Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843 - 7265 (print)
Volume 3 (2008), 123 -- 165

50 YEARS SETS WITH POSITIVE REACH
- A SURVEY -

Christoph Thäle

Abstract. The purpose of this paper is to summarize results on various aspects of sets with positive reach, which are up to now not available in such a compact form. After recalling briefly the results before 1959, sets with positive reach and their associated curvature measures are introduced. We develop an integral and current representation of these curvature measures and show how the current representation helps to prove integralgeometric formulas, such as the principal kinematic formula. Also random sets with positive reach and random mosaics (or the more general random cell-complexes) with general cell shape are considered.

2000 Mathematics Subject Classification: 49Q15; 28A75; 53C65; 60G55; 60D05; 60G57; 52A39.
Keywords: Sets with Positive Reach; Curvature Measure; Integral Geometry; Kinematic Formula; Random Set; Random Mosaic; Current; Normal Cycle; Random Cell Complex.

Full text

References

  1. V. Bangert, Sets with positive reach, Arch. Math. 38, 54-47 (1982). Zbl 0453.53014. MR1799683(2001m:22005). MR0646321(83k:53058).

  2. J. Cheeger, W. Müller and R. Schrader, On the curvature of piecewise flat spaces, Commun. Math. Phys. 92, 405-455 (1984). Zbl 0559.53028. MR0734226(85m:53037).

  3. K.J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, Chichester, 1990. Zbl 0689.28003. MR1102677(92j:28008).

  4. H. Federer, Curvature measures, Trans. Am. Math. Soc. 93, 418-491, (1959). Zbl 0089.38402. MR0110078(22 #961).

  5. H. Federer, Geometric Measure Theory, Springer, Berlin, (1969). Zbl 0176.00801. MR0257325(41 #19765).

  6. J.H.G. Fu, Tubular Neighborhoods in Euclidean Spaces, Duke Math. J. 54, 1025-1046 (1985). Zbl 0592.52002. MR0816398(87f:57019).

  7. J.H.G. Fu, Monge-Ampère Functions, Indiana Univ. Math. J. 38, 745-771 (1989). Zbl 0668.49010. MR1017333(91d:49048).

  8. J.H.G. Fu, Curvature Measures for Subanalytic Sets, Amer. J. Math. 116, 819-880 (1994). Zbl 0818.53091. MR1287941(95g:32016).

  9. P. Goodey and W. Weil, Translative integral formulae for convex bodies, Aequationes Math. 34, 64-77 (1987). Zbl 0633.52003. MR0915871(89a:52010).

  10. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957. Zbl 0078.35703. MR0102775(21 #1561).

  11. D. Klain, A short proof of Hadwiger's characterization theorem, Mathematika 42, 329-339 (1995). Zbl 0835.52010. MR1376731(97e:52008).

  12. G. Matheron, Random sets and Integral Geometry, Wiley, New-York, 1975. Zbl 0321.60009. MR0385969(52 #6828).

  13. J. Mecke, A remark on the construction of random measures, Math. Proc. Camb. Phil. Soc. 85, 111-114 (1979). Zbl 0411.60053. MR0510405(80f:60049).

  14. I. Molchanov, Theory of Random Sets, Springer, Berlin, 2005. Zbl 1109.60001. MR2132405(2006b:60004).

  15. J. Mø ller, Random Tessellations in \mathbbRd, Adv. Appl. Prob. 21, 37-73 (1989). Zbl 0684.60007. MR0980736(90a:60020).

  16. J. Rataj, Remarks to a translative formula for sets of positive reach, Geom. Dedicata 65, 59-62 (1997). Zbl 0868.53053. MR1442426(98g:52010).

  17. J. Rataj, The iterated version of a translative integral formula for sets of positive reach, Rend. Circ. Mat. Palermo Ser. II, Suppl. 46, 129-138 (1997). Zbl 0902.53049. MR1799683(98k:53098).

  18. J. Rataj, On boundaries of unions of sets with positive reach, Beiträge Algebra Geom. 46, 397-404 (2005). Zbl 1097.53050. MR2196925(2006k:52009).

  19. J. Rataj and M. Zähle, Mixed Curvature Measures for Sets of Positive Reach and a Translative Integral Formula, Geom. Dedic. 57, 259-283, (1995). Zbl 0844.53050. MR1351855(96k:53101).

  20. J. Rataj and M. Zähle, Curvature and Currents for Unions of Sets with Positive Reach II, Ann. Glob. Anal. Geom. 20, 1-21, (2001). Zbl 0997.53062. MR1846894(2002i:53099).

  21. J. Rataj and M. Zähle, A remark on mixed curvature measures for sets with positive reach, Beiträge Algebra Geom. 43, 171-179 (2002). Zbl 1008.53060. MR1913777(2003d:53132).

  22. J. Rataj and M. Zähle, Normal Cycles of Lipschitz manifolds by approximation with parallel sets, Diff. Geom. Appl. 19, 113-126, (2003). Zbl 1042.53053. MR1983898(2004k:53119).

  23. J. Rataj and M. Zähle, General Normal Cycles and Lipschitz Manifolds of Bounded Curvature, Ann. Glob. Anal. and Geom. 27, 135-156, (2005). Zbl pre02197247. MR2131910(2006c:53083).

  24. W. Rother and M. Zähle, A short proof of a kinematic formula and extensions, Trans. Am. Math. Soc. 321, No. 2, 547-558, (1990). Zbl 0709.53048. MR0987167(91a:53106).

  25. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. Zbl 0798.52001. MR1216521(94d:52007).

  26. R. Sulanke and P. Wintgen, Differentialgeometrie und Faserbündel, Birkhäuser, Basel, 1972. Zbl 0271.53035. MR0413153(54 #1274).

  27. V. Weiss and M. Zähle, Geometric Measures for Random Curved Mosaics of \mathbbRd, Math. Nachr. 138, 313-326 (1988). Zbl 0663.60008. MR0975217(89j:60026).

  28. H. Weyl, On the volume of tubes, Amer. J. Math. 61, 161-172 (1939). JFM 65.0796.01. MR1507388.

  29. P. Wintgen, Normal cycle and integral curvature for polyhedra in Riemannian manifolds, In: Differential Geometry. North-Holland Publishing Co., Amsterdam-New York (1982). Zbl 0509.53037.

  30. M. Zähle, Curvature Measures and Random Sets I, Math. Nachr. 119, 327-339 (1984). Zbl 0553.60014. MR0774200(86e:53050).

  31. M. Zähle, Curvature Measures and Random Sets II, Prob. Th. Rel. Fields 71, 37-58 (1986). Zbl 0554.60017. MR0814660(87e:53126).

  32. M. Zähle, Integral and current representation of Federer's curvature measures, Arch. Math. 46, 557-567, (1986). Zbl 0598.53058. MR0849863(88a:53072).

  33. M. Zähle, Curvature and Currents for unions of sets with positive reach, Geom. Dedic. 23, 155-171, (1987). Zbl 0627.53053. MR0892398(89b:49062).

  34. M. Zähle, Polyhedron Theorems for Non-Smooth Cell Complexes, Math. Nachr. 131, 299-310 (1987). Zbl 0638.53064. MR0908817(89h:53130).

  35. M. Zähle, Random cell complexes and generalised sets, Ann. Probab. 16, 1742-1766 (1988). Zbl 0656.60024. MR0958214(89g:60037).

  36. M. Zähle, Approximation and characterization of generalized Lipschitz-Killing curvatures, Ann. Global Anal. Geom. 8, 249-260 (1990). Zbl 0718.53052. MR1089237(91m:53055).

  37. M. Zähle, Non-osculating sets of positive reach, Geom. Dedicata 76, 183-187 (1999). Zbl 0932.49031. MR1703213(2000f:52008).




Christoph Thäle
Departement for Mathematics
University Fribourg, Perolles
Chemin du Musée 23
CH-1700 Fribourg, Switzerland.
e-mail: christoph.thaele@unifr.ch


http://www.utgjiu.ro/math/sma