ISSN 1842-6298 (electronic), 1843 - 7265 (print) Volume **2** (2007), 123 - 143

FAMILIES OF QUASI-PSEUDO-METRICS GENERATED BY PROBABILISTIC QUASI-PSEUDO-METRIC SPACES

Mariusz T. Grabiec, Yeol Je Cho and Reza Saadati

Abstract. This paper contains a study of families of quasi-pseudo-metrics (the concept of a quasi-pseudo-metric was introduced by Wilson [22], Albert [1] and Kelly [9]) generated by probabilistic quasi-pseudo-metric-spaces which are generalization of probabilistic metric space (PM-space shortly) [2, 3, 4, 6]. The idea of PM-spaces was introduced by Menger [11, 12], Schweizer and Sklar [18] and Serstnev [19]. Families of pseudo-metrics generated by PM-spaces and those generalizing PM-spaces have been described by Stevens [20] and Nishiure [14].

1 Introduction

The concept of a probabilistic metric space is a generalization of a metric spaces. The origin of the theory data back to a paper published by Menger in 1942 [11]. A foundational paper on the subject was written by Schweizer and Sklar in [16, 17] and numerous articles follows thereafter. The latter two authors gave an excellent treatment of the subject in their book published in 1983 [18].

The concept of a quasi-metric space (where the condition of symmetry in dropped) was introduced in Wilson [22] and further developed in Kelly [9].

In the development of the theory of quasi-pseudo-metric spaces two streams can be distinguished. The core of the first is the concept of a convergent sequence (see [Kelly [9]). The second stream, a structure topological one, connected with Kelly as well, originated from the observation that every quasi-pseudo-metric on a given set does naturally generate a dual quasi-pseudo-metric on the same set. Thus a system of two mutually conjugates functions appeared. The dropped symmetry condition thus manifested itself in an external nature of such systems. Since each quasi-pseudo-metric generates a topology, hence of systems of two topologies can be associated with every quasi-pseudo-metric (Kelly [9]).

2000 Mathematics Subject Classification: 54E40.

Keywords: Families generated by $P_{pq}M$ -spaces; Quasi-pseudo-Menger space; Probabilistic quasi-pseudo-metric spaces ($P_{pq}M$ -space); Statistical quasi-metric space ($S_{pq}M$ -space).

The purpose of this study is to invalidate a natural generalization of probabilistic metric space and quasi-pseudo-metric space (Birsan [2, 3, 4], Grabiec [6]).

This paper contains a study of families of quasi-pseudo-metrics generated by Probabilistic-quasi-pseudo-metric-spaces which are generalization of probabilistic metric spaces (PM-spaces) ([2, 3, 4, 6]). The idea of PM-spaces goes back to Menger [11], [12]. The families of pseudo-metrics generated by PM-spaces and these generalizing PM-spaces have been described by Stevens [20] and Nishiura [14].

2 Preliminaries

A distance distribution function (d.d.f.) is a non-decreasing function $F:[0,+\infty] \to [0,1]$, which is left-continuous on $(0,+\infty)$, and assumes the values F(0)=0 and $F(+\infty)=1$. The set of all d.d.f's, denoted by Δ^+ , is equipped with modified Leéy metric d_L (see pp. 45 of [18]). The metric space (Δ^+, d_L) is compact and hence complete. Further, Δ^+ is partially ordered by usual order for real-valued functions.

Let u_a be the element of Δ^+ defined by

$$u_a = \begin{cases} 1_{(a,\infty)}, & \text{for all } a \in [0, +\infty), \\ 1_{\{+\infty\}}, & \text{for } a = \{+\infty\}. \end{cases}$$

A triangle function * is defined to be a binary operation on Δ^+ which is non-descreasing in each component, and if $(\Delta^+, *)$ is an Abelian monoid with the identity u_0 .

Triangle functions considered in this paper will be assumed to be continuous with respect to the topology induced by metric d_L .

Definition 1. Let $p_L: \Delta^+ \times \Delta^+ \to I$ be defined by the following formula:

$$p_L(F,G) = \inf\{h \in (0,1] : G(t) \le F(t+h) + h, \quad t \in (0,\frac{1}{h})\}.$$
 (1)

Observe that, for all $F, G \in \Delta^+$, we have $G(t) \leq F(t+1) + 1$. Hence the set of (1) is nonempty.

Lemma 2. If $p_L(F,G) = h > 0$, then, for every $t \in (0, \frac{1}{h})$, $G(t) \leq F(t+h) + h$.

Proof. For arbitrary s > 0 let $J_s = (0, \frac{1}{s})$. Then $J_{s_2} \subseteq J_{s_1}$ whenever $0 < s_1 < s_2 < 1$. Let $t \in J_h$. Since the interval J_h is open, there exist $t_1 < t$ and s > 0 such that $t_1 \in J_{h+s}$. As $p_L(F,G) = h$, we get $G(t_1) \leq F(t_1 + h + s) + (h + s)$. Let $s \to 0$. Then $G(t_1) \leq F(t + h^+) + h$ since F is nondecreasing.

Next, let $t_1 \to t$. Using the left-continuity of G, we obtain $G(t) \leq F(t+h) + h$ for $t \in J_h$. This completes the proof.

Theorem 3. The function $p_L: \Delta^+ \times \Delta^+ \to I$ defined by (1) is a quasi-pseudometric on Δ^+ . Recall that a quasi-pseudo-metric space is an ordered pair (X, p), where X is a nonempty set and the function $p: X^2 \to R^+$ satisfies the following conditions: for all $x, y, z \in X$,

$$d(x,x) = 0$$

$$d(x,y) \le d(x,z) + d(z,y).$$

Proof. For each $F \in \Delta^+$ we have $p_L(F, F) = 0$. This is the direct consequence of Definition 1. In order to prove the "triangle inequality":

$$p_L(F,H) \le p_L(F,G) + p_L(G,H)$$
 for $F,G,H \in \Delta^+$,

Let $x = p_L(F,G) > 0$ and $y = p_L(G,H) > 0$. If $x + y \ge 1$, then (1) is satisfied. Thus let x + y < 1 and $t \in J_{x+y}$. Then $t + y \in J_x$. Using this fact and Lemma 2, we obtain $H(t) \le G(t+y) + y \le F(t+y+x) + y + y$. Thus the equality $H(t) \le F(t+(x+y)) + (x+y)$ holds for $t \in J_{x+y}$. Consequently, we have $p_L(F,H) \le x + y = p_L(F,G) + p_L(G,H)$.

The definition of the quasi-pseudo-metric p_L immediately yields the following observations:

Remark 4. For every $F \in \Delta^+$ and every t > 0, the following hold (recall that $u_0 = 1_{(0,\infty]} \in \Delta^+$):

$$p_L(F, u_0) = \inf\{h \in (0, 1] : u_0(t) \le F(t+h) + h, \quad t \in J_h\}$$

= \inf\{h \in (0, 1] : F(h+) > 1 - k\},
$$F(t) > 1 - t \quad iff \quad p_L(F, u_0) < t.$$

Lemma 5. If $F, G \in \Delta^+$ and $F \leq G$, then $p_L(G, u_0) \leq p_L(F, u_0)$.

Proof. This is an immediate consequence of Remark 4.

Lemma 6. If $\emptyset \neq A \subset \Delta^+$, then $G \in \Delta^+$ where

$$G(t) = \sup\{F(t) : F \in A\}.$$

Proof. This follows from the information about lower semicontinuous functions. \Box

Definition 7. Let $q_L: \Delta^+ \times \Delta^+ \to I$ be given by the formula:

$$q_L(F,G) = p_L(G,F)$$
 for all $F,G \in \Delta^+$.

The function q_L is also a quasi-pseudo-metric on Δ^+ . The functions p_L and q_L are called conjugate and the structure on Δ^+ generated by p_L is denoted by (Δ^+, p_L, q_L) .

Theorem 8. Given a structure (Δ^+, p_L, q_L) , the function $d_L : \Delta^+ \times \Delta^+ \to I$ defined by:

$$d_L(F,G) = \max(p_L(F,G), q_L(F,G))$$
 for $F,G \in \Delta^+$

is a metric on the set Δ^+ .

Proof. It suffices to show that the following condition holds:

$$d_L(F,G) = 0$$
 iff $F = G$.

Let $t_0 \in (0, +\infty)$ and $F(t_0) < G(t_0)$. Since F and G are left-continuous, there exists $0 < t' < t_0$ such that F(t') < G(t'). Now, take $h < t_0 - t'$. By (1) and the fact that G is nondecreasing, we obtain the inequality:

$$G(t') \le G(t_0 - h) \le F(t_0 - h + h) + h.$$

If $h \to 0$, then we get $G(t_0-) = G(t_0) \le F(t_0)$, which is a contradiction. Taking into account that F(0) = G(0) and $F(+\infty) = G(+\infty) = 1$, we eventually get the equality F(t) = G(t) for any $t \in [0, +\infty]$.

Remark 9. Note that the metric given by Theorem 2 is equivalent to the metric defined by Schweizer and Sklar ([18], Definition 4.2.1).

Now, we state some facts related to the convergence in (Δ^+, d_L) and the weak convergence in the set Δ^+ .

Definition 10. A sequence $\{F_n\}$, where $F_n \in \Delta^+$, is said to be weakly convergent to $F \in \Delta^+$ (denoted by $F_n \stackrel{w}{\to} F$) if and only if the sequence $\{F_n(t)\}$ is convergent to F(t) for every point t of continuity of F.

Let us recall the well-known fact that the convergence in every point of continuity of the function F fails to be equivalent to the convergence in any point of $(0, +\infty)$. Indeed, consider the sequence $\{S_{(a-1/n,a)}\}$, where a > 1, and the function $S_{(a-1/n,a)}$ in Δ^+ is defined as follows:

$$S_{(a-\frac{1}{n},a)}(t) = \begin{cases} 0 & \text{if } 0 \le t < a - \frac{1}{n}, \\ \frac{t - (a - \frac{1}{n})}{a - (a - \frac{1}{n})} & \text{if } t \in [a - \frac{1}{n}, a), \\ 1 & \text{if } t \in [a, +\infty]. \end{cases}$$

Notice that $S_{(a-1/n,a)} \stackrel{\text{w}}{\to} u_a$, while, for every $n \in \mathbb{N}$, we have

$$S_{(a-1/n,a)}(a) = 1 \neq 0 = u_a(a).$$

Theorem 11. Let $\{F_n\}_{n\in\mathbb{N}}$ be a sequence of the functions of Δ^+ and let $F\in\Delta^+$. Then $F_n\stackrel{w}{\to} F$ if and only if $d_L(F_n,F)\to 0$.

Proof. Assume that $d_L(F_n, F) \to 0$ and let $t_0 > 0$ be a point of continuity of F. It follows that for sufficiently small h > 0, the interval $(t_0 - h, t_0 + h)$ is contained in the interval $(0, \frac{1}{h})$ and the following hold:

$$F(t_0) - h \le F_n(t_0 + h)$$
 and $F_n(t_0) \le F(t_0 + h) + h$

for sufficiently large $n \in \mathbb{N}$ and for $t \in (0, \frac{1}{h})$. Thus, by the monotonicity of F_n and F we obtain:

$$F(t_0 - 2h) - f \le F_n(t_0 - h) \le F_n(t_0) \le F_n(t_0 + h) \le F(t_0 + 2h) + h.$$

Since h is sufficiently small and F is continuous at t_0 , it follows that $F_n(t_0) \to F(t_0)$. Conversely, assume that $F_n \stackrel{\text{w}}{\to} F$. Let $h \in (0,1]$. Since the set of continuity points of F is dense in $[0,+\infty]$, there exists a finite set $A=\{a_0,a_1,\ldots,a_p\}$ of continuity points of F such that: $a_0=0,a_p\leq \frac{1}{h},\ a_{m-1}< a_m\leq a_{m+1}+h$ for $m=1,2,\ldots,p$. Since A is finite, for sufficiently large $n\in \mathbb{N}$, we obtain $|F_n(a_m)-F(a_m)|\leq h$ for all a_m . Let $t_0\in (0,\frac{1}{n})$. Then $t_0\in [a_{m-1},a_m]$ for some m. Therefore we have $F(t_0)\leq F(a_m)\leq F_n(a_m)+h\leq F_n(t_0+h)+h$, i.e. condition (13) is satisfied. By interchanging the role of F_n and F we obtain that $F_n(t_0)\leq F(t_0+h)+h$, which implies that $d_L(F_n,F)\to 0$. This completes the proof.

From the Helly's theorem, it follows that, from every sequence in Δ^+ , one can select a subsequence which is weakly convergent. This fact and Theorem 11 yield the following result:

Theorem 12. The metric space (Δ^+, d_L) is compact, and hence complete.

3 t-Norms and Their Properties

Now, we shall give some definitions and properties of t-norms (Menger [11], [12], Schweizer, Sklar [18]) defined on the unit interval I = [0, 1]. A t-norm $T : I^2 \to I$ is an Abelian semigroup with unit, and the t-norm T is nondecreasing with respect to each variable.

Definition 13. Let T be a t-norm.

- (1) T is called a continuous t-norm if the function T is continuous with respect to the product topology on the set $I \times I$.
- (2) The function T is said to be left-continuous if, for every $x, y \in (0,1]$, the following condition holds:

$$T(x,y) = \sup\{T(u,v) : 0 < u < x, \ 0 < v < y\}.$$

(3) The function T is said to be right-continuous if, for every $x, y \in [0, 1)$, the following condition holds:

$$T(x,y) = \inf\{T(u,v) : x < u < 1, y < v < 1\}.$$

Note that the continuity of a t-norm T implies both left and right-continuity of it.

Definition 14. Let T be a t-norm. For each $n \in N$ and $x \in I$, let

$$x^{0} = 1$$
, $x^{1} = x$ and $x^{n+1} = T(x^{n}, x)$, for all $n > 1$.

Then the function T is called an Archimedean t-norm if, for every $x, y \in (0,1)$, there is an $n \in N$ such that

$$x^n < y$$
, that is, $x^n \le y$ and $x^n \ne y$. (2)

Note that ([0,1],T) is a semigroup, we have

$$T(x^n, x^m) = x^{n+m}$$
 for all $n, m \in \mathbf{N}$.

From an immediate consequence of the above definition, we have the following:

Lemma 15. A continuous t-norms is Archimedean if and only if

$$T(x,x) < x$$
 for all $x \in (0,1)$.

Proof. Let $a \in (0,1)$ be fixed and $y_n = a^n$. Since

$$y_{n+1} = a^{n+1} = T(a^n, a) \le T(a^n, 1) = a^n = y_n,$$

the sequence $\{y_n\}$ is non-increasing and bounded and so there exists $y = \lim_{n \to \infty} y_n$. Since $a^{2n} = T(a^n, a^n)$ and T is continuous, we deduce that y = T(y, y).

If T(x,x) < x for all $x \in (0,1)$, then $y \in \{0,1\}$ and, since $a^n \le a < 1$, we have y = 0.

Conversely, if there exists $a \in (0,1)$ such that T(a,a) = a, then $a^{2n} = a$ for all $n \in \mathbb{N}$ and hence the sequence $\{a^n\}$ does not converge to 0. Therefore, T(x,x) < x for all $x \in (0,1)$. This completes the proof.

Lemma 16. Let T is a continuous t-norm and strictly increasing in $(0,1]^2$ then it is Archimedean.

Proof. By the strict monotonicity of T, for any $x \in (0,1)$, we have T(x,x) < x.

Definition 17. Let T be a t-norm. Then T is said to be positive if T(x,y) > 0 for all $x, y \in (0,1]$.

Note that every t-norm satisfying the assumption of Lemma 16 is positive.

We shall now establish the notation related to a few most important t-norms defined by:

$$M(x,y) = \min(x,y) = x \land y \tag{3}$$

for all $x, y \in I$. The function M is continuous and positive, but is not Archimedean (in fact, it fails to satisfy the strict monotonicity condition).

$$\Pi(x,y) = x \cdot y \tag{4}$$

for all $x, y \in I$. The function Π is strictly increasing and continuous and hence it is a positive archimedean t-norm.

$$W(x,y) = Max(x+y-1,0)$$
 (5)

for all $x, y \in I$. The function W is continuous and Archimedean, but it is not positive and hence it fails to be a strictly increasing t-norm.

$$Z(x,y) = \begin{cases} x & \text{if } x \in I \text{ and } y = 1, \\ y & \text{if } x = 1 \text{ and } y \in I, \\ 0 & \text{if } x, y \in [0,1). \end{cases}$$
 (6)

The function Z is Archimedean and right-continuous, but it fails to be left-continuous.

For any t-norm T, we have

$$Z \leq T \leq M$$
 in particular $Z < W < \Pi < M$.

4 Triangle Functions and Their Properties

In this section, we shall now present some properties of the triangle functions on Δ^+ (Šerstnev [19], Schweizer, Sklar [18]).

The ordered pair $(\Delta^+, *)$ is an Abelian semigroup with the unit $u_0 \in \Delta^+$ and the operation $*: \Delta^+ \times \Delta^+ \to \Delta^+$ is a nondecreasing function. We note that $u_\infty \in \Delta^+$ is a zero of Δ^+ . Indeed, we obtain

$$u_{\infty} \le u_{\infty} * F \le u_{\infty} * u_{0} = u_{\infty}$$
 for all $F \in \Delta^{+}$.

Definition 18. Let $T(\Delta^+, *)$ denote the family of all triangle functions on the set Δ^+ . Then the relation \leq defined by

$$*_1 \le *_2 \text{ iff } F *_1 G \le F *_2 G \text{ for all } F, G \in \Delta^+ \text{ partially orders the family } T(\Delta^+, *).$$
 (7)

Now, we are going to define the next relation in the $T(\Delta^+,*)$. It will be denoted by \gg and is defined as follows:

$$*_1 \gg *_2 \text{ iff for all } F, G, P, Q \in \Delta^+ \quad [(F *_2 P) *_1 (G *_2 R)] \ge [(F *_G) *_2 (P *_R)].$$
 (8)

By putting $G = P = u_0$ we obtain $F *_1 R \ge F *_2 R$ for $F, R \in \Delta^+$ and hence $*_1 \ge *_2$. Then follows that $*_1 \gg *_2 \Rightarrow *_1 \ge *_2$.

Theorem 19. Let T be a left-continuous t-norm. Then the function $T: \Delta^+ \times \Delta^+ \to \Delta^+$ defined by

$$\mathbf{T}(F,G)(t) = T(F(t), G(t)) \tag{9}$$

for any $t \in [0, +\infty]$ is a triangle function on the set Δ^+ .

Theorem 20. For every triangle function *, the following inequality holds:

$$* \leq \mathbf{M},$$

where M is the t-norm of Definition 17.

Proof. For every $F, G \in \Delta^+$, we have by definition of $(\Delta^+, *), F * G \leq F * u_0 = F$ and, by symmetry, also $F * G \leq G$. Thus, for every $t \in [0, +\infty]$, we have

$$(F * G)(t) \le M(F(t), G(t)) = M(F, G)(t).$$
 (10)

Theorem 21. If T is a left-continuous t-norm, then the function $*_T : \Delta^+ \times \Delta^+ \to \Delta^+$ defined by

$$F *_T G(t) = \sup\{T(F(u), G(s)) : u + s = t, \ u, s > 0\}$$
(11)

is a triangle function on Δ^+ .

Proof. The function $F *_T G \in \Delta^+$ is nondereasing and satisfies the condition $F *_T G(+\infty) = 1$ for all $F, G \in \Delta^+$. Thus it suffices to check that $F *_T G$ is left-continuous, i.e., for every $t \in (0, +\infty)$ and h > 0, there exists $0 < t_1 < t$ such that

$$F *_T G(t_1) > F *_T G(t) - h.$$

Let $t \in (0, +\infty)$. Then there exist u, s > 0 such that u + s = t and

$$T(F(u), G(s)) > F *_T G(t) - \frac{h}{2}.$$
 (12)

By the left-continuity of F, G and the t-norm T, it follows that there are numbers $0 \le u_1 < u$ and $0 \le s_1 \le s$ such that

$$T(F(u_1), G(s_1)) > T(F(u), G(s)) - \frac{h}{2}.$$
 (13)

Now, put $t_1 = u_1 + s_1$. Then $t_1 < t$ and, by (11), we obtain

$$F *_T G(t) \ge T(F(u_1), G(s_1)).$$
 (14)

This completes the proof.

Theorem 22. Let T be a continuous t-norm. Then the triangular functions $*_T$ and T are uniformly continuous on (Δ^+, d_L) .

Proof. (see Theorem 7.2.8 [18]) Let us observe that the continuity of the t-norm T implies its uniform continuity on $I \times I$ with the product topology. Take an $h \in (0,1)$. Then there exists s > 0 such that

$$T(\text{Min}(z+s,1), w) < T(z, w) + \frac{h}{4}$$

and

$$T(z, \text{Min}(w+s, 1)) < T(z, w) + \frac{h}{4}$$
 (15)

for all $z, w \in I$. Let u < 1/s and v < 1/s be such that u + v < 2/h. Next, by (11), for every $F, G \in \Delta^+$ and $t \in (0, 2/h)$, there exist u, v > 0 such that u + v = t and

$$F *_T G(t) < T(F(u), G(v)) + \frac{h}{4}.$$

Now, let $F_1 \in \Delta^+$ be such that $d_L(F, F_1) < s$, which means that

$$F(u) < F_1(u+s) + s$$

for all $u \in (0, \frac{1}{s})$. Since u + v = t < 2/h, we have u < 2/h. Therefore, we obtain

$$F *_{T} G(t) < T(\text{Min}(F_{1}(u+s)+s,1), G(v)) + \frac{h}{2}$$

$$< T(F_{1}(u+s), G(v)) + \frac{h}{2}$$

and

$$F *_{T} G(t) < F_{1} *_{T} G(u + s + v) + \frac{h}{2}$$

$$\leq F_{1} *_{T} G(u + v + \frac{h}{2}) + \frac{h}{2}$$

$$= F_{1} *_{T} G(t + \frac{h}{2}) + \frac{h}{2}.$$

Thus, by (1), we have

$$p_L(F_1 *_T G, G) \le \frac{h}{2}, \quad q_L(F *_T G, F_1 *_T G) \le \frac{h}{2}$$

and so we have

$$d_L(F_1 *_T G, F *_T G) \leq \frac{h}{2}.$$

If $d_L(G, G_1) < s$, then we have

$$d_L(F_1 *_T G_1, F_1 *_T G) \le \frac{h}{2}$$

and so let $F, F_1, G, G_1 \in \Delta^+$ satisfy the conditions $d_L(F, F_1) < s$ and $d_L(G, G_1) < s$. Then we have

$$\begin{aligned} &d_L(F_1 *_T G_1, F *_T G) \\ &\leq d_L(F_1 *_T G_1, F_1 *_T G) + d_L(F_1 *_T G, F *_T G) \\ &\leq \frac{h}{2} + \frac{h}{2} = h. \end{aligned}$$

It follows that the triangle function $*_T$ is uniformly continuous in the space (Δ^+, d_L) . The second part is a simple restatement of the first one. This completes the proof.

Remark 23. There exist triangle functions which are not continuous on (Δ^+, d_L) . Among them, there is the function $*_Z$ of (11) and (6). Indeed, this can be seen by the following example.

Let
$$F_n(t) = 1 - e^{-\frac{t}{n}}$$
, where $n \in \mathbb{N}$. Then

$$F_n \stackrel{\mathrm{w}}{\to} u_0$$

while the sequence $\{F_n *_Z F_n\}$ fails to be weakly convergent to $u_0 *_Z u_0$ because $F_n *_Z F_n = u_\infty$ for all $n \in N$. We note that this example actually shows much more: the triangle function $*_Z$ is not continuous on (Δ^+, d_L) . In particular, it is not continuous at the point (u_0, u_0) .

We finish this section by showing a few properties of the relation defined in (8) in the context of triangle functions (22).

Lemma 24. If T_1 and T_2 are continuous t-norms, then triangle functions T_1, T_2 given by (9),

$$\mathbf{T}_1 \gg \mathbf{T}_2$$
 if and only if $*_{T_1} \gg *_{T_2}$.

Lemma 25. If T is a continuous t-norm and $*_T$ is the triangle function of (9), then

$$T \gg *_T,$$
 (16)

$$\mathbf{M} \gg * \quad for \ all \ triangle \ functions \quad * \ .$$
 (17)

5 Properties of PqpM-Spaces

First, we give the definition of PqpM-spaces and some properties of PqpM-spaces and others.

Definition 26. ([2, 3, 4, 6]) By a PqpM-space we mean an ordered triple (X, P, *), where X is a nonempty set, the operation * is triangle function and $P: X^2 \to \Delta^+$ satisfies the following conditions (by P_{xy} we denote the value of P at $(x, y) \in X^2$): for all $x, y, z \in X$,

$$P_{xx} = u_0, (18)$$

$$P_{xy} * P_{yz} \le P_{xz}. (19)$$

If P satisfies also the additional condition:

$$P_{xy} \neq u_0 \quad \text{if} \quad x \neq y,$$
 (20)

then (X, P, *) is called a probabilistic quasi-metric space (denoted by PqM-space). Moreover, if P satisfies the condition of symmetry:

$$P_{xy} = P_{yx}, (21)$$

then (X, P, *) is called a probabilistic metric space (denoted by PM-space).

Definition 27. [6] Let (X, P, *) be a PqpM-space and let $Q: X^2 \to \Delta^+$ be defined by the following condition:

$$Q_{xy} = P_{yx}$$

for all $x, y \in X$. Then the ordered triple (X, Q, *) is also a PqpM-space. We say that the function P is a conjugate Pqp-metric of the function Q. By (X, P, Q, *) we denote the structure generated by the Pqp-metric P on X.

Now, we shall characterize the relationships between Pqp-metrics and probabilistic pseudo-metrics.

Lemma 28. Let (X, P, Q, *) be a structure defined by a Pap-metric P and let

$$*_1 \gg *$$
 (22)

Then the ordered triple $(X, F^{*_1}, *)$ is a probabilistic pseudo-metric space (denoted by PPM-space) whenever the function $F^{*_1}: X^2 \to \Delta^+$ is defined in the following way:

$$F_{xy}^{*_1} = P_{xy} *_1 Q_{xy} (23)$$

for all $x, y \in X$. If, additionally, P satisfies the condition:

$$P_{xy} \neq u_0 \quad or \quad Q_{xy} \neq u_0 \tag{24}$$

for $x \neq y$, then $(X, F^{*_1}, *)$ is a PM-space.

Proof. For any $x, y \in X$, we have

$$F_{xy}^{*_1} \in \Delta^+$$
 and $F_{xy}^{*_1} = F_{yx}^{*_1}$.

By (18), we obtain

$$F_{xx}^{*_1} = P_{xx} *_1 Q_{xx} = u_0 *_1 u_0 = u_0.$$

Next, by (19) and (22) and the monotonicity of triangle function, we obtain

$$F_{xy}^{*_{1}} = P_{xy} *_{1} Q_{xy}$$

$$\geq (P_{xz} * P_{xz}) *_{1} (Q_{xz} * Q_{zy})$$

$$\geq (P_{xz} *_{1} Q_{xz}) * (P_{zy} *_{1} Q_{zy})$$

$$= F_{xz}^{*_{1}} * F_{zy}^{*_{1}}.$$

The proof of the second part of the theorem is a direct consequence of the fact that the conditions (24) and (23) both imply the statement that

$$F_{xz}^{*1} = P_{xy} *_1 Q_{xy} = u_0$$
 if and only if $P_{xy} = Q_{xy} = u_0$.

It follows that, whenever $x \neq y, P_{xy} \neq u_0$ or $Q_{xy} \neq u_0$ and hence $P_{xy} *_1 Q_{xy} \neq u_0$. This completes the proof.

Remark 29. For an arbitrary triangle function (22), we know, by Lemma 25, that $M \gg *$. Using (23), we have

$$F_{P \vee Q} = F^{M}(x, y) \ge F^{*_{1}}(x, y) \text{ for all } x, y \in X.$$
 (25)

for all $x, y \in X$.

The function F^M will be called the natural probabilistic pseudo-metric generated by the Pqp-metric P. It is the "greatest" among all the probabilistic pseudo-metrics generated by P.

Definition 30. Let X be a nonempty set and $P: X^2 \to D^+$, where $D^+ = \{F \in \Delta^+; \lim_{t \to \infty} F(t) = 1\}$ and T is t-norm. The triple (X, P, T) is called a quasi-pseudo-Menqer space if it satisfies the following axioms:

$$P_{xx} = u_0 (26)$$

$$P_{xy}(u+v) \ge T(P_{xz}(u), P_{zy}(v)) \quad \text{for all } x, y, z \in X \text{ and } u, v \in R.$$
 (27)

If P satisfies also the additional condition:

$$P_{xy} \neq u_0 i f x \neq y \tag{28}$$

then (X, P, T) is a quasi-Menger space.

Moreover, if P satisfies the condition of symmetry $P_{xy} = P_{yx}$, then (X, P, T) is called a Menger-space (see [11, 12]).

Definition 31. Let (X,p) be a quasi-pseudo-metric-space and $G \in D^+$ be distinct from u_0 . Define a function $G_p: X^2 \to D^+$ by

$$G_p(x,y) = G\left(\frac{t}{p(x,y)}\right) \quad \text{for all } t \in \mathbb{R}^+$$
 (29)

and $G(\frac{t}{0})=G(\infty)=1$, for $t>0, G(\frac{0}{0}=G(0)=0$. Then (X,G_p) is called a P-simple space generated by (X,p) and G.

Theorem 32. Every P-simple space (X, G_p) is a quasi-pseudo-Menger space respect to the t-norm M.

Proof. For all $x, y, z \in X$, by the triangle condition for the quasi-pseudo-metric p, we have

$$p(x,y) \ge p(x,y) + p(y,z).$$

Assume, that all at p(x, z), p(x, y) and p(y, z) are distinct from zero. For any $t_1, t_2 > 0$, we obtain

$$\frac{t_1 + t_2}{p(x, z)} \ge \frac{t_1 + t_2}{p(x, y) + p(y, z)} \tag{30}$$

and hence we infer that

$$\max \left\{ \frac{t_1}{p(x,y)}, \frac{t_2}{p(y,z)} \right\} \ge \frac{t_1 + t_2}{p(x,y) + p(y,z)} \ge \min \left\{ \frac{t_1}{p(x,y)}, \frac{t_2}{p(y,z)} \right\}. \tag{31}$$

This inequality and the monotonicity of G imply that

$$G_p(x,z)(t_1+t_2) \ge \min(G_p(x,y)(t_1), G_p(y,z)(t_2)),$$

for $t_1, t_2 \ge 0$. This completes the proof.

6 The family of Pap-metrics on a get X

Definition 33. Let P[X, *] denote the family of all Pqp-metrics defined on a set X with respect to a triangle function *. Define on X a relation \prec in the following way:

$$P_1 \prec P_2 \text{ iff } P_1(x,y) \ge P_2(x,y) \text{ for all } x,y \in X.$$
 (32)

We note that \prec is a partial order on the family P[X, *]. We distinguish elements P_0 and P_{∞} in it:

$$P_0(x,y) = u_0 \quad \text{for all} \quad x, y \in X, \tag{33}$$

$$P_{\infty}(x,y) = u_0$$
, and $p_{\infty}(x,y) = u_{\infty}$ for $x \neq y$. (34)

We note that $P_0 \prec P \prec P_\infty$ for every $P \in P[X, *]$.

Now, we give the definition of certain binary operation \oplus on P[X, *]. Let for all $P_1, P_2 \in P[X, *]$:

$$P_1 \oplus P_2(x,y) = P_1(x,y) * P_2(x,y), \quad x,y \in X.$$
 (35)

We note that $P_1 \oplus P_2 \in P[X,*]$. Indeed, we prove the condition (18) directly: $P_1 \oplus P_2(x,x) = P_1(x,x) * P_2(x,x) = u_0$.

The condition (19) follows from $F * u_0 = F$ when applied to P_1 and P_2 :

$$P_1 \oplus P_2(x,y) = P_1(x,y) \oplus P_2(x,y)$$

$$\geq (P_1(x,y) * P_1(z,y)) * (P_2(x,z) * P_2(z,y))$$

$$= (P_1(x,z) * P_2(x,z)) * (P_1(z,y) * P_2(z,y))$$

$$= (P_1 \oplus P_2(x,y)) * (P_1(z,y) \oplus P_2(z,y)).$$

This shows that $P_1 \oplus P_2$ is a Pqp-metric. Notice also that for each $P \in P[X, *]$ the following property holds:

$$P_0 \oplus P = P. \tag{36}$$

Indeed, $P_0 \oplus P(x, y) = u_0 * P_{xy} = P(x, y)$.

The operation \oplus is also commutative and associative. This is a consequence of the form of (22). Thus we have the following corollary:

Lemma 34. The ordered triple $(P[X, *], \oplus, p_0)$ is an Abelian semi-group with respect to the operation *, and has the neutral element P_0 .

The following gives a relationship between the relation \prec and the operation \oplus .

Lemma 35. Let $(P[X,*], \oplus, P_0)$ be as in Lemma 35. Then, for all $P, P_1, P_2 \in P[X,*]$, the following hold:

$$P_0 \prec P,\tag{37}$$

$$P_1 \oplus P \prec P_2 \oplus P$$
 whenever $P_1 \prec P_2$. (38)

Proof. That the first property holds true follows from the Definition 33. The relation $P_1 \prec P_2$ means, by (32), that $P_1(x,y) \geq P_2(x,y)$, $x,y \in X$. Since 22 is a monotone function, we get $P_1(x,y) * P(x,y) \geq P_2(x,y) * P(x,y)$. This shows the validity of the second condition.

Let us define in P[X, *] get another operation, denoted by \vee . For any $P_1, P_2 \in P[X, *]$, let

$$P_1 \vee P_2 = \min(P_1, P_2) = M(P_1, P_2).$$
 (39)

By Lemma 5 it follows that $M \gg *$ for all *. Thus we have $P_1 \vee P_2 \in P[X,*]$. \square

The following accounts for some properties of the operation v.

Lemma 36. The ordered pair $(P[X,*], \vee)$ is a \vee -semi-lattice (see Grätzer [4]) satisfying the following conditions: for all $P, P_1, P_2 \in P[X,*]$,

$$P_1 \prec P_2 \quad iff \quad P_1 \lor P_2 = P_2, \tag{40}$$

$$(P \oplus P_1) \vee (P \oplus P_2) \prec P \oplus (P_1 \vee P_2). \tag{41}$$

Proof. $P \vee P = M(P,P) = P$, hence \vee satisfies the indempotency. It is also commutative. This yields the first part of the Lemma. Next, observe that if $P_1 \prec P_2$, then $P_1(x,y) \geq P_2(x,y)$, $x,y \in X$. Thus $M(P_1,P_2) = P_2$. We have shown the first property. For a proof of the second one notice that $P_1 \prec P_1 \vee P_2$ and $P_2 \prec P_1 \vee P_2$. By (38) we get $P \oplus P_1 \prec P \oplus (P_1 \vee P_2)$ and $P \oplus P_1 \prec P \oplus (P_1 \vee P_2)$. Since $(P[X,*],\vee)$ is a \vee -semilattice, the condition (41) follows. This completes the proof.

7 Families of quasi-pseudo-metrics generated by PqpMmetrics

We shall now give some classification of PqpM-spaces with respect to the so-called "triangle condition".

Definition 37. Let X be a nonempty set. Let $P: X^2 \to \Delta^+$ satisfy the condition (18) and let, for all $x, y, z \in X$, the following implication hold:

If
$$P_{xy}(t_2) = 1$$
 and $P_{yz}(t_2) = 1$, then (42)

$$P_{xy}(t_1 + t_2) = 1 \text{ for all } t_1, t_2 > 0.$$
 (43)

Then the ordered pair (X, P) in called a statistical quasi-pseudo-metric space. We write SpqM-space.

Topics related to the "triangle condition" belong to the mast important ones in the theory of PM-spaces. We mention here the mast important papers in a chronological order (see Menger [11], Wald [21], Schweizer and Sklar [16, 17], Muštari and Serstnev [13], Brown [5], Istrătescu [8], Radu [15].

Definition 38. Let T be t-norm ones a function $P: X^2 \to \Delta^+$ is assumed to satisfy the condition (18) and, for all $x, y, z \in X$, let

$$P_{xz}(t_1 + t_2) \ge T(P_{xy}(t_1), P_{yz}(t_2)), \quad t_1, t_2 > 0.$$
 (44)

Then (X, P, T) is called a quasi-pseudo-Menger space.

Condition (44) is called a Menger condition and comes from a paper by Schweizer and Sklar ([13, 14]). It is modification of an inequality of Menger ([7, 8]).

Lemma 39. Each quasi-pseudo-Menger space is an SqpM-space.

Proof. Assume $P_{xy}(t_1) = 1$ and $P_{yz}(t_2) = 1$ for any $t_1, t_2 > 0$. By (M.2), we have

$$P_{xz}(t_1 + t_2) \ge T(P_{xy}(t_1), P_{yz}(t_2)) = T(1, 1) = 1.$$

Let X be a nonempty set and let $P: X^2 \to \Delta^+$ satisfy the condition (18). For each $a \in [0,1)$ define $p_a: X \to \mathbf{R}$ by

$$p_a(x,y) = \inf\{t > 0 : P_{xy}(t) > a \text{ for } x, y \in X\}.$$
 (45)

Since P_{xy} is nondecreasing and let-continuous, the following equivalence holds for $x, y \in X$ and $a \in [0, 1)$:

$$p_a(x,y) < t \quad \text{iff} \quad P_{xy}(t) > a. \tag{46}$$

The family D(X, P, a) of all functions p_a has the following properties which are the consequences of (46):

$$p_a(x,y) \ge 0, (47)$$

$$p_a(x,x) = 0 \text{ for } x, y \in X \text{ and } a \in [0,1).$$
 (48)

Under the additional assumption that P satisfies the following condition: for all $a \in [0, 1)$,

$$P_{xy}(t_1) > a \text{ and } P_{yz}(t_2) > a \Rightarrow P_{xz}(t_1 + t_2) > a$$
 (49)

for all
$$x, y, z \in X$$
 and $t_1, t_2 > 0$, (50)

then for every $a \in [0,1)$ the function p_a satisfies

$$p_a(x,z) \le p_a(x,y) + p_a(y,z)$$
 for $x, y, z \in X$. (51)

This completes the proof.

As a consequence of this fact we conclude the following:

Lemma 40. The family D(X, P, a) of all the functions p_a with $a \in [0, 1)$ is a family of quasi-pseudo-metrics if and only if the function P satisfies (5.3.5). For any $a \in (0, 1)$, p_a is a quasi-metric if and only if $p_{xy}(0+) < a$ for all $x \neq y$ in X.

Proof. For the first assertion, it suffices to show the triangle condition (51). Given an arbitrary s > 0, put $t_1 = p_a(x,y) + \frac{s}{2}$ and $t_2 = p_a(y,z) + \frac{s}{2}$. By (46) we then have $P_{xy}(t_1) > a$ and $P_{yz}(t_2) > a$. By (49) this yields the inequality $P_{xz}(t_1 + t_2) > a$ which is equivalent to $p_a(x,z) < t_1 + t_2 = p_a(x,y) + p_a(y,z) + s$. Since s is arbitrary, we obtain the required inequality (51).

The second assertion follows from the fact that $p_a(x,y) = 0$ if and only if $P_{xy}(t) > a$ for all t > 0, i.e., when $P_{xy}(0+) \ge a$. The proof is complete.

Remark 41. Observe that if $P: X^2 \to \Delta^+$ satisfies the conditions (18) and (49), then (X, P) is a statistical quasi-pseudo-metric space.

Indeed, let $P_{xy}(t_1) = 1$ and $P_{yz}(t_2) = 1$. Then it follows by (49) that $P_{xz}(t_1 + t_2) > a$ for all $a \in [0, 1)$. Thus $P_{xz}(t_1 + t_2) = 1$. Thus $P_{xz}(t_1 + t_2) = 1$. This shows that the condition (37) of Definition 37 holds true.

The following observation is a consequence of the preceding remark:

Corollary 42. Let the function P satisfy the conditions (18) and (49) and let, for every $x, y \in X$, there exists a number $t_{xy} < \infty$ such that $P_{xy}(t_{xy}) = 1$. Then the function p_a is a quasi-pseudo-metric for every $a \in [0,1]$. In particular, $p_1: X^2 \to R$ is given by the following formula:

$$p_1(x,y) = \inf\{t > 0 : P_{xy}(t) = 1 \text{ for } x, y \in X\}.$$
 (52)

Proof. Let s > 0. Let $t_1 = p_1(x, y) + \frac{s}{2}$ and $t_2 = p_1(y, z) + \frac{s}{2}$. Then $P_{xy}(t_1) = 1$ and $P_{yz}(t_2) = 1$, and thus, by (45), we have $P_{xz}(t_1 + t_2) = 1$. We now have $p_1(x, z) < t_1 + t_2 = p_1(x, y) + p_1(y, z) + s$. Finally, the condition (51) is satisfied on account of s being arbitrary.

Remark 43. Let $(X, P, *_M)$ be a quasi-pseudo-Menger space. Then the function P satisfies the condition (49). Indeed, let $P_{xy}(t_1) > a$ and $P_{yz}(t_2) > a$. By (M.2), we get $P_{xz}(t_1 + t_2) \ge \min(P_{xy}(t_1), P_{yz}(t_2)) > \min(a, a) = a$.

The following is an immediate consequence of Lemma 40 and Remark 43:

Corollary 44. If $(X, P, *_M)$ is a quasi-pseudo-Menger space, then the family D(X, P, a) defined in (45) is a family of the quasi-pseudo-metrics on X for all $a \in [0, 1)$.

Theorem 45. Let (X, P, T) be a quasi-pseudo-Menger space. Let the function d(x) = T(x,x) be strictly increasing and continuous on some interval $[a,b) \subset I$. Then, if T(a,a) = a, then the function p_a of (45) is a quasi-pseudo-metric in X. For a > 0, p_a is a quasi-metric in X if and only if $P_{xy}(0+) < a$ whenever $x \neq y$.

Proof. It suffices to show that the property (49) holds true for any $a \in [0, 1)$, which satisfies the assumption of the theorem.

Let $P_{xy}(t_1) > a$ and $P_{yz}(t_2) > a$. Since P_{xy} and P_{yz} are nondecreasing and left-continuous, there exists s > 0 such that a+s < b, $P_{xy}(t_1) > a+s$ and $P_{yz}(t_2) > a+s$. The properties of the function d(x) = T(x,x) and the condition (44) yield the inequality $P_{xz}(t_1+t_2) \ge T(P_{xy}(t_1), P_{yz}(t_2)) \ge T(a+s, a+s) > a$. The assertion is now a consequence of Lemma 40.

Theorem 46. Let (X, P, T) be a quasi-pseudo-Menger space such that $T \geq \Pi$. Then the family $D(X, P, p_a)$ of all the functions $p_a : X^2 \to R$ given by

$$p_a(x,y) = \inf\{t > 0 : P_{xy}(t) > a(t), \quad x, y \in X\},\tag{53}$$

consists of quasi-pseudo-metrics, if all the functions $a:[0,+\infty]\to [0,1]$ are defined by the following formula:

$$a(t) = \begin{cases} e^{-at}, & t \in [0, +\infty), \\ 0, & t = +\infty, \text{ where } a \in (0, +\infty). \end{cases}$$
 (54)

The functions p_a are quasi-metrics if and only if $P_{xy}(0+) < 1$ whenever $x \neq y$.

Proof. Observe that for every $a \in (0, +\infty)$ the functions are strictly decreasing. Let $t_1 = p_a(x, y) + \frac{s}{2}$ and $t_2 = p_a(y, z) + \frac{s}{2}$, s > 0. This means that by (46) the following inequalities hold:

$$P_{xy}(t_1) \ge a(p_a(x,y)) > a(t_1),$$

 $P_{yz}(t_2) \ge a(p_a(y,z)) > a(t_2).$

By (44) and the inequality $T \gg \Pi$, we obtain

$$P_{xz}(t_1 + t_2) \ge T(P_{xy}(t_1), P_{yz}(t_2))$$

$$\ge T(a(p_a(x, y), a(p_a(y, z)))$$

$$\ge \Pi(a(p_a(x, y), a(p_a(y, z)))$$

$$> \Pi(a(t_1), a(t_2)) = e^{-at_1} \cdot e^{-at_2}$$

$$= e^{-a(t_1 + t_2)} = a(t_1 + t_2).$$

This means that $p_a(x,z) < t_1 + t_2 = p_a(x,y) + p_a(y,z) + s$ for any s > 0, so that the triangle condition holds. This completes the proof.

Theorem 47. Let (X, P, T) be a quasi-pseudo-Menger space with $T \geq W$ (28). Then the family $D(X, P, p_a)$ of all the functions p_a of (53) consists of quasi-pseudo-metrics, provided the functions $a: [0, +\infty] \rightarrow [0, 1]$ are defined by the following formula:

$$a(t) = \begin{cases} 1 - \frac{t}{a}, & t \in [0, a], \\ 0, & t > a \text{ where } a \in (0, +\infty). \end{cases}$$
 (55)

Proof. Let $t_1 = p_a(x, y) + \frac{s}{2}$ and $t_2 = p_a(y, z) + \frac{s}{2}$, s > 0. By (46), we have

$$P_{xy}(t_1) \ge a(p_a(x,y)) > a(t_1)$$
 and $P_{yz}(t_2) \ge a(p_a(y,z)) > a(t_2)$.

By (44) and the inequality $T \geq W$, we get

$$P_{xz}(t_1 + t_2) \ge T(P_{xy}(t_1), P_{yz}(t_2)) \ge T(a(p_a(x, y)), a(p_a(y, z)))$$

$$\ge W(a(p_a(x, y)), a(p_a(y, z))) > W(a(t_1), a(t_2))$$

$$= \operatorname{Max} \left(1 - \frac{t_1}{a} + 1 - \frac{t_2}{a} - 1, 0\right)$$

$$= 1 - \frac{t_1 + t_2}{a} = a(t_1 + t_2).$$

Therefore $p_a(x, z) < t_1 + t_2 = p_a(x, y) + p_a(y, z) + s$ for every s > 0, i.e., the tirangle inequality holds.

Acknowledgement. The authors would like to thank the referees and the area editor Prof. Barnabas Bede for giving useful comments and suggestions for improving the paper.

References

- [1] G.A. Albert, A note on quasi-metric spaces, Bull. Amer. Math. Soc. 47, 479–482 (1941). MR4104 (2,320b). Zbl 0027.14203.
- [2] T. Birsan, Generation of the probabilistic quasipseudometric spaces, An. Stiint. Univ. Al. I. Cuza Iasi, Sect. I a Mat. (N.S.) 28 (1982), no. 1, 35–44. MR667718 (84f:54045). Zbl 0496.54003.
- [3] T. Birsan, Generation of the probabilistic quasipseudometric spaces II, An. Stiint. Univ. Al. I. Cuza Iasi, Sect. I a Mat. 28 (1982), no. 2, 11-21. MR717286 (85h:54052a). Zbl 0522.54007.
- [4] T. Birsan, Sur la décomposition des espaces métriques aleatories, An. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia Mat. 29 (1983), no. 1, 33-38. MR717286 (85h:54052b). Zbl 0522.54008.
- [5] J.B. Brown, On the relationship between Menger spaces and Wald spaces, Colloq. Math. **27** (1973), 323–330. MR331338 (48#9672). Zbl 0263.60003.
- [6] M. Grabiec, Fixed points in probabilistic-quasi-metric spaces. Fixed point theory and applications 7 (2007), 95–104. MR2355756 (54H25).
- [7] G. Grätzer, General Lattice Theory, Akademic-Verlag, Berlin, 1978. MR509213 (80c:06001b). Zbl 0436.06001.
- [8] I. Istrătescu, Some remarks on nonarchimedean probabilistic metric spaces, Glasnik Mat. Ser. III 11 (31) (1976), no. 1, 155–161. MR423314 (54 #11293). Zbl 0342.60006.
- [9] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71–84.
 MR143169 (26#729). Zbl 0107.16401.
- [10] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, 2000. MR1790096 (2002a:03106). Zbl 0972.03002.
- [11] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942), 535–537. MR7576 (4,163e). Zbl 0063.03886.

- [12] K. Menger, Probabilistic theories of relations, Proc. Nat. Acad. Sci. USA 37 (1951), 178–180. MR42080 (13,51a). Zbl 0042.37103.
- [13] D.H. Muštari, On almost sure convergence in linear spaces of random variables,
 Theor. Probab. Appl. 15 (1970), 337–342. MR279848 (43#5569).
 Zbl 0222.60005.
- [14] E. Nishiura, Constructive methods in probabilistic metric spaces, Fund. Math. **67** (1970), 115–124. MR259978 (41#4607). Zbl 0201.18601.
- [15] V. Radu, Some remarks on the triangle inequality in probabilistic metric spaces. Seminarul de Teoria Probabilitatior si Aplicatii, Universitatea din Timisoara, (1986), 1–9. MR857700 (88j:54046). Zbl 0622.60007.
- [16] B. Schweizer, A. Sklar, Associative functions and statistical triangle inequalities, Pub. Math. Debrecen 8 (1961), 169–186. MR132939(24#A2775). Zbl 0107.12203.
- [17] B. Schweizer, A. Sklar, Triangle inequalities in a class of statistical metric spaces, J. London Math. Soc. 38 (1963), 401–406. MR174031(30#4238). Zbl 0136.39301.
- [18] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Nord-Holland, 1983. MR790314(86g:54045). Zbl 0546.60010.
- [19] A.N. Šerstnev, *Triangle inequalities for random metric spaces*, Kazan. Gos. Univ. Ucen. Zap. **125** (1965), 90–93. MR226691(37#2278). Zbl 0268.60018.
- [20] R.R. Stevens, Metrically generated probabilistic metric spaces, Fund. Math. **61** (1968), 259–269. MR250353(40#3592). Zbl 0175.46504.
- [21] A. Wald, On a statistical generalization of metric spaces, Proc. Nat. Acad. Sci. USA 29 (1943), 196–197. MR7950(4,220b). Zbl 0063.08119.
- [22] W.A. Wilson, On quasi-metric-spaces, Amer. J. Math. 53 (1931), 675–684.
 MR1506845 (Contributed Item). Zbl 0002.05503.

Mariusz T. Grabiec Department of Operation Research, al. Niepodległości 10, 60-967 Poznań, Poland.

e-mail: m.grabiec@poczta.onet.pl

Reza Saadati
Faculty of Sciences,
University of Shomal,
Amol, P.O. Box 731,
Iran.
and
Department of Mathematics and Computer Science,
Amirkabir University of Technology,
424 Hafez Avenue, Tehran 15914,
Iran.
e-mail: rsaadati@eml.cc

Yeol Je Cho Department of Mathematics and the RINS, Gyeongsang National University, Chinju 660-701, Korea. e-mail: yjcho@gsnu.ac.kr
