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CONSIDERATIONS ON SOME ALGEBRAIC
PROPERTIES OF FEYNMAN INTEGRALS

Lucian M. Ionescu

Abstract. Some algebraic properties of integrals over configuration spaces are investigated in
order to better understand quantization and the Connes-Kreimer algebraic approach to renormal-
ization.

In order to isolate the mathematical-physics interface to quantum field theory independent
from the specifics of the various implementations, the sigma model of Kontsevich is investigated
in more detail. Due to the convergence of the configuration space integrals, the model allows to
study the Feynman rules independently, from an axiomatic point of view, avoiding the intricacies
of renormalization, unavoidable within the traditional quantum field theory.

As an application, a combinatorial approach to constructing the coefficients of formality mor-
phisms is suggested, as an alternative to the analytical approach used by Kontsevich. These coeffi-
cients are “Feynman integrals”, although not quite typical since they do converge.

A second example of “Feynman integrals”, defined as state-sum model, is investigated. Inte-
gration is understood here as formal categorical integration, or better as a duality structure on
the corresponding category. The connection with a related TQFT is mentioned, supplementing the
Feynman path integral interpretation of Kontsevich formula.

A categorical formulation for the Feynman path integral quantization is sketched, towards

Feynman Processes, i.e. representations of dg-categories with duality, thought of as complexified

Markov processes.

1 Introduction

Kontsevich’s solution to the problem of deformation quantization of Poisson mani-
folds [23], contains deep algebraic structures related to the Connes-Kreimer algebraic
approach to renormalization[8, 27]. On the mathematical side, the dg-coalgebra
structure of graphs introduced in [14], leading to cohomology of Feynman graphs[15],
is essentially a unification of Kontsevich’s graph homology and Kreimer’s graph co-
product.

On the physics side, the interpretation of Kontsevich’s construction as a Feyn-
man Path Integral (FPI) quantization, almost tautologically leading to deformation
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80 L. M. Ionescu

quantization, was immediately given in [6].

In this article we analyze Kontsevich’s construction, with emphasis on the inte-
grals on configuration spaces which provide the coefficients of the star product, in
order to extract their homological algebra properties, and push the physical interpre-
tation towards an axiomatic formalism of FPI.

The main point, developed in subsequent papers, is the compatibility between
Kontsevich’s graph homology and Connes-Kreimer Hopf algebra structure of renor-
malization. It leads to a differential graded integration, generalizing the usual inte-
gration of forms.

Secondly, the construction is shown to be quite general, by replacing the an-
gle form used by Kontsevich with any given closed form (Corollary 43), provided
renormalization is used if the integrals are no longer convergent.

Third, the integration of forms used to define the configuration integrals is ab-
stracted as a formal categorical integration, establishing the connection with topo-
logical quantum field theories.

The underlying goal of this article is to isolate the quantization process from
the intricacies of renormalization. The later is a procedure for extracting the finite
part from divergent configuration integrals, due in part to the use of an amorphic
continuum model of the configuration space (“infrared divergencies”), and in part
due to the lack of compactness of the state space (“ultra-violet divergencies”).

Since Kontsevich construction uses a sigma model on the disk, leading to con-
vergent configuration space integrals, it avoids renormalization. Therefore the con-
siderations from this article apply to the interface to QFT, relying on assumptions
like ∆F (x, x) = 0 (Remark 24). Further motivation for isolating the QFT interface
from renormalization is provided in the concluding section.

The use of the operadic/PROP language, more adequate to use and making the
connection with conformal field theory, string theory etc. [34], will be deferred to
another forthcoming article [16]. Instead, we will include some of the details from
[14], explaining the previous mentioned results from [17, 15].

The paper is organized as follows. The results on L∞-morphisms expanded as
a perturbation series over a class of “Feynman” graphs are reviewed in §2. Their
coefficients satisfy a certain cocycle condition, representing modulo homotopy the
cohomology class of the DG-coalgebra of Feynman graphs.

A mathematical interface to perturbative QFT is proposed supported by the
findings of the next section.

A reader interested in the motivation for the above results may benefit from
reading §3 first, where the integrals over configuration spaces used in[23] are studied,
extracting some of their intrinsic properties, notably the “Forest Formula” 10 of the
boundary of their compactification.

Feynman state spaces and configuration functors are defined (graph cohomol-
ogy). Feynman rules defined as multiplicative Euler-Poincare maps are proved com-
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On Feynman Integrals 81

patible with the Forest Formula via the (Feynman) integration pairing (Theorem
41).

The state-sum model from[23], and yielding an example of a generalized Feynman
integral, is studied in Section 4. The corresponding TQFT provides the additional
evidence towards its interpretation as a Feynman path integral, conform[6]. The
properties of the generalized Feynman rule needed for the proof of the formality
conjecture are identified.

Section 5 applies the previous results to formality of DGLAs. Kontsevich proof
is translated into the language developed so far, providing the essential steps for a
proof of the main theorem from Section 2.

Section 6 concludes with comments on the use of homotopical algebra towards
the implementation of perturbative quantum field theory.

Before proceeding, we should mention that an alternative avenue to Kontsevich’s
solution to the Formality Theorem was provided by Tamarkin [31]. We will not pur-
sue it since it is a more direct proof, being in the author’s opinion, less “pedagogical”
for the purposes of this article, of understanding the applications of graph complexes
to QFT via FPI.

Acknowledgments I would like to express my gratitude for the excellent re-
search conditions at I.H.E.S., where this project was conceived during the author’s
2002 visit, under the influence of, and benefitting from stimulating discussions with
Maxim Kontsevich.

Jim Stasheff’s comments are greatly appreciated.
I also thank the reviewer for helping the author clarify the scope of the properties

investigated, and for pointing to the connection with Gel’fand-Dickey brackets.

2 L∞-morphisms as perturbation series

We will first recall from[17], the main concepts needed in the following sections, for
the reader’s convenience.

Given a graded map between L∞-algebras represented as a Feynman expansion
over a given class of graphs (“partition function”), the coefficients satisfy a certain
cocycle equation in order to be an L∞-morphism.

The goal is to understand the coefficients of formality morphisms and Kont-
sevich deformation quantization formula, as well as perturbative QFT (see §6 for
details). The obstruction for a pre-L∞-morphism[24] (p.142) to be a morphism is of
cohomological nature, and we will point to its relation with renormalization.

2.1 Feynman graphs

A QFT defined via Feynman Path Integral quantization method is based on a graded
class of Feynman graphs. For specific implementation purposes these can be 1-
dimensional CW-complexes or combinatorial objects.
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82 L. M. Ionescu

For definiteness we will consider the class of Kontsevich graphs Γ ∈ Gn, the
admissible graphs from [23], p.22.

Nevertheless we claim that the results are much more general, and suited for a
generalization suited for an axiomatic approach; a Feynman graph will be thought
off both as an object in a category of Feynman graphs (categorical point of view),
as well as a cobordism between their boundary vertices (TQFT point of view). The
main assumption the class of Feynman graphs needs to satisfy, is the existence of
subgraphs and quotients.

While the concept of subgraph γ of Γ is clear (will be modeled after that of a
subcategory), we will define the quotient of Γ by the subgraph γ as the graph Γ′

obtained by collapsing γ (vertices and internal edges) to a vertex of the quotient
(e.g. see[8], p.11).

Remark 1. When γ contains “external legs”, i.e. edges with 1-valent vertices be-
longing to the boundary of the Feynman graph when thought of as a cobordism, we
will say that γ meets the boundary of Γ. In this case the vertex of the quotient
obtained by collapsing γ will be part of the boundary (of Γ/γ) too. In other words
the boundary of the quotient is the quotient of the boundary (compare [23], p.27).

Formal definitions will be introduced elsewhere.

Definition 2. A subgraph γ of Γ ∈ G is normal iff the corresponding quotient Γ/γ
belongs to the same class of Feynman graphs G.

Definition 3. An extension γ ↪→ Γ � γ′ in G is a triple (as displayed) determined
by a subgraph γ of Γ, such that the quotient γ′ is in G. The extension is a full
extension if γ is a full subgraph, i.e. together with two vertices of Γ contains all the
corresponding connecting arrows (the respective “Hom”).

Edges will play the role of simple objects.

Definition 4. A subgraph consisting of a single edge is called a simple subgraph.

Example 5. As a first example consider the class Ga of admissible graphs provided
in[23]. Denote by G the larger class of graphs, including those for which edges from
boundary points may point towards internal vertices (essentially all finite graph one-
sided “cobordisms”: ∅ → [m]). Then the normal subgraphs relative to the class Ga

are precisely the subgraphs with no “bad-edge” ([23], p.27), i.e. those for which the
quotient is still an admissible graph.

Another example is the class of Feynman graphs of φ3-theory. In this context
a subgraph of a 3-valent graph collapses to a 3-valent vertex precisely when it is a
normal subgraph in our sense.

There is a natural pre-Lie operation based on the operation of insertion of a
graph at an internal vertex of another graph[27, 9] (addressed next). It is essentially
a sum over extensions of two given graphs.
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On Feynman Integrals 83

Definition 6. The extension product ? : g ⊗ g → g is the bilinear operation which
on generators equals the sum over all possible extensions of one graph by the other
one:

γ′ ? γ =
∑

γ→Γ→γ′

±Γ. (1)

It is essentially the “superposition of Hom(γ, γ′)”. As noted in[9], p.14, it is a
pre-Lie operation, endowing g with a canonical Lie bracket (loc. cit. LFG).

The lack of an explicit sign intends to avoid the technical details and compli-
cations (see also [2]), to focus on the algebraic structures and the corresponding
conceptual aspects. The sign is a generalization of the sign convention for the Ger-
stenhaber bracket [12], yielding the pre-Lie structure. The compatibility with the
differential follows (see [11], p.18-19), as in any “pointed” DGLA, i.e. where the
differential is given by the bracket with a special element of the Lie algebra.

Let H = T (g) be the tensor algebra with (reduced) coproduct:

∆Γ =
∑

γ→Γ→γ′

γ ⊗ γ′, (2)

where the sum is over all non-trivial subgraphs of Γ (“normal proper subobjects”)
such that collapsing γ to a vertex yields a graph from the given class G (compare
with condition (7) [8], p.11).

Remark 7. The two operations introduced are in a sense “opposite” to one another,
since the coproduct unfolds a given graph into its constituents, while the product
assembles two constituents in all possible ways. For the moment we will not dwell
on the resulting algebraic structure.

With the appearance of a Lie bracket and a comultiplication, we should be
looking for a differential (towards a DG-structure).

Consider the graph homology differential [26], p.109:

dΓ =
∑
e∈EΓ

±Γ/γe, (3)

where the sum is over the edges of Γ, γe is the one-edge graph, and Γ/γe is the
quotient (forget about the signs for now).

Theorem 8. (H, d,∆) is a differential graded coalgebra.

Proof. That it is a coalgebra results from [8], p.12. So all we need to prove is that
d is a coderivation:

∆d = (d⊗ id+ id⊗ d)∆.
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84 L. M. Ionescu

Comparing the two sides (with signs omitted):

LHS =
∑
e∈Γ

∑
γ̄⊂Γ/e→γ̄′

γ̄ ⊗ γ̄′ (4)

=
∑
e∈Γ

(
∑

e/e∈γ̄⊂Γ/e→γ̄′

γ̄ ⊗ γ̄′ +
∑

e/e/∈γ̄⊂Γ/e→γ̄′

γ̄ ⊗ γ̄′), (5)

and

RHS =
∑

γ⊂Γ→γ′

(
∑
e∈γ

γ/e⊗ γ′ +
∑
e∈γ′

γ ⊗ γ′/e) (6)

=
∑
e∈Γ

(
∑

e∈γ⊂Γ→γ′

γ/e⊗ γ′ +
∑

e/∈γ⊂Γ→γ′

γ ⊗ γ′/e), (7)

with a correspondence uniquely defined by e ∈ γ → γ̄, i.e. γ̄ = γ/e and e ∈ γ′ → γ̄′,
i.e. γ̄′ = γ′/e respectively, concludes the proof.

The boundary of the codimension 1 strata of the configuration spaces (see §3)
suggests to consider its cobar construction C(H) = T (s−1H̄) ([13], p.366, [29],
p.171), where H̄ denotes the augmentation ideal, and s−1 is an alternative notation
for the suspension functor (see also [32]). Moreover, this is the natural set up for
DG(L)A-infinity structures (e.g. [21]).

The total differential is D = d+ ∆̄, where the “coalgebra part” ∆̄ is the graded
derivation:

∆̄Γ =
∑

γ→Γ→γ′

γ ⊗ γ′, (8)

corresponding to the reduced coproduct ∆ given by equation 2.

Definition 9. The cobar construction (C(H), D) of the DG-coalgebra (H, d,∆) of
Feynman graphs is called the Feynman cobar construction on G.

Taking the homology of its dual (HomCalg(C(H), k), δ) relative some field k,
with dual differential δ, yields H•(H; k), the cohomology of the DG-coalgebra of
Feynman diagrams G. We will see in section 2.3 that it characterizes L∞-morphisms
represented as Feynman expansions.

2.2 Feynman-Taylor coefficients

Let (g1, Q1
•) and (g2, Q2

•) be L∞-algebras, with coderivations Qi
• of C(gi), i = 1, 2

([23], p.12), and f : g1 → g2 a pre-L∞ morphism ([23], p.11) with associated mor-
phism of graded cocommutative coalgebras F∗ : C(g1[1]) → C(g2[1]), thought of as
the Feynman expansion of a partition function:

F∗ =
∑

Fn, Fn(a) =
∑
Γ∈Gn

< Γ, a >, a ∈ gn
1 ,
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On Feynman Integrals 85

where the “pairing” < , > corresponds to a morphism B : H → Hom(g1, g2).

Definition 10. A morphism B : H → Hom(g1, g2) is called a generalized Feynman
integral. Its value < Γ, a > will be called a Feynman-Taylor coefficient.

Characters W : H → R act on Feynman integrals:

U = W ·B, U(Γ) = W (Γ)B(Γ),Γ ∈ G.

An example of a generalized Feynman integral is UΓ defined in [23], p.23, using
the pairing between polyvector fields and functions on Rn. An example of (pre)L∞-
morphisms associated with graphs is provided by Un =

∑
Γ∈Gn

WΓBΓ, the formality
morphism of [23], p.24 (see §3 for more details).

Feynman integrals as pairings involving Feynman rules corresponding to prop-
agators (the common value on all edges, e.g. WΓ in [23], p.23) will be defined in
Section 3.3 (Definition 30).

2.3 L∞-morphisms

Before addressing the general case of L∞-algebras, we will characterize formality
morphisms of DGLAs (e.g. polyvector fields and polydifferential operators).

Theorem 11. Let (g1, 0, [, ]SN ) and (g2, d2, [, ]) be two DGLAs, and f = W · U :
g1 → g2 a pre-L∞-morphism as above. Then

(i) δW = [f,Q], where Q denotes the appropriate L∞-structure.
(ii) f is an L∞-morphism iff the character W is a cocycle of the DG-coalgebra

of Feynman graphs: δW = 0.

The proof in the general case is essentially the proof from [23], which will be
given in section 5 (see Theorem 56).

Definition 12. A character W is called a weight if it is such a cocycle.

We claim that the above result holds for arbitrary L∞−algebras. Moreover L∞-
morphisms can be expanded over a suitable class of Feynman graphs, and their mod-
uli space corresponds to the cohomology group of the corresponding DG-coalgebra
of Feynman graphs.

Theorem 13. (“Feynman-Taylor”)
Let G be a class of Feynman graphs and g1, g2 two L∞-algebras.
In the homotopy category of L∞-algebras, L∞-morphisms correspond to the co-

homology of the corresponding Feynman DG-coalgebra:

Ho(g1, g2) = H•(H; k).

The basic examples (formality morphisms) are provided by cocycles constructed
using integrals over compactification of configuration spaces (periods ([25], p.26; see
§3 and §5 for more details.)
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86 L. M. Ionescu

Remark 14. The initial motivation for the present approach was to find an algebraic
construction for such cocycles. The idea consists in defining an algebraic version of
the “configuration functor” S : H → C•(M), a “top” closed form ω : H → Ω•(M)
and a pairing < S,ω >. Their properties suggest the following framework, which
will be detailed in section 3.3: a chain map S : (H, d) → (C•, ∂), and a cocycle ω in
some dual cohomological complex (C•(R):

< ∂S, ω >=< S, dω > (= 0),

so that the “Stokes theorem” holds. Then W =< S,ω > would be such a cocycle.

A physical interpretation will be suggested here, and investigated elsewhere.

2.4 A physical interpretation

Let H be the Hopf algebra of a class of Feynman graphs G. If Γ is such a graph, then
configurations are attached to its vertices, while momenta are attached to edges in
the two dual representations (Feynman rules in position and momentum spaces).

This duality is represented by a pairing between a “configuration functor” (typ-
ically CΓ, see §3.2), and a “Lagrangian” (e.g. ω determined by its value on an edge,
i.e. by a propagator). Together with the pairing (typically integration) representing
the action, they are thought of as part of the Feynman model of the state space of
a quantum system.

Remark 15. As already argued in [18], this “Feynman picture” is more general
than the manifold based “Riemannian picture”, since it models in a more direct way
the observable aspects of quantum phenomena (“interactions” modeled by a class
of graphs), without the assumption of a continuity (or even the existence) of the
interaction or propagation process in an ambient “space-time”, the later being clearly
only an artificial model useful to relate with the classical physics, i.e. convenient for
“quantization purposes”.

Definition 16. An action on G (“Sint”), is a character W : H → R which is a
cocycle in the associated DG-coalgebra (T (H∗), D).

A source of such actions is provided by a morphism of complexes S : H → C•(M)
(“configuration functor”), where M is some “space”, C•(M) is a complex (“config-
urations on M”), endowed with a pairing

∫
: C•(M) × Ω•(M) → R, where Ω•(M)

is some dual complex (“forms on configuration spaces”), i.e. such that “Stokes the-
orem” holds:

< ∂S, ω >=< S, dω > .

A Lagrangian on the class G of Feynman graphs is a k-linear map ω : H → Ω•(M)
associating to any Feynman graph Γ a closed volume form on S(Γ) vanishing on
the boundaries, i.e. for any subgraph γ → Γ (viewed as a subobject) meeting the
boundary of Γ : [s] → [t] (viewed as a cobordism), ω(γ) = 0.

The associated action is W =< S,ω > .
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On Feynman Integrals 87

A prototypical “configuration functor” is given by the compactification of config-
uration spaces Cn,m described in [23] (see §3). The second condition for a Lagrangian
emulates the vanishing on the boundary of the angle-form α (see [23], p.22). The
coefficient W (Γ) is then a period of the quadruple (CΓ, ∂CΓ,∧|EΓ|

k=1α(zik , zjk
) ([29],

p.24). A related formulation (effective periods) is given in [29], p.27.

3 Integrals over configuration spaces

The formality morphism U from [23] was constructed using ideas from string theory
(loc. cit. p.1). The terms of the “n-point function” Un are products of factors deter-
mined by the interaction term (1-form on the disk) and the kinetic part determining
the propagator (Lagrangian “decouples”).

With this interpretation in mind, we will investigate the properties of the L∞-
morphism and its coefficients W by analyzing the corresponding integrals on con-
figuration spaces. The coefficients W (Γ) of the terms of the n-point function Un are
expressed as integrals over configuration spaces of points of a closed form vanishing
on the boundary.

We claim that the main property of the compactification of the configuration
space (a manifold with corners), is the “Forest Formula” (reminiscent of renormal-
ization), giving the decomposition of its boundary into disjoint strata. This formula
is a consequence of the fact that “...open strata of Cn,m are naturally isomorphic
to products of manifolds of type Cn′,m′ and Cn′” [23], p.19. The implications for
the corresponding integrals and the properties of the integrands stated in [23] are
translated in our language targeting a categorical and cohomological interpretation.
Special consideration is given to the correspondence between the L∞-morphism con-
dition (F ) and the coefficients cΓ of the Feynman expansion (see [23], p.25).

3.1 Configuration spaces

Consider first the configuration space of n-points in a manifold M (“no boundary”
case) denoted by Cn(M). Then its compactification has the following structure:

C̄n(M) =
n−1⋃
k=1

⋃
k−forests

CF ,

where CF is a certain bundle over the configuration space of the roots of the forest
F with k trees ([26], p.106; [23], p.20). The codimension of a stratum equals k, the
number of trees in the forest ([5], p.5280).

We will be interested in the codimension one strata, for which Stokes theorem
holds (see [5], p.5281, (A3)). This relevant part of the boundary of the configuration
space, denoted by ∂C̄n(M), is a disjoint union of strata in one-to-one correspondence
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with proper subsets S ⊂ {1, 2, ..., n} = [n] with cardinality at least two ([26], p.106):

∂C̄n(M) =
⋃

[1]$S$[n]

∂SC̄n(M), ∂SC̄n(M) ∼= CS × C[n]/S . (9)

On the right, the “quotient” of [n] by the “non-trivial subobject” S was preferred
to the equivalent set with n− |S|+ 1 elements (“in the category of pointed sets”).

This formula involves a (reduced) coproduct structure, the same way Zimmerman
forest formula does, in the (similar) context of regularized Feynman integrals and
renormalization.

To extract the intrinsic properties of integrals over configuration spaces, we will
follow the proof of the formality theorem [23], p.24, and record the relevant facts
in our homological-physical interpretation: admissible graphs are “cobordisms” Γ :
∅ → [m] when Un is thought of as a state-sum model ([26], p.100; see Section 4).
The graphs are also interpreted as “extensions” γ → Γ → γ′, when considering the
associated Hopf algebra structure. The implementation of the concepts hinted above
in quotation marks is scheduled for another article.

3.2 Boundary strata of codimension one

Let Cn,m be the configuration space of n interior points and m boundary points in
the manifold M with boundary ∂M (e.g. [23], p.6: upper half-plane H). Its elements
will be thought of as (geometric) “representations of cobordisms” (enabling degrees
of freedom with constraints):

{∅ [n]→ [m]} x−→ {∅ M→ ∂M}.

Cn,m will be also denoted by CA,B, where A and B are the sets of internal respective
boundary vertices, with n, respectively m elements. This notation will extend to
graphs Γ, where CΓ = CA,B will denote the space of states of the “cobordism” Γ (see
above Remark 15), at the level of vertices Γ(0) (A/B the set of internal/boundary
vertices).

Definition 17. The space of configurations of Γ is CΓ, the set of embeddings σ of
the set Γ(0) of its vertices into the manifold with boundary (M,∂M), which respects
the boundary (“source” and “target”), i.e. mapping internal vertices from [n] to
internal points of M , and boundary vertices from [m] to boundary points from ∂M .

If γ is a subgraph in Γ, then a configuration of Γ will induce by restriction a
configuration on γ (functoriality of configuration spaces; see [5], p.5247).

Note that there is no canonical configuration induced on the corresponding quo-
tient γ′ = Γ/γ, and this is where the compactification plays an important role.
Nevertheless the M -position of the vertex to which γ collapses will belong to the
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On Feynman Integrals 89

boundary of M iff the γ meets the boundary [m] of Γ (see Remark 1). The properties
of these two distinct cases (“type S1/S2”), will be treated below, and unified later
on.

The codimension one boundary strata decomposes as follows ([23], p.22):

∂C̄n,m = (
⋃
S1

∂S1C̄n,m) ∪ (
⋃

S1,S2

∂S1,S2C̄n,m). (10)

where S1 and S2 are subsets of points of [n] and [m].
Before briefly mentioning the tree-description of Equation 9, we will reinterpret

the above “definition” of the various portions of the boundary ∂S1,S2C̄n,m.

Definition 18. Let Γ be a graph with internal vertices [n] and external vertices [m]
(cobordism Γ : ∅ → [m], [n] = Γ(0)

int). Then ∂S1,S2C̄Γ denotes the portion of the
codimension one boundary of the compactification of CΓ (⊂ C̄Γ) corresponding to
the above decomposition. If S2 = ∅, it will also be denoted by ∂S1C̄Γ.

For a full subgraph γ (Definition 3) determined by the sets of vertices S1 and S2,
the codimension one stratum ∂S1,S2C̄Γ will also be denoted as ∂γC̄Γ.

Whether γ intersects the boundary or not (S2 = ∅), S = S1 ∪ S2 denotes the
vertices which in the process of completion of the configuration spaces yield “Cauchy
sequences” with M -coordinates getting closer and closer to one another (see [23],
p.20 for additional details).

If n2 = |S2| ≥ 2, the corresponding stratum can be alternatively labeled by the
following tree:

��
•

}}||
||

||
||

||
||

||
||

||
|

��

&&MMMMMMMMMMMMMMMMMMMMMMMMMM

•

~~~~
~~

~~
~~

%%KKKKKKKKKK

1 · · · i · · · i+ n2 − 1 · · ·n.

It can be obtained by the insertion of the bottom line n2-corolla [35], p.3, in a leaf
of the top line corolla, yielding a term of the graph homology differential[35], p.4.
Represented on an algebra, the operation becomes the ◦i Gerstenhaber composition
([12]; [19], p.4), yielding a term of the Hochschild differential.

Regarding codimension one strata, we will list the facts proved in [23], p.25-27,
using our notation aiming to generalize the usual context of Feynman graphs to
more general “cobordism categories”[16]. Recall that the graphs considered are the
“admissible graphs”: Ga as defined in Example 5. The results still hold for the class
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G, which is closed under taking subquotients (A Serre category seems to be the
appropriate context for considering Feynman integrands as Euler-Poincare maps -
see Definition 30).

Lemma 19. ( “Type S1”) If γS is a non-trivial full subgraph in Γ ∈ Ga supported on
S (set of vertices) and not intersecting the boundary [m] of Γ (“vacuum fluctuation”),
then it is normal:

γS ↪→ Γ � γ′,

with γ′ the corresponding quotient, and the following “short exact sequence is split”:

Cγ ↪→ ∂SC̄Γ � Cγ′ ,

i.e. ∂SC̄Γ = CγS × Cγ′ .

Proof. Note first that a set of vertices S determines uniquely a full subgraph γS .
Any such subgraph is “normal” as a “subobject”, i.e. the quotient is admissible, i.e.
exists in the given class of Feynman graphs Ga.

The rest of the statement is a translation of the corresponding one in loc. cit.
p.25.

If the subgraph intersects the boundary, then the quotient may be a non-admissible
graph ([23], p.27: “bad-edge” sub case). In all cases of “type S2” we have the fol-
lowing:

Lemma 20. ( “Type S2”) If γS1,S2 is a non-trivial full subgraph in Γ ∈ Ga supported
on internal vertices from S1 and intersecting the boundary [m] of Γ along S2, then
γS1,S2 is normal in Γ viewed as an object of G:

γS1,S2 ↪→ Γ � γ′,

with γ′ the corresponding quotient, and the following “s.e.s is split”:

CγS1,S2
↪→ ∂S1,S2C̄Γ � Cγ′ ,

i.e. ∂S1,S2C̄Γ = CγS1,S2
× Cγ′.

Proof. Note first that an arbitrary set of vertices S (here S1 ∪ S2), internal or not,
determines uniquely a full subgraph γS . Also recall that the boundary of the quotient
of Γ is also a quotient: γ′ : ∅ → [m]/S2 (see Remark 1).

loc. cit. p.26.

Remark 21. If n2 = |S1| and m2 = |S2|, then the condition n2 + m2 < n + m
is equivalent to S $ Γ, and 2n2 + m2 − 2 ≥ 2 is equivalent to |S| ≥ 2 under the
assumption that S = S1 ∪ S2 intersects the boundary [m].

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 79 – 110

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma


On Feynman Integrals 91

Remark 22. The “bad edge” sub case (when the quotient is not an admissible
graph), is eliminated at the level of integration, yielding zero integrals. Therefore
from the point of view of the periods of a closed form, one may restrict to consider
only “normal subobjects”, i.e. considering non-trivial “extensions” within the given
class of Feynman graphs realizing the given “object” Γ.

It will be proved elsewhere that this is the natural coproduct to be considered in
a suitable “category of Feynman graphs”.

In view of the above remarks and with the notation from Definition 18, the two
lemmas may be summed up as follows.

Proposition 23. For any non-trivial full extension γ ↪→ Γ � γ′ in G, the following
“short exact sequence is split”:

Cγ ↪→ ∂γC̄Γ � Cγ′ ,

i.e. ∂γC̄Γ = Cγ × Cγ′ .

Remark 24. Note that from the point of view of integration, edges with the same
source and target will yield zero integrals, since the “propagator” will be required to
be zero on the diagonal: ∆F (x, x) = 0. Alternatively, considering equivalence classes
of graphs with orientation ([7], p.2) would eliminate the graphs with one edge loops.

One way or the other, all extensions may be considered.

3.3 Feynman state spaces

In this section we identify some intrinsic properties of integration of differential
forms over the compactification of configuration spaces. These properties will lead
to cohomological statements relating them to the cobar DG-algebra of Feynman
graphs.

Let Γ ∈ Gl
n,m be a Feynman graph of type n,m and degree l, i.e. Γ : ∅ → [m]

with n internal vertices, m external legs and 2n + m − 2 + l edges. Then the
compactification of the configuration space of Γ, C̄Γ(M), is a manifold with corners,
of dimension k = 2n +m − 2 ([23], p.18). Consider the rule Γ 7→ ω(Γ), associating
to a Feynman graph Γ ∈ Gl

n,m the differential form on CΓ(M), of codimension −l
corresponding to the “propagator” ∆F (x, y) = dφ(x, y), where dφ is the angle form
on H as defined in [23], p.6. Note that the differential form ω(Γ) is closed and
“vanishing on the boundary”, i.e. dφ(x, y) = 0 when x ∈ R.

To have a non-trivial integration pairing with ∂CΓ(M), the codimension one
strata of the boundary, ω(Γ) must have codimension one too, i.e. Γ should have
2n+m− 3 edges ([23], p.25: l = −1).

The above C and ω, together with the integration pairing, can naturally be ex-
tended to H (see Section 2.1). We will ignore for the moment the natural categorical
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setup, where for instance H is the Grothendieck ring of a strict monoidal category
etc.

Note also that to account for orientations (ignored all together with signs for the
moment), the vertices/edges of the Feynman graphs must be labeled.

3.3.1 Feynman configurations

A “simplicial (co)homology” is considered, with models the class of graphs G (rather
then trees, for now) to play the role of the family of standard simplices {∆n}n∈Z.
Of course, the natural thing to do to obtain a genuine configuration functor, would
be to accept Feynman graphs for what they are: small categories. We will post-
pone “categorifying” the Hopf algebra of Feynman graphs (or rather discarding
their decategorification), and therefore, in order to map it to the corresponding con-
figurations, we will have to forget the internal structure of CΓ, by considering the
Grothendieck ring of the category of configuration spaces.

Definition 25. The category of configurations of Feynman graphs in M , denoted
C = C(G,M), is the additive strict monoidal category generated by the objects CΓ(M)
with morphisms determined by equivalences of (labeled) Feynman graphs, and tensor
product × corresponding to disjoint union of graphs.

The above propagator ∆F = dφ is determined by a function φ : Ce(M) → R
(element of Ce(M)∗: “Lagrangian”), where the simple object e (the edge) is assumed
to belong to G.

Consider the Grothendieck k-algebra of the above category, “graded” by G:

C•(M) = R⊗K0(C).

Since H is the free (DG-co)algebra with generators Γ, the embedding of gener-
ators map C extends uniquely to H as a k-algebra homomorphism S : H → C•(M)
(an isomorphism!):

S(
∑

i

Γi) = ⊕ic(Γi),

S(Γ1 · Γ2) = c(Γ1)× c(Γ2), Γi ∈ G,

where (M) is tacitly understood, cΓ denotes the isomorphism class of CΓ(M), and
the alternative notation for addition and multiplication in the target space is meant
to remind us about the categorical interpretation,

Now the category C has a sort of a cone functor represented by the compactifi-
cation functor:

CΓ(M) ↪→ C̄Γ(M).
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On Feynman Integrals 93

The codimension one boundary of the compactification of the configuration spaces
has the following description:

∂C̄(Γ)
∑

γ↪→Γ�γ′

±C(γ)× C(γ′), (11)

where the sum is restricted to proper extensions. It induces a derivation on the
Grothendieck algebra defined on generators as follows:

∂cΓ = [∂C̄Γ(M)],

called the boundary map. As wished for in Remark 14, we have the following.

Proposition 26. (C•(M),×, ∂) is a DG-algebra.

The following essential property is a consequence of the definitions and of Propo-
sition 23.

Proposition 27. The k-algebra morphism S : T (H) → C• extending the configura-
tion space functor C is a chain map:

∂S(Γ) = S(∆Γ), Γ ∈ H. (12)

Proof. It follows from definitions:

∂S(Γ) = [∂C̄Γ] = [⊕γ→Γ→γ′ Cγ × Cγ′ ] (13)

=
∑

γ→Γ→γ′

S(γ)× S(γ′) = S(∆Γ). (14)

Note that the right hand side involves the reduced coproduct defined by Equation
8.

The above proposition is taken as a defining property.

Definition 28. A configuration functor is a DG-algebra morphism

S : (T (H),⊗,∆) → (C•,×, ∂)

from the Feynman cobar construction to the DG-algebra of configuration spaces.
Since equation 11 will hold, a term S(γ)× S(γ′), corresponding to the subgraph

γ of Γ, will be denoted by ∂γS(Γ) (“face boundary maps”).

Remark 29. The comparison with the simplicial case deserves some attention:

∂Γ =
∑

γ→Γ→γ′

±∂γ , ∂n =
n∑

i=1

∂i,

including the analogy with the Eilenberg-Zilber maps [10], p.55.
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3.4 Feynman rules

Definition 30. A Feynman rule is a multiplicative Euler-Poincare map (see [28],
p.98), i.e. if γ ↪→ Γ � γ′ is an extension, then:

ω(Γ) = ω(γ) ∧ ω(γ′). (15)

The (common) value on an edge (a simple object) is called a Feynman propagator,
and denoted by ∆F = ω(e).

A Feynman integral for the class of Feynman graphs G, with Feynman rule ω(Γ)
is the k-algebra morphism extending ω to H, with values in C•(M) = Ω(C•(M))
(Lagrangian §2.4; compare [3], p.9):

ω(Γ1 · Γ2) = ω(Γ1) ∧ ω(Γ2).

Of course a Feynman integral is also a generalized Feynman integral according
to Definition 10.

To justify the last part of the above definition, recall that an Euler-Poincare map
is determined by its values on simple objects, and therefore a Feynman integrand
has a common value on every edge (isomorphic objects). Moreover, it descends on
the corresponding Grothendieck algebra (a normalization is assumed: ω(pt) = 1).

Proposition 31. To any given propagator ∆F there is a unique extension to a
Feynman rule.

Proof. Apply equation 15 for the case of simple subgraphs (edges).

3.5 Feynman integrals

Definition 32. The integration of forms ω(Γ) over the corresponding configuration
space S(Γ) extends bilinearly, yielding a functional on H:

W (X) =
∫

S(X)
ω(X), X ∈ H.

This will be called a Feynman integral (action on G - see §2.4, Definition 16, conform
Theorem 33 below).

As expected W is a character.

Theorem 33. By extending C and ω as algebra homomorphisms, the natural pairing
induced by integration:

W (X) =
∫

S(X)
ω(X), X ∈ H,

yields a character of the Hopf algebra of Feynman graphs.
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Proof. This is essentially “Fubini theorem”. Indeed, on generators Γi ∈ G, i = 1, 2:

W (Γ1 · Γ2) =
∫

S(Γ1·Γ2)

ω(Γ1 · Γ2) =
∫

CΓ1
×CΓ2

ω(Γ1) ∧ ω(Γ2) = W (Γ1) ·W (Γ2).

More important is the relation with the boundary map of the configuration
functor (considered next), as it will be shown later on. It leads to the cohomological
properties of the Feynman integrals.

3.6 Cohomological properties of Feynman integrals

As a consequence of the previous Theorem 33, the integrals over the codimension
one boundary match the codifferential of the cobar construction:∫

∂C̄
= W ◦D.

It follows that the character W associated to the configuration functor S and prop-
agator ∆F is a cocycle of the cobar construction of the Hopf algebra of Feynman
diagrams. This result will be used to prove the claim from Section 2, characterizing
L∞-morphisms: modulo equivalence they correspond to cohomology classes of the
DG-coalgebra H.

Although the statements hold when the triple (C, C̄, ∂) is replaced by any con-
figuration functor S (as the proofs show), to fix the ideas, assume S extends the
configuration functor C and that ω = dφ is the angle form as in [23]. Fix a Feyn-
man graph Γ ∈ G−1

n,m, so that ω(Γ) is a codimension one form on the corresponding
configuration space C̄Γ(M).

¿From the previous results we deduce the following translation of the statements
from (6.4.1, 6.4.2) [23], p.25, regarding the integrals over the codimension one strata.

Proposition 34. Let (C, C̄, ∂) be a configuration functor, ω a Feynman rule with
values in the algebra of differential forms Ω(C•(M)), and W the Feynman integral
corresponding to the natural pairing defined by integration.

For any full extension γ ↪→ Γ � γ′:∫
∂γS(Γ)

ω(Γ) = W (γ) ·W (γ′). (16)

Proof. By Proposition 23 ∂γC̄Γ = Cγ × Cγ′ . Since ω is an Euler-Poincare map
(Definition 30), the claim follows by “Fubini theorem”:∫

∂γC̄Γ

ω(Γ)
∫

Cγ×Cγ′

ω(Γ)
∫

Cγ×Cγ′

ω(γ) ∧ ω(γ′)W (γ) ·W (γ′).
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Remark 35. Note that the statement holds also when γ′ is not admissible (“bad-
edge” case), due to the fact that the “propagator” ∆F (x, y) vanishes on the boundary.

Regarding the relation with the condition corresponding to L∞-algebra mor-
phisms ((F) from [23], p.24; see Section 5), note that some of the integrals over the
codimension one boundary strata vanish, the remaining ones matching the coefficient
cγ of UΓ in the Feynman expansion of (F).

“
∫

∂C̄
ω = c′′.

In order to distinguish various portions of the boundary ∂C̄, corresponding via
Equation 12 to portions of the reduced comultiplication of the Hopf algebra H, we
will introduce the following.

Notation 36.
∆e =

∑
e↪→Γ�Γ/e

±Γ/e⊗ e. (17)

When restricted to internal edges, the above sum will be denoted by ∆int
e . The

corresponding portion of the sum in the graph homology differential 3 will be denoted
by dint.

In general, when considering internal subgraphs, i.e. with their boundary consist-
ing of internal vertices, or subgraphs meeting the boundary, the following notation
will be used:

∆i =
∑

Γ2↪→Γ�Γ1, Γ2∩∂Γ=∅

±Γ1 ⊗ Γ2. (18)

∆b =
∑

Γ2↪→Γ�Γ1, Γ2∩∂Γ6=∅

±Γ1 ⊗ Γ2. (19)

∆i−e and ∆b−e refer to sums over extensions where Γ2 is not an edge (all extensions
are assumed to be proper).

3.6.1 Type S1 terms.

First recall that any full subgraph not meeting the boundary ∂M is a normal sub-
graph. The integrals over the codimension one strata corresponding to such a sub-
graph γ of type (n, 0), i.e. not intersecting the boundary of M (and yielding type
S1 terms), with n ≥ 3 vanish (see 6.4.1.2. [23], p25).

The other terms (n ≤ 2) correspond to full subgraphs γ consisting of one internal
edge of Γ, i.e. simple subgraphs not meeting the boundary. The corresponding terms
total the “internal part” of the graph homology differential 3.
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On Feynman Integrals 97

Proposition 37. For any Feynman graph Γ ∈ G:∑
e∈Γ

(1)
int

∫
∂eC̄Γ

ω(Γ)W (dintΓ),

where e is a simple subgraphs of Γ, without boundary.

Proof. Let γe denote such a subgraph corresponding to the internal edge e ∈ Γ(1).
Applying Proposition 34 yields:∑
e∈Γ(1)

∫
∂γe C̄Γ

ω(Γ) =
∑

e∈Γ(1)

W (γe)·W (Γ/γe) = coef.·W (
∑

e∈Γ(1)

±Γ/γe) = coef.·W (dΓ),

where the coefficient depends only on the propagator ∆F . With the appropriate
normalization, we have:

W (γe) =
∫

C̄2,0(M)
dφe = ±1

The sign is given by the labels of the two vertices of the internal edge, corresponding
to the convention for the orientation of graph homology.

To emphasize the relation with the comultiplication from Section 2, the above
results may be restated as follows.

Corollary 38.
W ◦∆int

e = W ◦ dint, W ◦∆i−e = 0.

3.6.2 Type S2 terms.

Subgraphs Γ2 which do meet the boundary of Γ may produce quotients which are
not admissible graphs (Γ1 /∈ Ga).

Lemma 39. Feynman integrals over codimension one strata corresponding to non-
normal subgraphs vanish.

Proof. See [23], p.27, the “bad edge” case 6.4.2.2.

The remaining terms corresponding to normal proper subgraphs meeting the
boundary [m] of Γ ∈ Ga yield a “forest formula” corresponding to the coproduct ∆b

of G.

Proposition 40. For a Feynman graph Γ ∈ Ga:∑
γ↪→Γ�γ′ in G

∫
∂γC̄Γ

ω(Γ)W (∆bΓ), (20)

where the proper normal subgraph γ meets non-trivially the boundary of Γ.
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Proof. The formula follows from definitions and from the multiplicative property of
W (Proposition 34), in the same way as for Proposition 37.

Putting together the two types of terms, S1 and S2, and independent of the
vanishing of some of the terms, we obtain the following “Forest Formula”.

Theorem 41. For any graph Γ ∈ G:∫
∂C̄Γ

ω(Γ) = W (∆Γ). (21)

Remark 42. The above result holds for an arbitrary configuration functor S and
Feynman integrand ω.

So far we did not need ω(Γ) to be a closed form. With this additional assumption,
using Stokes Theorem (duality at the level of a general configuration functor - see
Remark 14), the closed form produces a cocycle.

Corollary 43. If the “Lagrangian” ω is a closed form then the corresponding Feyn-
man integral W is a cocycle.

Proof.

(δW )(Γ) = W (∆Γ) T41=
∫

∂C̄Γ

ω(Γ) Stokes=
∫

C̄Γ

dω(Γ) = 0.

The main property of the Feynman integrals W , the Forest Formula, may be
interpreted in a manner relevant to renormalization, as follows.

Note first that W is obtained as a “cup product/convolution”:

S ∗ ω =
∫
◦ (S ⊗ ω) ◦ c : H → R, (22)

where c : H → H ⊗H denotes the natural group-like comultiplication of H.

Definition 44. The dual DG-algebra of Feynman characters:

H∗ = {w : H → R| w character }

is called the convolution algebra of G. The corresponding differential is given by:

δw = w ◦∆, w ∈ T (H)∗.

Theorem 45. δ is a derivation with respect to the “convolution” of the configuration
functor S and the Lagrangian form ω:

δ(S ∗ ω) = (∂S) ∗ ω + S ∗ (dω).
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On Feynman Integrals 99

Proof. Let W = S ∗ω (Equation 22). Interpreting the left hand side of Equation 21
according to the above definition, and using Theorem 41 yields:

(δW )(Γ) = W (∆Γ) =
∫

∂S(Γ)
ω(Γ).

Since a Lagrangian is a closed form, dω = 0, the second term is zero, and the equality
is proved.

The implications to the deformation point of view to renormalization will be
considered elsewhere.

4 State sum models and Feynman rules

In the previous section a Feynman rule with propagator ∆F = dφ paired via in-
tegration with a configuration functor (C, C̄, ∂) produced the Feynman integral
W : H → R.

In this section a typical generalized Feynman rule is considered, yielding the
generalized Feynman integral U : H → Hom(T,D) of[23] (see Definition 10). It is
a typical “state-sum model” (state model [26], p.100; see also [33], p.345), having a
Feynman path integral interpretation as already noted in [6].

4.1 A state-sum model on graphs

We will review the construction mostly keeping the original notation.
For each graph Γ ∈ Ga, a function Φ =< UΓ(γ), f > will be defined, where

γ = γ1 ⊗ ...γn, f = f1 ⊗ ...⊗ fm and <,> denotes the natural evaluation pairing.
States of a graph have two conceptually distinct groups of data: associating

polyvector fields to internal vertices and appropriate functions to boundary points.
First chose a basis {∂i}i=1..d for the algebra of vector fields. A coloring of the

labeled graph Γ ∈ Gn,m (vertices are ordered), is a map:

I : Γ(1) → {1, ..., d}.

A basic state of the graph Γ is the following association corresponding to a coloring
of its edges:

φ0(v) = γv, v ∈ Γ(0), φ1(e) = ∂I(e), e ∈ Γ(1).

Remark 46. It is customary to implement φ0 via an ordering of the vertices of Γ,
obtaining the map UΓ : Tn → Hom(Am, A).

We preferred this more cumbersome notation (e.g. [22], p.28) because it reveals
the true nature of a state-sum: a 2-functor when interpreted categorically ([16]).
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Then Φ is the sum over all basic states corresponding to a fixed choice of φ0 (γ′s
and f ′s), of the corresponding “amplitude” (to be defined shortly):

Φ =
∑

all basic states φ of Γ

Φφ.

Remark 47. The true amplitude of the process would involve a sum over all states,
when the values of φ0 varies on the internal vertices while the state of the boundary f
is fixed. The sum over values on the edges amounts to a contraction process (traces
etc.).

Now Φφ (ΦI of [23], p.23) is a product over the contributions Φφ(v) over the
vertices of Γ, n internal and m boundary type.

For an internal vertex v:

Φφ(v) = (
∏

e∈In(v)

φ(e))ψv, ψv =< γv,
⊗

e∈Out(v)

dxI(e) >,

where In(v) (Out(v)) denotes the set of incoming (outgoing) edges of the vertex v,
and the shorthand notation φ = φ(1) was used since φ0 is fixed within this state-sum.

4.2 The amplitude interpretation

Towards an “propagation amplitude” interpretation, replace the evaluation pairing
with the inner product ( , ) such that the above basis {∂i}i=1..n be orthonormal.
Also collect the “in” and “out” products, introducing the following terminology.

Definition 48. For any basic state φ of the graph Γ:

φIn =
∏

e∈In(v)

φ(e), φOut =
⊗

e∈Out(v)

φ(e),

are called the In and Out states of the scattering process at the vertex v.

Proposition 49.
−Φφ(v) = (φOut(v), adφ(v)(ψIn(v)))

is the scattering amplitude:
(φOut|adφ|φIn)|v

of the elementary process at the internal vertex v:

•

In(v)1 ��>
>>

>>
>>

> ... •

In(v)k(v)����
��

��
��

v•
Out(v)1

����
��

��
�� Out(v)l(v)

��>
>>

>>
>>

>

• ... •
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On Feynman Integrals 101

Proof. Here adX(Y ) = [X,Y ] is the commutation bracket on differential operators.
Therefore if X and Y commute, then [X, fY ] = X(f)Y .

Now to retrieve the appropriate component, use the above inner product:

Φφ(v) = φIn(ψv) = ([ψIn(v), γv], φOut(v)).

This can be put in the form of a propagation amplitude ( | | ), establishing the above
claim.

In a similar manner, for boundary vertices we have the following

Proposition 50. If v ∈ ∂Γ is a boundary vertex, then:

Φφ(v) =< φIn(v), φ(v) >,

is the “expectation value” of the process:

•

In(v)1 ��>
>>

>>
>>

> ... •

In(v)k(v)����
��

��
��

v•
where < , > denotes the natural evaluation pairing between polyvector fields and

functions.

4.3 A TQFT interpretation

The properties of the generalized Feynman (path) integral U may be viewed as con-
sequences from the generalized TQFT implemented via the above state-sum model.
We will only sketch some points related to this TQFT interpretation[16].

Interpret graphs as cobordisms and extensions as composition of cobordisms
determined by the insertion vertex and the order of matching the external legs. If
v is an internal vertex of Γ1 for instance, the insertion of Γ2 at the vertex v (with
the additional data σ regarding the vertex matching order), precisely corresponds
to the composition of the corresponding cobordisms:

Γ1 ◦σ
v Γ2 = [Γ1 − v] ◦ [Γ2], ∅ [Γ2]→ [k], [k]

[Γ1−v]→ [m],

where k is the valency of v, and Γ1 − v is the graph obtained by cutting the vertex
v out (Γ1 − v will have both an “In” and an ”Out” boundary).

In this context, the Euler-Poincare property of a Feynman rule generalizes in
the present context (states on graphs, i.e. graph cohomology) to a “propagator
property”:

K(In,Out) =
∑

states φ

K(In, φ)K(φ,Out).
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102 L. M. Ionescu

Since here the propagator is essentially < g|UΓ(φ)|f > (if Γ has both an In and
Out boundary), one may chose to consider extensions at the level of states (graph
cohomology):

(Γ2, φ2) ↪→ (Γ, φ) � (Γ1, φ1).

Here φ2 and φ1 are determined as restrictions of φ to Γ2 and Γ1− v, while the state
of the vertex v ∈ Γ1 is the “effective state” of Γ2:

φ1(v) = UΓ2(φ2)

(see operation • and Lemma 53 below).
The following basic property of U is expected (generalized Euler-Poincare map

/ propagator property).

Proposition 51. If (Γ2, φ2) ↪→ (Γ, φ) � (Γ1, φ1), then:

UΓ(φ) = UΓ1(φ1) ◦ UΓ2(φ2).

4.4 The generalized Feynman rule

Returning to our main objective, we still have to prove that:

Proposition 52. U is a pre-Lie morphism:

UΓ1?bΓ2 = UΓ1 ◦ UΓ2 ,

where the extensions defining the product ?b correspond to subgraphs intersecting the
boundary.

Proof. The above claim is a consequence of the more basic fact regarding insertions
of appropriate graphs at a vertex. The “Gerstenhaber-like” compositions from the
above right hand sides are typical for this TQFT gluing/composition operations,
as sketched in Section 4.3. One would then establish the claim at the level of the
corresponding TQFT, using the propagator property (Proposition 51).

It is not clear for the moment the role of the above restriction to boundary
meeting extensions (discarding the “vacuum fluctuations”).

Note also the following relation with the operation • on polyvector fields.

Lemma 53. If Γ′ = Γ/e is obtained by collapsing an edge of Γ, then:

UΓ′ ◦ Ue(γ) =
∑
i6=j

UΓ′((γi • γj) ∧ ...).
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Proof. Again this is a consequence of the above “propagator property” (Proposition
51) where the state on the collapsed edge is:

φ(v) = γi • γj .

The following consequence is claimed (see also [23], 6.4.1.1., p.25).

Corollary 54. For all Γ′ ∈ G:

UΓ′?e(γ) =
∑
i6=j

UΓ′((γi • γj) ∧ ...).

Perhaps one can avoid involving the pre-Lie operation, and remain at the level
of Lie algebras/UEAs (L∞-algebras).

Remark 55. If BΓ = UΓ(α ∧ ... ∧ α) where α is the Poisson structure [23], p.28,
then BΓ is a Feynman integral corresponding to the propagator α.

5 Applications

As a first application of the previous formalism, we interpret Kontsevich formality
between the two DGLAs T = Tpoly(Rd) and D = Dpoly(Rd) of [23]. We will prove
that the L∞-condition (F) from [23], p.24:

(F1)
∑
i6=j

±Un−1((γi • γj) ∧ ... ∧ γn) (23)

(F2) +
∑

k+l=n

1/(k!l!)
∑

σ∈Σn

±Uk ◦ Ul(γσ) = 0, (24)

follows in a direct way from the fact that U is a generalized Feynman integral, and
it preserves the pre-Lie composition of Feynman graphs (Definition 6), as claimed
in the previous section. This will essentially yield a proof of the general result of
§2.3 (Theorem 11).

Theorem 56. (i) [Q,U ] = (δW )U , where Q denotes the appropriate L∞-structure;
(ii) U is an L∞-algebra morphism iff δW = 0.

Proof. We will prove (i), since (ii) becomes clear after recalling that U is an L∞-
morphism iff [Q,U ] = 0 (see [21]) or (F ) holds true (see [23]). Here [Q,U ] = Q1 ◦
U±U ◦Q2 (see §§2.2 and [21], 8,9,12), and δW (Γ) = W (∆Γ) = W (dintΓ)+W (∆bΓ).
Instead of [Q,U ] we will refer to its alternative form (F ).

As stated in [23], the L∞-algebra condition (F) corresponds to W (dintΓ) (first
line - 6.4.1.1, p.25) and W (∆bΓ) (second line - 6.4.2.1., p.26). Since the other
integrals vanish, the sum of the two contributions equals W (∆).
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Indeed, we will compute the coefficients cΓ, and prove that:

cΓ = δW (Γ). (25)

Recall that U =
∑

n Un and Un =
∑

m≥0

∑
Γ∈G−1

n,m
WΓUΓ, where G−1

n,m is the set of
graphs with n internal vertices, m external vertices and 2n+m−2 edges. Therefore
UΓ : Tn → Dm, and UΓ(γ) : Am → A, where A = C∞(M).

Substitute the above Feynman expansion in equation (F), to obtain:

∑
Γ′∈Gn−1,m

±WΓ′
∑
i6=j

UΓ1((γi • γj) ∧ ...) (F1)

+
∑

Γ1∈Gk,m,Γ2∈Gl,m

±WΓ1WΓ2UΓ1

◦
∧ UΓ2 = 0, (F2)

where the result of alternating the Gerstenhaber composition was denoted by:

UΓ1

◦
∧ UΓ2(γ)1/(k!l!)

∑
σ∈Σn

UΓ1(γσ(1) ∧ ...) ◦ UΓ2(γσ(k+1) ∧ ...).

In order to compare it with our claim (Equation 25):

cΓ =
∑

Γ1→Γ→Γ2

±WΓ1WΓ2 , (26)

use the above lemmas and rearrange the sums. The first line (F1) transforms as
follows:

∑
Γ′∈Gn−1,m

WΓ′
∑
i6=j

UΓ′((γi • γj) ∧ ...) =
∑
Γ′

WΓ′UΓ′?e(γ), by Corollary 54 (27)

=
∑

e↪→Γ�Γ
′(1)
int

WΓ′UΓ(γ) by Definition 6 (28)

=
∑

Γ∈Gn,m

(
∑

e↪→Γ�Γ
′(1)
int

±WΓ/e)UΓ(γ) (29)

=
∑

Γ∈Gn,m

WdintΓUΓ(γ) by Equation 3. (30)

To transform the second line (F2), postpone the application of the alternation op-
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erator ∧:∑
Γ1∈Gk,m,Γ2∈Gl,m

±WΓ1WΓ2UΓ1 ◦ UΓ2 =
∑
Γ1,Γ2

±WΓ1WΓ2UΓ1?bΓ2 by Proposition 52

(31)

=
∑
Γ1,Γ2

WΓ1WΓ2

∑
Γ1↪→Γ�Γ2, Γ1∩∂Γ6=∅

±UΓ ∼ Definition 6 (32)

=
∑
Γ1,Γ2

∑
Γ1↪→Γ�Γ2, Γ1∩∂Γ6=∅

±WΓ1WΓ2UΓ (33)

=
∑

Γ∈Gn,m

W (∆bΓ)UΓ, (34)

where Propositions 34 and Proposition 40 were used. Adding the two expressions
yields the nonzero terms from the right hand side of Equation 26.

Remark 57. Working with the above equalities after applying the alternation op-
erator amounts to proving the statements at the level of Lie algebras, avoiding the
pre-Lie operations.

Remark 58. The equation (i) from the Theorem 56 may be interpreted as:

adQ(U) = (δW )U,

i.e. that pre-L∞-morphisms which are Feynman expansions are solutions of an
eigenvalue problem: U is an eigenvector corresponding to the eigenvalue δW . The
kernel consists of L∞-morphisms.

The formality is obtained as a corollary.

Corollary 59. The pre-L∞-morphism U : T → D is an L∞-morphism.

Proof. By Corollary 43 the Feynman integral W determined by the configuration
functor (C, C̄, ∂) is a cocycle. To conclude apply the above theorem.

As a second application we envision an algebraic/combinatorial Feynman integral
(closer in spirit to the “book keeping” of a Gaussian expansion) based on the Hopf
algebra of forests (“labels of the boundary of SΓ” - see [23], p.20). More generally,
the problem (to be investigate elsewhere) is to find suitable examples of pairings
with Lagrangians, yielding such cocycles. Then the corresponding system of weights
would provide a formula for the star-product of a Poisson manifold [23].
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106 L. M. Ionescu

6 Conclusions and further developments

The intent of the present article is to isolate some of the algebraic properties of the
Feynman integral which are independent of renormalization. The infinities of QFT
are of two types: “infrared”, due to the continuum nature of the ambient space-
time used as a configuration space for the system quantized, and “ultra-violet”
divergencies due to the non-compactness of the corresponding state space (energy-
momenta). The first “problem” is expected to be cured by a reformulation of QFT as
a graded theory by scale, similar in nature to the Haar multi-resolution analysis. The
adequate framework seems to be that of L/A-infinity algebras as used by Kontsevich
to prove the Formality Theorem. Moreover, this result is, in the author’s opinion,
prototypical of what a resolution of a manifold is, or rather its Poisson algebra of
observables [20].

The second “problem” is due to the starting point in quantization, the classical
framework of initial value problems characteristic of pointwise physics. In contrast,
quantization aims to describe interactions as input-output processes, for which the
categorical language is mandatory from the mathematical side, and for which the
Feynman approach is the standard: the physics of processes (Markov, Feynman
etc.). The non-compactness of the momentum-energy state space and the need for
compactification of the corresponding configuration space bears a similarity with the
compactification of Euclidean plane geometry as a representative of the conformal
geometry on its compactification, the Riemann sphere. The author thinks that the
algebraic renormalization of Connes-Kreimer contains an underlying categorification
of physics, via the Birkhoff decomposition (factorization) [20]. The connections with
the BV-approach [4, 1, 30] will also be investigated.

In conclusion, it is important to be able to formulate an axiomatic interface to
QFT of the Feynman Path Integral type. Here the “label” QFT is used generically,
not just referring to the Feynman graphs as models of the external geometric data
for the quantum interaction processes. Separating the interface from a specific im-
plementation dependent on a particular language used (e.g. distributions), allows
to implement the mathematical model for the Feynman path integral quantization
using the mathematical tools of homotopical algebra:∫

Dγ eS[γ] =
∑

n

∑
γ

Un(γ).

The left hand side is a conceptual framework which need not be implemented using
analytical tools (integrals, measures, etc.), but most likely with algebraic tools, e.g.
state sum models yielding TQFTs etc..

The L∞-algebra approach is a direct implementation of the RHS. It is aimed to
represent a resolution of the partition function, based on a resolution of the algebra
of observables of an ambient space-time, if present. Recall that the main role of the
Formality Theorem, in order to solve the quantization problem (star-products), is
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to allow to deform the Poisson algebra by deforming the “resolution” (the other side
of the quasi-isomorphism).

Therefore the study of a sigma-model which is convergent, and does not require
renormalization, allows to pursue the above long-term goal.

Returning to the above “equation”, one can defend the above strategy by claim-
ing that the RHS is conceptually closer to the spirit of quantum theory focusing
on describing correlations. The philosophy sketched in [18] reinterprets the concept
of space-time as a receptacle of interactions/transitions between states, and ade-
quately modeled by “categories with Lagrangians”, while the LHS comes from the
traditional “manifold approach to space-time” trying to force integrals in the sense
of analysis “converge”.

The former philosophy can be implemented by defining a “Feynman category”
to be essentially a “generalized cobordism category”[16], with actions as functors
(see [18]). Cobordism categories and TQFTs, tangles, operads, PROPs, and various
other graphical calculi can be restated in terms of Generalized Cobordism Categories
and their representations.

Glossary
The following table is a (tentative) dictionary of selected terms and notations

used. The symbol ∼ is used to denote merely a relation.

Notation Mathematics Physics
G Gen. Cobord. Cat. Class of Feynman graphs
Γ Object Feynman graph
g Lie algebra of PIs Feynman graphs + insertions
H(G) Grothendieck DG-coalgebra Feynman graphs
F• L∞-morphism Partition function
Fn n-th derivative Green function
W Weight / cocycle ∼ Feynman integral
U pre-Lie algebra morphism ∼ Feynman integral
H(H; k) L∞-morphisms Feynman expansions
S Configuration functor Configuration spaces
ω(Γ) Closed top form on S(Γ) Interaction Lagrangian
W =< S,ω > Pairing ∼ Action
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