(T_2) = (0, -1, 2)$

Symplectic key tableaux

Definition (Key tableau)

A key tableau on the alphabet $[\pm n]$ is a KN tableau with nested columns and with no symmetric entries, or equivalently, it is a KN tableau of shape λ whose weight is in $W\lambda$.

There is a bijection between symplectic key tableaux of shape λ and vectors in the orbit $W\lambda$, where W is the type C_n Weyl group.

Example

$$\lambda = (4, 4, 2, 0) \text{ and } v = (-4, 0, 2, 4) = [4, \overline{1}, 3, 2]\lambda \in W\lambda$$

$$K(\lambda) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \quad K(v) = \begin{bmatrix} 3 & 3 & 4 & 4 \\ 4 & 4 & \overline{1} & \overline{1} \end{bmatrix}$$

Jeu de taquin on SSYT

Jeu de taquin on SSYT

1	1	4
2	2	
3		

Jeu de taquin on SSYT

1	1	4
2	2	
	3	

Jeu de taquin on SSYT

1	1	4
	2	
2	2	

Jeu de taquin on SSYT

	1	4
1	2	
2	3	

Lecouvey-Sheats Jeu de taquin on a KN tableau

Consider a tableau T with two consecutive admissible columns C_1 and C_2 and we have an empty cell in C_2 . Split both columns.

The empty cell moves vertically and the column entries remain the same.

João Santos (CMUC) Symplectic keys 10 / 27

Lecouvey-Sheats Jeu de taquin on a KN tableau

Consider a tableau T with two consecutive admissible columns C_1 and C_2 and we have an empty cell in C_2 . Split both columns.

The empty cell moves vertically and the column entries remain the same.

1	3	$\overline{1}$
3	3	
3		

João Santos (CMUC)

Lecouvey-Sheats Jeu de taquin on a KN tableau

Consider a tableau T with two consecutive admissible columns C_1 and C_2 and we have an empty cell in C_2 . Split both columns.

The empty cell moves vertically and the column entries remain the same.

1	1	2	3	$\overline{1}$	$\overline{1}$
2	3	3	2		
3	2				

10 / 27

João Santos (CMUC) Symplectic keys

Lecouvey-Sheats Jeu de taquin on a KN tableau

Consider a tableau T with two consecutive admissible columns C_1 and C_2 and we have an empty cell in C_2 . Split both columns.

The empty cell moves vertically and the column entries remain the same.

1	3	$\overline{1}$
2	3	
	2	

João Santos (CMUC)

Symplectic keys

Lecouvey-Sheats Jeu de taquin on a KN tableau

Consider a tableau T with two consecutive admissible columns C_1 and C_2 and we have an empty cell in C_2 . Split both columns.

The empty cell moves vertically and the column entries remain the same.

	3	$\overline{1}$
1	3	
2	2	

João Santos (CMUC)

Kashiwara crystal

Type A_{n-1} :

A \mathfrak{gl}_n -crystal is a finite set B along with maps

$$wt: B \to \mathbb{Z}^n \quad e_i, f_i: B \to B \cup \{0\}$$

for $i \in [n-1]$ obeying the following axioms for any $b, b' \in B$,

- $b' = e_i(b)$ if and only if $b = f_i(b')$,
- ② if $f_i(b) \neq 0$ then $wt(f_i(b)) = wt(b) \alpha_i$,
- **③** if $b, b' \in B$ such that $e_i(b) = f_i(b') = 0$ and $f_i^k(b) = b'$ for some $k \ge 0$, then wt(b') = s_iwt(b),

where $\alpha_i = e_i - e_{i+1}$, and s_i is the simple transposition of \mathfrak{S}_n , $i \in [n-1]$. The crystals that we deal with also allow to define length functions $\varepsilon_i, \varphi_i : B \to \mathbb{Z}, i \in [n-1]$.

$$\varepsilon_i(b) = \max\{a : e_i^a(b) \neq 0\}, \quad \varphi_i(b) = \max\{a : f_i^a(b) \neq 0\}.$$

→ □ → ← ② → ← 恵 → ← 恵 ト → 恵 → ② へ ○ João Santos (CMUC) Symplectic keys 11/27

Kashiwara crystal

Type C_n :

A \mathfrak{sp}_{2n} -crystal is a finite set B along with maps

$$wt: B \to \mathbb{Z}^n \quad e_i, f_i: B \to B \cup \{0\}$$

for $i \in [n]$ obeying the following axioms for any $b, b' \in B$,

- $b' = e_i(b) \text{ if and only if } b = f_i(b'),$
- \bullet if $f_i(b) \neq 0$ then $wt(f_i(b)) = wt(b) \alpha_i$,
- ③ if $b, b' \in B$ such that $e_i(b) = f_i(b') = 0$ and $f_i^k(b) = b'$ for some $k \ge 0$, then $wt(b') = s_i wt(b)$,

where $\alpha_i = e_i - e_{i+1}$, and s_i is the simple transposition of $\mathfrak{S}_n \subseteq B_n$, $i \in [n-1]$, $\alpha_n = 2e_n$ and s_n changes last entry's sign. The crystals that we deal with also allow to define length functions $\varepsilon_i, \varphi_i : B \to \mathbb{Z}$, $i \in [n]$,

$$\varepsilon_i(b) = \max\{a : e_i^a(b) \neq 0\}, \quad \varphi_i(b) = \max\{a : f_i^a(b) \neq 0\}.$$

→ □ → ← ② → ← 恵 → ← 恵 ト → 恵 → ② へ ○ João Santos (CMUC) Symplectic keys 11/27

Example of type C_2 crystal: $\mathfrak{B}^{(2,1)}$

Demazure crystal - Atom decomposition

Example $\mathfrak{B}_{(\overline{2},1)}=\mathfrak{B}_{s_1s_2s_1\lambda}$

Demazure character:

$$\kappa_{\nu}(x) = \sum_{T \in \mathfrak{B}_{\nu}} x^{\text{wt}T}$$
$$= \sum_{K(u) \leq K(\nu)} \hat{\kappa}_{u}(x)$$

Demazure atom:

$$\hat{\kappa}_{v}(x) := \sum_{T \in \hat{\mathfrak{B}}_{v}} x^{\mathsf{wt}T}$$

The right key map $K_+(T)$ sends a tableau T to the key tableau that detects the Demazure atom that contains it.

Opposite Demazure crystal - Opposite atom decomposition

Example
$$\mathfrak{B}^{op}_{-(\bar{2},1)} = \mathfrak{B}^{op}_{-s_1s_2s_1\lambda}$$

Opp. Demazure character:

$$\kappa_{-v}^{op}(x) = \sum_{T \in \mathfrak{B}_{-v}^{op}} x^{\text{wt}T}$$
$$= \sum_{K(-u) \ge K(-v)} \hat{\kappa}_{-u}^{op}(x)$$

Opp. Demazure atom:

$$\hat{\kappa}_{-\nu}^{op}(x) := \sum_{T \in \hat{\mathfrak{B}}^{op}} x^{\operatorname{wt}T}$$

The left key map $K_{-}(T)$ sends a tableau T to the key tableau that identifies the opposite atom.

Type C Lusztig involution

Let $\mathfrak B$ be a connected crystal. $L:\mathfrak B\to\mathfrak B$ is the type C Lusztig involution if the following holds:

- wt(Lx) = -wt(x)
- $e_i(Lx) = L(f_i(x))$

Proposition

Let T be a KN tableau:

$$K_+(T) = L(K_-(L(T)))$$

$$K_{-}(T) = L(K_{+}(L(T)))$$

Fu-Lascoux non-symmetric versions of Cauchy identities

Type A (Lascoux 2003): $\kappa_{\nu}(x_1,\ldots,x_n)=\kappa_{rev(\nu)}^{op}(x_n,\ldots,x_1)$, then

$$\begin{split} \frac{1}{\prod_{i+j\leq n+1}(1-x_iy_j)} &= \sum_{v\in\mathbb{N}^n} \widehat{\kappa}_v(x_1,\ldots,x_n) \kappa_{rev(v)}(y_1,\ldots,y_n) \\ &= \sum_{v\in\mathbb{N}^n} \widehat{\kappa}_v(x_1,\ldots,x_n) \kappa_v^{op}(y_n,\ldots,y_1) \end{split}$$

Bijective proofs: Lascoux 2003, Azenhas-Emami 2015, Choi-Kwon 2017 **Type** C (Fu-Lascoux 2009): $\kappa_{\nu}(x_1,\ldots,x_n)=\kappa_{-\nu}^{op}(x_1^{-1},\ldots,x_n^{-1})$, then

$$\begin{split} \frac{\prod_{1 \leq i < j \leq n} (1 - x_i x_j)}{\prod_{i,j=1}^n (1 - x_i y_j) \prod_{i,j=1}^n (1 - x_i / y_j)} &= \sum_{v \in \mathbb{N}^n} \widehat{\kappa}_v(x_1, \dots, x_n) \kappa_{-v}(y_1, \dots, y_n) \\ &= \sum_{v \in \mathbb{N}^n} \widehat{\kappa}_v(x_1, \dots, x_n) \kappa_v^{op}(y_1^{-1}, \dots, y_n^{-1}) \end{split}$$

There's no known bijective proof.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

João Santos (CMUC) Symplectic keys 16 / 27

Cocrystal for SSYT

Cocrystal: type A crystal isomorphic to $\mathfrak{B}^{sh(T)'}$, given by the jeu de taquin as crystal operators. The weight map is the reversed column lengths.

Cocrystal for SSYT

Cocrystal: type A crystal isomorphic to $\mathfrak{B}^{\mathsf{sh}(T)'}$, given by the *jeu de taquin* as crystal operators. The weight map is the reversed column lengths.

Cocrystal for SSYT

Cocrystal: type A crystal isomorphic to $\mathfrak{B}^{\mathsf{sh}(T)'}$, given by the *jeu de taquin* as crystal operators. The weight map is the reversed column lengths.

18 / 27

$$K_{+}(T) = \begin{bmatrix} 3 & 3 & \overline{2} \\ \overline{2} & \overline{2} \\ \overline{1} & \overline{1} \end{bmatrix}$$

$$K_{-}(T) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \\ \hline 3 & 3 & 3 \end{bmatrix}$$

The first column of a right key tableau

Let $T = C_1 C_2 \cdots C_k$ be a KN tableau with columns C_1, C_2, \ldots, C_k . Let $K^1_+(T)$ be the map that returns the first column of $K_+(T)$. $K_+(T) = K^1_+(C_1 \cdots C_k) K^1_+(C_2 \cdots C_k) \cdots K^1_+(C_k)$.

Example

$$T = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}$$

$$K_{+}(T) = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 4 \end{bmatrix} = K_{+}^{1} \begin{pmatrix} 1 & 1 & 4 \\ 2 & 2 \\ 3 \end{pmatrix} K_{+}^{1} \begin{pmatrix} \overline{1} & 4 \\ 2 \end{pmatrix} K_{+}^{1} \begin{pmatrix} \overline{1} & 4 \\ 2 \end{pmatrix} K_{+}^{1} \begin{pmatrix} \overline{1} & 4 \\ 2 \end{bmatrix}$$

$$K_{+}(S) = \begin{bmatrix} 3 & 3 & \overline{1} \\ \overline{2} & \overline{1} \end{bmatrix} = K_{+}^{1} \begin{pmatrix} \overline{1} & 3 & \overline{1} \\ \overline{3} & \overline{3} \end{bmatrix} K_{+}^{1} \begin{pmatrix} \overline{3} & \overline{1} \\ \overline{3} \end{bmatrix} K_{+}^{1} \begin{pmatrix} \overline{1} & \overline{1} \\ \overline{3} \end{bmatrix}$$

João Santos (CMUC) Symplectic keys 19 / 27

Type A right key map - Willis' direct way (2011)

First we create earliest weakly increasing sequences (EWIS):

- In each EWIS, start in the biggest not used number of the first column.
- Add the biggest not yet used number of the next column if it is bigger or equal than the last number added.
- Repeat the last step until we run out of columns.
 Then start a new sequence.

$$T = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \\ \hline 3 \end{bmatrix}$$

First we create earliest weakly increasing sequences (EWIS):

- In each EWIS, start in the biggest not used number of the first column.
- Add the biggest not yet used number of the next column if it is bigger or equal than the last number added.
- Repeat the last step until we run out of columns.
 Then start a new sequence.

$$T = \begin{bmatrix} 1 & 1 & 4^a \\ 2 & 2 \\ \hline 3^a \end{bmatrix}$$

First we create earliest weakly increasing sequences (EWIS):

- In each EWIS, start in the biggest not used number of the first column.
- Add the biggest not yet used number of the next column if it is bigger or equal than the last number added.
- Repeat the last step until we run out of columns.
 Then start a new sequence.

$$T = \begin{bmatrix} 1 & 1 & 4^a \\ 2^b & 2^b \\ \hline 3^a \end{bmatrix}$$

First we create earliest weakly increasing sequences (EWIS):

- In each EWIS, start in the biggest not used number of the first column.
- Add the biggest not yet used number of the next column if it is bigger or equal than the last number added.
- Repeat the last step until we run out of columns.
 Then start a new sequence.

$$T = \begin{bmatrix} 1^c & 1^c & 4^a \\ 2^b & 2^b \\ 3^a \end{bmatrix}$$

First we create earliest weakly increasing sequences (EWIS):

- In each EWIS, start in the biggest not used number of the first column.
- Add the biggest not yet used number of the next column if it is bigger or equal than the last number added.
- Repeat the last step until we run out of columns. Then start a new sequence.

$$T = \begin{bmatrix} 1^c & 1^c & 4^a \\ 2^b & 2^b \\ \hline 3^a \end{bmatrix}$$

 $K^1_+(T)$ has the biggest number of each sequence.

$$K_+^1(T) = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{\overline{1}} \\ \boxed{3} & \boxed{\overline{3}} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{\overline{1}} & \boxed{\overline{1}} \\ \boxed{2} & \boxed{3} & \boxed{\overline{3}} & \boxed{\overline{2}} \end{bmatrix}$$

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{1} \\ \boxed{3} & \boxed{3} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{3} & \boxed{3} & \boxed{2} \\ \boxed{3} & \boxed{2} \end{bmatrix}$$

Start with i = 1.

Create the *matching* between rC_i and ℓC_{i+1} :

João Santos (CMUC)

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{\overline{1}} \\ \boxed{3} & \boxed{\overline{3}} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{\overline{1}} & \boxed{\overline{1}} \\ \boxed{2} & \boxed{3} & \boxed{\overline{2}} \end{bmatrix}$$

Start with i = 1.

Create the matching between rC_i and ℓC_{i+1} :

1	1^a	2^a	3	$\overline{1}$	$\overline{1}$	
2	3 ^b	$\overline{3}^b$	2			
3	2					

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}$$

Start with i = 1.

From smallest to biggest, for each not used number in rC_i , add in rC_{i+1} the smallest number bigger or equal than it such that neither it nor its symmetric appear in rC_{i+1} :

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{1} \\ \boxed{3} & \boxed{3} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{3} & \boxed{3} & \boxed{2} \\ \boxed{3} & \boxed{2} \end{bmatrix}$$

Start with i = 1.

Create the *matching* between rC_i and ℓC_{i+1} : $\begin{array}{c|c}
\hline
1 & 1 & 2 & 3 & 1 & 1 \\
\hline
2 & 3 & \overline{3} & \overline{2} \\
\hline
3 & \overline{2}
\end{array}$

From smallest to biggest, for each not used number in rC_i , add in rC_{i+1} the smallest number bigger or equal than it such that neither it nor its symmetric appear in rC_{i+1} :

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3	3	2			
3	2		$\overline{1}$			

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{1} \\ \boxed{3} & \boxed{3} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{3} & \boxed{3} & \boxed{2} \end{bmatrix}$$

Start with i = 1.

From smallest to biggest, for each not used number in rC_i , add in rC_{i+1} the smallest number bigger or equal than it such that neither it nor its symmetric appear in rC_{i+1} :

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3	3	$\overline{2}$			
3	2		$\overline{1}$			

i := i + 1 and repeat until we run out of columns.

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}$$

Now i = 2. Create a matching between rC_2 and ℓC_3 :

João Santos (CMUC)

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}$$

Now i=2. Create a matching between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}$		

$$S = \begin{bmatrix} \boxed{1} & \boxed{3} & \boxed{1} \\ \boxed{3} & \boxed{3} \end{bmatrix}; spl(S) = \begin{bmatrix} \boxed{1} & \boxed{1} & \boxed{2} & \boxed{3} & \boxed{1} & \boxed{1} \\ \boxed{2} & \boxed{3} & \boxed{3} & \boxed{2} \end{bmatrix}.$$

Now i=2. Create a matching between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}^a$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}^a$		

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}.$$

Now i=2. Create a *matching* between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}^{a}$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}^a$		

So we add 3 and $\overline{2}$ to rC_3 , obtaining:

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}$$

Now i=2. Create a matching between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}^a$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}^a$		

So we add 3 and $\overline{2}$ to rC_3 , obtaining:

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3	3	$\overline{2}$		3	١,
3	$\overline{2}$		1		2	

$$S = \begin{bmatrix} 1 & 3 & \overline{1} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 1 & 2 & 3 & \overline{1} & \overline{1} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}.$$

Now i=2. Create a *matching* between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}^a$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}^a$		

So we add 3 and $\overline{2}$ to rC_3 , obtaining:

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3	3	$\overline{2}$		3	
3	$\bar{2}$		1		2	

 $K_{+}^{1}(S)$ will be the rightmost column that we obtain, after ordering its entries.

Now i=2. Create a *matching* between rC_2 and ℓC_3 :

1	1	2	3	$\overline{1}^a$	$\overline{1}$
2	3	3	2		
3	2		$\overline{1}^a$		

So we add 3 and $\overline{2}$ to rC_3 , obtaining:

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3	3	$\overline{2}$		3	
3	2		1		2	

 $K^1_+(S)$ will be the rightmost column that we obtain, after ordering its entries.

Hence
$$K^1_+(S) = \begin{array}{|c|c|} \hline 3 \\ \hline \hline \hline 2 \\ \hline \hline 1 \end{array}$$
.

The last column of a left key tableau

Let $T = C_1 C_2 \cdots C_k$ be a KN tableau with columns C_1, C_2, \ldots, C_k . Let $K^1_-(T)$ be the map that returns the last column of $K_-(T)$. $K_-(T) = K^1_+(C_1) \cdots K^1_-(C_1 \cdots C_{k-1}) K^1_-(C_1 \cdots C_k)$.

Example

$$T = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \end{bmatrix} \qquad S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}$$

$$K_{-}(T) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 \end{bmatrix} = K_{-}^{1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} K_{-}^{1} \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} K_{-}^{1} \begin{pmatrix} 1 & 1 & 4 \\ 2 & 2 & 3 \end{pmatrix}$$

$$K_{-}(S) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 \end{bmatrix} = K_{-}^{1} \begin{pmatrix} 2 \\ \overline{3} \\ \overline{3} \end{bmatrix} K_{-}^{1} \begin{pmatrix} 2 & 3 & \overline{3} \\ \overline{3} & \overline{3} \end{bmatrix} K_{-}^{1} \begin{pmatrix} 2 & 3 & \overline{3} \\ \overline{3} & \overline{3} \end{bmatrix}$$

João Santos (CMUC) Symplectic keys 23 / 27

- In each RWDS, start in the biggest not used number of the last column.
- Add the biggest not yet used number of the column to its left that is smaller or equal than the last number added.
- Repeat the last step until we run out of columns.
 We will have a sequence for every element of the last column.

$$T = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 \\ 3 \end{bmatrix}$$

- In each RWDS, start in the biggest not used number of the last column.
- Add the biggest not yet used number of the column to its left that is smaller or equal than the last number added.
- Repeat the last step until we run out of columns.
 We will have a sequence for every element of the last column.

$$T = \begin{bmatrix} 1 & 1 & 4^a \\ 2 & 2 \\ 3 \end{bmatrix}$$

- In each RWDS, start in the biggest not used number of the last column.
- Add the biggest not yet used number of the column to its left that is smaller or equal than the last number added.
- Repeat the last step until we run out of columns.
 We will have a sequence for every element of the last column.

$$T = \begin{bmatrix} 1 & 1 & 4^{a} \\ 2 & 2^{a} \\ 3 \end{bmatrix}$$

- In each RWDS, start in the biggest not used number of the last column.
- Add the biggest not yet used number of the column to its left that is smaller or equal than the last number added.
- Repeat the last step until we run out of columns.
 We will have a sequence for every element of the last column.

$$T = \begin{bmatrix} 1 & 1 & 4^a \\ 2^a & 2^a \end{bmatrix}$$

First we create reverse weakly decreasing sequences (RWDS):

- In each RWDS, start in the biggest not used number of the last column.
- Add the biggest not yet used number of the column to its left that is smaller or equal than the last number added.
- Repeat the last step until we run out of columns.
 We will have a sequence for every element of the last column.

$$T = \begin{array}{c|c} \hline 1 & 1 & 4^a \\ \hline 2^a & 2^a \\ \hline 3 & \end{array}$$

 $K_{-}^{1}(T)$ has the numbers of the first column that belong to a sequence.

$$K^1_-(T) = \boxed{2}$$

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}$$

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \\ \overline{3} & \overline{1} \end{bmatrix}$$

Start with i = 3.

Create a *matching* between rC_{i-1} and ℓC_i :

João Santos (CMUC)

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \\ \overline{3} & \overline{1} \end{bmatrix}$$

Start with i = 3.

Create a matching between rC_{i-1} and ℓC_i :

1	2	2	3 ^a	$\overline{3}^a$	3	
2	3	3	2			
3	$\overline{1}$					

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \\ \overline{3} & \overline{1} \end{bmatrix}$$

Start with i = 3.

From smallest to biggest, for each not matched α in rC_{i-1} , remove it and remove from ℓC_{i-1} the biggest entry not below α bigger than the entry Northeast of it:

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \\ \overline{3} & \overline{1} \end{bmatrix}$$

Start with i = 3.

Create a matching between rC_{i-1} and ℓC_i : $\begin{vmatrix}
1 & 2 & 2 & 3 & 3 & 3 \\
2 & 3 & \overline{3} & \overline{2}
\end{vmatrix}$

From smallest to biggest, for each not matched α in rC_{i-1} , remove it and remove from ℓC_{i-1} the biggest entry not below α bigger than the entry Northeast of it:

1	1	2	3	$\overline{1}$	$\overline{1}$
2	3				
3	2				

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ 2 & 3 & \overline{3} & \overline{2} \\ \overline{3} & \overline{1} \end{bmatrix}$$

Start with i = 3.

Create a matching between rC_{i-1} and ℓC_i : $\begin{array}{c|c}
\hline
1 & 2 & 2 & 3^a \overline{3}^a \overline{3} \\
\hline
2 & 3 & \overline{3} & \overline{2} \\
\hline
\hline
3 & \overline{1}
\end{array}$ From smallest to the second of the second se

From smallest to biggest, for each not matched α in rC_{i-1} , remove it and remove from ℓC_{i-1} the biggest entry not below α bigger than the entry Northeast of it:

1	1	2	3	$\overline{1}$	$\overline{1}$	
2	3					
3	2					

i := i - 1 and repeat until we run out of columns.

$$S = \begin{bmatrix} 2 & 3 & \overline{3} \\ \hline 3 & \overline{3} \end{bmatrix}; spl(S) = \begin{bmatrix} 1 & 2 & 2 & 3 & \overline{3} & \overline{3} \\ \hline 2 & 3 & \overline{3} & \overline{2} \end{bmatrix}.$$

Now i = 2. Create a matching between rC_1 and ℓC_2 :.

João Santos (CMUC)

Now i = 2. Create a matching between rC_1 and ℓC_2 :.

1	2	2	3	3	3
2	3				
3	$\overline{1}$				

Now i = 2. Create a matching between rC_1 and ℓC_2 :.

1	2 ^a	2 ^a	3	3	3
2	3				
3	$\overline{1}$				

Now i=2. Create a matching between rC_1 and ℓC_2 :.

1	2^a	2^a	3	3	3	
2	3					
3	$\overline{1}$.'		

So we remove 3 from rC_1 and 1 from ℓC_1 ; and remove $\overline{1}$ from rC_1 and $\overline{3}$

from ℓC_1 , obtaining:

Now i=2. Create a matching between rC_1 and ℓC_2 :.

1	2 ^a	2 ^a	3	3	3
2	3				
3	$\overline{1}$				

So we remove 3 from rC_1 and 1 from ℓC_1 ; and remove $\overline{1}$ from rC_1 and $\overline{3}$

from ℓC_1 , obtaining:

	2	2	3	3	3	
2						

Now i=2. Create a matching between rC_1 and ℓC_2 :.

1	1	<u></u>	ე a	2	_	_
	1	2	2	3	3	3
	2	3				
	3	$\overline{1}$				

So we remove 3 from rC_1 and 1 from ℓC_1 ; and remove $\overline{1}$ from rC_1 and $\overline{3}$

from ℓC_1 , obtaining:

	2	2	3	3	3	
2						

 $K_{-}^{1}(S)$ will be the leftmost column that we obtain.

Now i=2. Create a matching between rC_1 and ℓC_2 :.

			_			
1	2^a	2^a	3	3	3	
2	3					
3	$\overline{1}$					

So we remove 3 from rC_1 and 1 from ℓC_1 ; and remove $\overline{1}$ from rC_1 and $\overline{3}$

from ℓC_1 , obtaining:

	2	2	3	3	3	
2						

 $\mathcal{K}^1_-(S)$ will be the leftmost column that we obtain.

Hence
$$K^1_-(S) = \boxed{2}$$
.

Thank you!