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ON THE SPECTRUM OF A MORPHISM OF
QUOTIENT HILBERT SPACES

Sorin N¼ad¼aban

Abstract. In this paper we de�ne the notion of spectrum for a morphism of quotient Hilbert

spaces. The de�nition is the same with the one given by L.Waelbroeck but the proofs that the

spectrum is a compact and nonempty set are di¤erent. In this context we also make some remarks

concerning the resolvent function and the spectral radius.

1 Introduction

The starting point of the theory of quotient spaces was a series of papers of L.
Waelbroeck (see [4], [5], [5]). He de�nes quotient Banach space as a linear space of
the formX=X0, where X is a Banach space andX0 is a Banach subspace of X, namely
X0 has its own structure of a Banach space which makes the inclusion X0 ! X be
continuous. First, L. Waelbroeck de�nes the notion of strict morphism between two
quotient Banach spaces. This is a linear mapping T : X=X0 ! Y=Y0 induced by an
operator T1 2 B(X;Y ) such that T1X0 � Y0, meaning T (x + X0) = T1x + Y0. If
the strict morphism T is induced by a surjective operator T1 2 B(X;Y ) such that
T�11 (Y0) = X0 then T is called pseudo-isomorphism. In the end L. Waelbroeck
de�nes the morphism as a composition of strict morphisms and inverses of pseudo-
isomorphisms.

By a morphism (see [3]) F.-H. Vasilescu understands a linear mapping
T : X=X0 ! Y=Y0 such that

G0(T ) := f(x; y) 2 X � Y : y 2 T (x+X0)g

is a Banach subspace in X � Y . His de�nition looks di¤erent but their categories
are isomorphic.

The reason why I work in quotient Hilbert spaces is simply because each mor-
phism is strict (see [2]). The results are also true in the more general case of quotient
Banach spaces as L.Waelbroeck shows in [5], [6], but in our context the proofs are
di¤erent.
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14 Sorin N¼ad¼aban

In this context we also make some remarks concerning the resolvent function and
the spectral radius. I have to mention that some of ideas in the proofs come from
M.Akkar and H.Arroub (see [1]).

2 The spectrum of a morphism

Let H=H0 be a quotient Banach space and B(H=H0) the family of all morphism
from H=H0 into H=H0. First, we mention that B(H=H0) can be regarded as a
quotient Banach algebra A=� where

A = fT1 2 B(H) : T1H0 � H0g ;

� = fT1 2 B(H) : T1H � H0g = B(H;H0) :

A is a Banach algebra with the norm

k T1 kA= maxfk T1 kB(H) ; k T1 jH0kB(H0)g :

� is a Banach algebra with the norm

k T1 k�=k T1 kB(H;H0) :

We denote by T0 the restriction of T1 2 A to H0.
If T 2 B(H=H0) we can de�ne the spectrum of T in the classic way

�(T ) := fz 2 C : z � T is not bijectiveg:

If T 2 B(H=H0) is induced by T1 2 A, we can speak about the spectrum of T as
being the spectrum of T̂ +� 2 A=� in quotient Banach algebra A=� and we denote
it by �A=�(T̂ ).
Obviously, we can consider the quotient Banach algebra A=�: We also denote by T̂
the element T̂ = T1 + � 2 A=�; in hope of no ambiguity. Therefore we can speak
about the spectrum �A=�(T̂ ).
Another approach of spectrum is obtained by using the complexes. We denote this
spectrum by �(T ;H=H0): Namely, we say that z 2 C n �(T ;H=H0) if the sequence

0! H0
iz! H �H0

jz! H ! 0

is exact, where
iz(x0) = (x0; (z � T1)x0)

jz(x; x0) = (T1 � z)x+ x0
for x0 2 H0 ; x 2 H:

Theorem 1. � (T ) = � (T ;H=H0) = �A=�

�
T̂
�
= �A=�

�
T̂
�
.
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On the Spectrum of a Morphism of Quotient Hilbert Spaces 15

Proof. We begin by proving the �rst equality. It is obvious that the considered
sequence is a complex of Hilbert spaces. This means

R(iz) � Ker(jz), jz(x0; (z � T1)x0) = 0, (T1 � z)x0 + (z � T1)x0 = 0

which is true. Obviously iz is always injective. Let�s note that:
(1) z - T is surjective , R(jz) = H;
(2) z - T is injective , Ker(jz) � R(iz).
Indeed, z - T is injective

, [(z � T )(x+H0) = H0 ) x 2 H0]

, [(z � T1)x+H0 = H0 ) x 2 H0], [(z � T1)x 2 H0 ) x 2 H0] :

On the other hand

Ker(jz) � R(iz), [(x; x0) 2 Ker(jz)) (x; x0) 2 R(iz)],

[(T1 � z)x+ x0 = 0) (x; x0) 2 R(iz)],

[x0 = (z � T1)x) (x; (z � T1)x) 2 R(iz)],

[(z � T1)x 2 H0 ) x 2 H0] :

(1) and (2) show us that z 2 C n �(T ) if and only if z 2 C n �(T ;H=H0):
The next is to prove the equality �(T ) = �A=�(T̂ ): In fact, we have to prove that

z 2 C n �(T ),

namely
S = z � T

is bijective and S�1 2 B(H=H0); is equivalent to Ŝ = S1 + � 2 A=� is invertible in
A=�, which means that z 2 C n �A=�(T̂ ):
" ) " If S is invertible, let S�1 2 B(H=H0) its invers induced by V1 2 A: Let
V̂ = V1 + � 2 A=�: We have

SS�1 = IH=H0 , SS�1(x+H0) = x+H0 , S1(V1x+H0) = x+H0 ,

S1V1x+H0 = x+H0 , (S1V1 � I)x 2 H0 ; (8)x 2 H ,

S1V1 � I 2 �, ŜV̂ = IA=� :

In the same way we obtain

S�1S = IH=H0 , V1S1 � I 2 �, V̂ Ŝ = IA=� :
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16 Sorin N¼ad¼aban

Hence, Ŝ is invertible in A=�.
"( " If Ŝ = S1+� is invertible in A=� let V̂ = V1+� its inverse. Let S 2 B(H=H0)
induced by S1 and V 2 B(H=H0) induced by V1. Then

ŜV̂ = IA=� , S1V1 � I 2 �, SV = IH=H0

V̂ Ŝ = IA=� , V1S1 � I 2 �, V S = IH=H0

and therefore S is invertible in B(H=H0):
Finally, we prove the last equality �A=�(T̂ ) = �A=�(T̂ ):
Let hull(�) the set of maximal ideals of A which contains �, or, in other words, the
set of all characters � of A with the property � � Ker(�): This set is compact and
non empty.
We denote by T̂G the Gelfand transform of T̂ , namely

T̂G : hull(�)! C ; T̂G(�) = �(T̂ ) :

It is obvious that this mapping is well de�ned, namely it does not depends on the
choice of T1 for T̂ , because � � Ker(�):
Let z 2 C: Then z 2 �A=�(T̂ ) , (z � T1)A + � 6= A , (9)�0 a maximal ideal of A
which contains � and z � T1

, (9)� 2 hull(�) : z � T1 2 Ker(�)

, (9)� 2 hull(�) : z = T̂G(�).

Thus we obtain that �A=�(T̂ ) = T̂G(hull(�)):

In the same way we obtain that �A=�(T̂ ) = T̂G(hull(�)):
If we show that hull(�) = hull(�) the proof will be complete. Let
M 2 hull(�): As every maximal ideal of A is closed, the fact that � � M im-
plies that � � M , hence M 2 hull(�): As the converse inclusion is evident we
obtain the desired result.

Remark 2. The �rst equality can be used to proof that the spectrum of a morphism
is a compact set.

Let z 2 C� �(T ). Then the sequence

0! H0
iz! H �H0

jz! H ! 0

is exact.
As the exactness is invariant under small perturbations, it exists � > 0 such that for
all z0 2 C : j z0 � z j< � we have that the sequence

0! H0
iz0! H �H0

jz0! H ! 0

is exact. Hence D(z; �) � �(T ) = C n �(T ) and therefore �(T ) is open, namely �(T )
is closed.
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On the Spectrum of a Morphism of Quotient Hilbert Spaces 17

Proposition 3. �A (T1) = �B(H) (T1) [ �B(H0) (T0).

Proof. If z 62 �A(T1) then z � T1 is invertible in A, namely it exists S1 2 A such
that (z � T1)S1 = S1(z � T1) = IH : Hence, z � T1 is invertible in B(H) and so
z 62 �B(H)(T1): Let S0 = S1 jH02 B(H0): The previous equality tells us that

(z � T0)S0 = S0(z � T0) = IH0

and so z � T0 is invertible in B(H0), namely z 62 �B(H0)(T0):

Conversely, if z 62 �B(H)(T1)[�B(H0)(T0) then U1 = z�T1 is invertible in B(H),
namely it exists S1 2 B(H) such that U1S1 = S1U1 = IH and U0 = z�T0 is invertible
in B(H0) and therefore it exists V0 2 B(H0) such that U0V0 = V0U0 = IH0 : It results
that U1S1x = U0V0x for all x 2 H0, hence U1S1x = U1V0x: As U1 is injective we
obtain S1x = V0x and so S1H0 � H0, hence S1 2 A and z � T1 is invertible in A,
namely z 62 �A(T1):

Proposition 4. The union of any two of the sets �(T ); �B(H)(T1), �B(H0)(T0) con-
tains the third.

Proof. (1) �(T ) � �B(H)(T1) [ �B(H0)(T0).
Let z 2 C n �A(T1): Then S1 = z � T1, is invertible in A. Let V1 2 A its inverse and
V 2 B(H=H0) the morphism induced by V1: We have

(z � T )V (x+H0) = (z � T )(V1x+H0) =

= (z � T1)V1x+H0 = S1V1x+H0 = x+H0 :

Similarly, V (z � T )(x +H0) = x +H0: Hence z � T is invertible in H=H0, namely
z 2 C n �(T ): The proof is complete, via previous proposition.
(2) �B(H)(T1) � �B(H0)(T1) [ �(T ):
Let z 62 �B(H0)(T0) [ �(T ) and we assume that (z � T1)x = 0: Then
(z � T )(x + H0) = (z � T1)x + H0 = H0: As z � T is injective it results that
x 2 H0. Next (z � T1)x = 0 it implies that (z � T0)x = 0: But z � T0 is injective
and therefore x=0 and so z � T1 is injective.
Let now y 2 H: As z-T is surjective it exists x+H0 2 H=H0 such that

(z � T )(x+H0) = y +H0

But (z � T )(x +H0) = (z � T1)x +H0. It results that (z � T1)x + h0 = y, where
h0 2 H0: But z � T0 is surjective and therefore it exists k0 2 H0 : (z � T0)k0 = h0,
or (z � T1)k0 = h0: Then y = (z � T1)(x+ k0) and therefore z � T1 is surjective.
(3) �B(H0)(T0) � �(T ) [ �B(H)(T1):
We assume that z 62 �(T ) [ �B(H)(T1): Let x0 2 H0 such that
(z � T0)x0 = 0: Then (z � T1)x = 0 and it results that x0 = 0 because z � T1
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18 Sorin N¼ad¼aban

is injective. Hence z � T0 is injective.
Let now y0 2 H0: We search for x0 2 H0 : (z � T0)x0 = y0: As z � T1 is surjective
it exists x0 2 H : (z � T1)x0 = y0: We have

(z � T )(x0 +H0) = (z � T1)x0 +H0 = y0 +H0 = H0 :

But z-T is injective. Consequently x0 2 H0. We have found x0 2 H0 such that
(z � T1)x0 = y0: It results that (z � T0)x0 = y0 and so z � T0 is surjective.

Remark 5. �(T ) � �A(T1).

3 The resolvent function

As we have seen the spectrum of a morphism �(T ) is a compact set and its comple-
ment �(T ) will be called the resolvent set. Of course, we can consider the mapping

R : �(T )! B(H=H0) ; R(z) = (z � T )�1

which we call resolvent function and we naturally question if, as in the classic case,
we can speak about an analicity of the resolvent function. Unfortunately, the values
of this function are in a quotient Banach space (using the identi�cation B(H=H0) =
A=�). A further idea to continue is given by a notation of L.Waelbroeck (see [6]):
O(U;A=�) := O(U;A)=O(U;�) where O(U;A) is the Fr´echet space of analytic
function f : U ! A and O(U;�) is a Fr´echet subspace of this. For the moment
we will not obtain an " analicity " of resolvent function, only the fact that it is
of " class C1": Thus, in a similar way we consider C1(U;A), the unitary algebra
of functions f : U ! A of class C1, in which C1(U;�) is a bilateral ideal. We
de�ne C1(U;A=�) = C1(U;A)=C1(U;�). The result which we will obtain is: the
element z � T is invertible in algebra C1(�(T ); A=�): This means that it exists
f : �(T ) ! A of class C1 such that R(z) = ^f(z), where ^f(z) is the class of
equivalence of f(z) modulo �, and the equalities (z�T )R(z) = R(z)(z�T ) = IH=H0
are in C1(�(T ); A=�), i.e. the functions

g : �(T )! � ; g(z) = (z � T1)f(z)� IH

h : �(T )! � ; h(z) = f(z)(z � T1)� IH

are from C1(�(T ); �): The idea of the proof comes from the same article of L.
Waelbroeck, with the necessary changes due to the fact that the algebra A which
appears is noncommutative and also because we work with a single morphism.

Theorem 6. z-T is invertible in C1(�(T ); A=�).
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On the Spectrum of a Morphism of Quotient Hilbert Spaces 19

Proof. Let � 2 �(T ): Then

(9)S� 2 B(H=H0) : (�� T )S� = S�(�� T ) = 1H=H0 (�)

But S� 2 B(H=H0) implies that there exists V� 2 B(H) : V�H0 � H0 which
induces S�. Therefore, the equalities (�) become

(�� T1)V� � IH 2 � ; V�(�� T1)� IH 2 �

namely, it exists A�; B� 2 � such that

(�� T1)V� �A� = IH (1)

V�(�� T1)�B� = IH (2)

Let�s note that

(z � T1)V� �A� = (z � �)V� + (�� T1)V� �A� = (z � �)V� + IH :

If we choose r = 1
2kV�kA ; for z 2 B(�; r) this element is invertible in algebra A.

Moreover, the function

�� : B(�; r)! A ; ��(z) = (IH + (z � �)V�)�1

is analytic, in particular it is of class C1.
Thus, we can consider the following function of class C1:

f� : B(�; r)! A ; f�(z) = V���(z) ;

g� : B(�; r)! � ; g�(z) = A���(z) ;

h� : B(�; r)! � ; h�(z) = ��(z)B� :

We also note that

(z � T1)f�(z)� g�(z) = (z � T1)V��(z)�A��(z) =

= [(z � T1)V� �A�]�(z) = [(z � �)V� + IH ]�(z) = IH ;

f�(z)(z � T1)� h�(z) = V��(z)(z � T1)� �(z)B� =
= �(z)[V�(z � T1)�B�] = �(z)[V�(�� T1) + V�(z � �)�B�] =

= �(z)[IH + V�(z � �)] = IH :

Hence, the considered functions satisfy

(z � T1)f�(z)� g�(z) = IH (10)

f�(z)(z � T1)� h�(z) = IH (20)

We note that fB(�; r)g�2�(T ) is on open coverage of �(T ): The theorem of existance
of a partition of unity leads to the existance of a family f �g�2�(T ) of positive
functions of class C1 with the following properties:
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20 Sorin N¼ad¼aban

1. supp( �) � B(�; r) ; (8)� 2 �(T );

2. (8)K � �(T ) a compact set there exists a �nite number of functions  � which
are not identically nule on K;

3.
P

�2�(T )
 �(z) = 1 ; (8)z 2 �(T ):

We de�ne

f 0� : �(T )! A ; f 0�(z) =

�
 �(z)f�(z); if z 2 B(�; r)

0; else

g0� : �(T )! � ; g0�(z) =

�
 �(z)g�(z); if z 2 B(�; r)

0; else

h0� : �(T )! � ; h0�(z) =

�
 �(z)h�(z); if z 2 B(�; r)

0; else

Then, we de�ne
f : �(T )! A ; f(z) =

X
�2�(T )

f 0�(z);

g : �(T )! � ; g(z) =
X
�2�(T )

g0�(z);

h : �(T )! � ; h(z) =
X
�2�(T )

h0�(z).

By the previous construction they are of class C1 and they satisfy

(z � T1)f(z)� g(z) = IH ; f(z)(z � T1)� h(z) = IH , (8)z 2 �(T ) :

These relations can also be written

(z � T1)f(z)� IH = g(z) ; f(z)(z � T1)� IH = g(z), (8)z 2 �(T ) :

These relations show that z-T is invertible in C1(�(T ); A=�) and its inverse isR(z) =
^f(z), (8)z 2 �(T ):

Remark 7. In other words, the result of this theorem can be rewritten: it exists
f 2 C1(�(T ); A); g, h 2 C1(�(T ); �) such that

(z � T1)f(z)� g(z) = f(z)(z � T1)� h(z) = IH , (8)z 2 �(T ).

We are asking if the functions f,g,h can be extended to functions of class C1 on C
and the equalities rest true.
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On the Spectrum of a Morphism of Quotient Hilbert Spaces 21

Theorem 8. Let U be an open neighborhood for �(T ). Then there exists f 0 2
C1(C; A); g0; h0 2 C1(C; �) and u0 : C! [0; 1] a function of class C1 with compact
support contained in U , such that

(z � T1)f 0(z)� g0(z) = f 0(z)(z � T1)� h0(z) = IH � u0(z) ; (8)z 2 C :

Proof. As U is an open neighbourhood for the compact �(T ), the theorem of exis-
tance of a partition of unity yiels the function u0 : C ! [0; 1] of class C1 with the
support contained in U , such that u0 = 1 on a neighbourhood of �(T ). We de�ne

f 0 : C! A ; f 0(x) =

�
(IH � u0(z))f(z); if z 2 �(T )

0; else
;

g0 : C! � ; g0(z) =

�
(IH � u0(z))g(z); if z 2 �(T )

0; else
;

h0 : C! � ; h0(z) =

�
(IH � u0(z))h(z); if z 2 �(T )

0; else
.

Obviously, they are functions of class C1 and we have

(z � T1)f 0(z)� g0(z) = f 0(z)(z � T1)� h0(z) = IH � u0(z) ; (8)z 2 C.

4 Spectral radius

De�nition 9. Let T 2 B(H=H0). We de�ne the spectral radius of T by

r(T ) = supfj z j ; z 2 �(T )g.

As we can see this de�nition is the same as in the classic case, with the only
mention that the spectral radius was enjoying the properties

r(T ) = lim
n!1

k Tn k1=n ; r(T ) �k T k .

Let us see how we can establish a similar thing. For this we can consider on A=� a
semi-norm, the one induced by the norm of A

k T kA=�= inf
T02�

k T1 + T0 kA .

where T1 2 A induces T.
As �(T ) � �A(T1), we have that r(T ) � rA(T1) �k T1 kA : But the previous
inclusion takes place for any operator T1 which induces T and so

r(T ) �k T1 + T0 k , (8)T0 2 �.
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22 Sorin N¼ad¼aban

Consequently
r(T ) � inf

T02�
k T1 + T0 kA

and therefore r(T ) �k T kA=�.
We denote by B the completion of semi-normed algebras
(A=�; k � kA=�): Then �B(T ) � �(T ) and therefore rB(T ) � r(T ). Hence

lim
n!1

k Tn k1=nA=�� r(T ).

Concluding, we have:

Proposition 10. Let T 2 B(H=H0): Then

lim
n!1

k Tn k1=nA=�� r(T ) �k T kA=� .
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