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ON THE LIU AND ALMOST UNBIASED LIU
ESTIMATORS IN THE PRESENCE OF

MULTICOLLINEARITY WITH
HETEROSCEDASTIC OR CORRELATED ERRORS

M. I. Alheety and B. M. Golam Kibria

Abstract. This paper introduces a new biased estimator, namely, almost unbiased Liu estimator

(AULE) of β for the multiple linear regression model with heteroscedastics and/or correlated errors

and suffers from the problem of multicollinearity. The properties of the proposed estimator is

discussed and the performance over the generalized least squares (GLS) estimator, ordinary ridge

regression (ORR) estimator (Trenkler [20]), and Liu estimator (LE) (Kaçiranlar [10]) in terms of

matrix mean square error criterion are investigated. The optimal values of d for Liu and almost

unbiased Liu estimators have been obtained. Finally, a simulation study has been conducted which

indicated that under certain conditions on d, the proposed estimator performed well compared to

GLS, ORR and LE estimators.

1 Introduction

Consider the following multiple linear regression model

Y = Xβ + ε, (1.1)

where Y is an n × 1 vector of observations, X is an n × p matrix, β is an p × 1
vector of unknown parameters, and ε is an n×1 vector of non observable errors with
E(ε) = 0 and Cov(ε) = σ2In. The most common method used for estimating the
regression coefficients in (1.1) is the ordinary least squares (OLS) method which is
defined as

β̂ = (X ′X)−1X ′Y . (1.2)

Both the OLS estimator and its covariance matrix heavily depend on the characteristics
of the X ′X matrix. If XX is ill-conditioned, i.e. the column vectors of X are linearly
dependent, the OLS estimators are sensitive to a number of errors. For example,
some of the regression coefficients may be statistically insignificant or have the wrong
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sign, and they may result in wide confidence intervals for individual parameters.
With ill-conditioned X ′X matrix, it is difficult to make valid statistical inferences
about the regression parameters. One of the most popular estimator dealing with
multicollinearity is the ordinary ridge regression (ORR) estimator proposed by Hoerl
and Kennard [7, 8] and is defined as

β̃k = [X ′X + kIp]−1X ′Y = [Ip + k(X ′X)−1]−1β̂.

Both of the Liu estimator β̂d (LE) and the generalized Liu estimator β̂D are defined
for each parameter d ∈ (−∞,∞), (see Kaciranlar et al., [9]) as follows

β̂d = (X ′X + I)−1(X ′X + dI)β̂ (1.3)
β̂D = (X ′X + I)−1(X ′X + D)β̂,

where D = diag(di) is a diagonal matrix of the biasing parameter and di ∈ (−∞,∞),
i = 1, 2, · · · , p (Akdeniz and Kaciranlar [2]). The advantage of the LE over the ORR
is that the LE is a linear function of d, so it is easy to choose d than to choose k in
the ORR estimator. Since X ′X is symmetric, there exists a p×p orthogonal matrix
P such that P ′X ′XP = Λ, Λ is a p × p diagonal matrix where diagonal elements
λ1, · · · , λp are the eigenvalues of X ′X and λ1 > λ2 > · · · > λp. So, model (1.1) can
be written in the canonical form as:

Y = Zα + ε, (1.4)

where Z = XP and α = P ′β. The OLS and Liu estimators for (1.4) are respectively

α̂ = Λ−1Z ′Y (1.5)

and
α̂d = (Λ + I)−1(Λ + dI)α̂. (1.6)

Since α̂d is a biased estimator, one can apply the jackknife procedure to reduce the
bias as proposed by Quenouille [18]. Akdeniz and Kaciranlar [2] proposed the almost
unbiased generalized Liu estimator

α̂D = [I − (Λ + I)−2(I −D)2]α̂. (1.7)

In model (1.1) we assumed that Cov(ε) = σ2I which is called homoscedasticity i.e.
V ar(εi) = σ2, for i = 1, · · · , n and uncorrelated i.e. Cov(εi, εj) = 0 for i 6= j. Now
we made a broader assumption of unequal error variances i.e. heteroscedasticity,
that is,

E(ε) = 0, Cov(ε) = σ2V . (1.8)

Since σ2V is the variance-covariance matrix of the errors, V must be positive definite
(p.d.), so there exist an n× n symmetric matrix T , such that T ′T = V so that the
model (1.1) can be written as

T−1Y = T−1XB + T−1ε.
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Let Y∗ = T−1Y, X∗ = T−1X and ε∗ = T−1ε then E(ε∗) = 0 and Cov(ε∗) = σ2I.
Therefore the transformed model

Y∗ = X∗β + ε∗ (1.9)

satisfies the assumption of error ε∗ ∼ N(0, σ2I). So the OLS estimator for the model
(1.9) is

β̃ = (X ′
∗X∗)−1X ′

∗Y∗ = (X ′V −1X)−1X ′V −1Y (1.10)

which is called the generalized least squares (GLS) estimator of β . The GLS
estimator is the best linear unbiased estimator of β where Cov(β̃) = σ2(X ′V −1X)−1.
Since the rank of X∗ is equal to that of X, then the multicollinearity still also effects
the GLS estimator. Trenkler [20] proposed the ridge estimator of β as:

β̂k = (X ′V −1X + kI)−1X ′V −1.

Because β̂k is a biased estimator, Özkale [17] proposed a jackknife ridge estimator
to reduce the bias of β̂k. The organization of the paper is as follows. We propose
the almost unbiased Liu estimator (AULE) in Section 2. The performance of AUL
estimator compare with other estimators with respect to the matrix mean square
error (MSE) and scalar mean square error (mse) are given in Section 3. A simulation
study has been conducted in Section 4. Finally some concluding remarks are given
in Section 5.

2 The Almost Unbiased Liu Estimators

As we mentioned in Section 1, the structure of LE is obtained by combining the
ridge philosophy with the Stein estimator [19]. Kaciranlar [10] introduced the Liu
estimator under the general linear model as follows

β̃d = (X ′V −1X + I)−1(X ′V −1X + dI)β̃. (2.1)

By using the canonical form, we may rewrite (2.1) as follows:

α̃d = (Γ + I)−1(Γ + dI)α̃, (2.2)

where
α̃ = (W ′W )−1W ′Y∗ = Γ−1Q′X ′V −1Y , (2.3)

where W = X∗Q = T−1XQ, Q is an orthogonal matrix of X ′V −1X which those
columns are the eigenvector of the matrix X ′V −1X and

W ′W = Γ = diag{γ1, γ2, · · · , γp}

is the diagonal matrix which those elements are the eigenvalues of the matrix
X ′V −1X.
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It is clear that α̃d is biased estimator (See Kaciranlar [10])

Bias(α̃d) = −(1− d)(Γ + I)−1α.

The variance-covariance matrix of α̃d is given as follows:

Cov(α̃d) = σ2Γ−1(Γ + I)−2(Γ + dI)2.

In order to compare the performance of any estimator with others, a criterion for
measuring the goodness of an estimator is required. For this purpose, the mean
square error (MSE) criteria is used to measure the goodness of an estimator. We
note that for any estimator β∗ of β, its MSE is defined as

MSE(β∗) = E(β∗ − β)(β∗ − β)′ = Cov(β∗) + Bias(β∗)Bias(β∗)′.

Therefore the MSE of α̃k is given as follows:

MSE(α̃k) = σ2Γ(Γ + kI)−2 + k2(Γ + kI)−1αα′(Γ + kI)−1.

Also, the MSE of α̃d is obtained as:

MSE(α̃d) = σ2Γ−1(Γ + I)−2(Γ + dI)2 + (d− 1)2(Γ + I)−1αα′(Γ + I)−1 (2.4)

and the scalar mean square error (mse) is obtained as follows

mse(α̃d) = tr(MSE(α̃d)) =
p∑

i=1

σ2(γi + d)2 + (d− 1)2γiα
2
i

γi(γi + 1)2
. (2.5)

Since α̃d is a biased estimator, one can apply the jackknife procedure to reduce the
bias of α̃d which is due to Quenouille [18]. We may rewrite (2.2) as follows:

α̃d = α̃− (1− d)(Γ + I)−1α̃,

Bias(α̃d) = −(1− d)(Γ + I)−1α.

Thus, following Kadiyala [11] and Ohtani [16], we have

α̃∗
d = [I + (Γ + I)−1(1− d)]α̃d (2.6)

= [I − (Γ + I)−2(1− d)2]α̃

which we called AUL estimator. The form in (2.6) seems to be the same with
the jackknife Liu estimator that Akdeniz and Kaçiranlar [2] proposed, but in (2.6),
W ′W = Γ is the diagonal matrix of the eigenvalues of X ′V −1X whereas in Akdeniz
and Kaciranlar [2] Z ′Z = Λ is the diagonal matrix of the eigenvalues of X ′X. The
bias and the variance-covariance matrix of α̃d are given as follows:

Bias(α̃d) = −(1− d)2(Γ + I)−2α (2.7)
Cov(α̃∗

d) = σ2[I − (1− d)2(Γ + I)−2]Γ−1[I − (1− d)2(Γ + I)−2].
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Therefore, the MSE and mse of α̃∗
d are

MSE(α̃∗
d) = (2.8)

= σ2[I − (1− d)2(Γ + I)−2]Γ−1[I − (1− d)2(Γ + I)−2] +
+ (1− d)4(Γ + I)−2αα′(Γ + I)−2

and

mse(α̃∗
d) =

p∑
i=1

σ2(γi + 1)4
(
1− (1−d)2

(γi+1)2

)2
+ γi(1− d)4α2

i

γi(γi + 1)4
. (2.9)

3 Performance of the Estimators

This section compare the performance of the estimators with the smaller MSE
criteria. For the sake of convenience, we define some Lemmas which are presented
below.

Lemma 1. Let M be a p.d. matrix , and a be a vector, then M−aa′ is non negative
definite matrix (n.n.d.) if and only if a′Ma ≤ 1.

Proof. See Farebrother [4].

Lemma 2. Let β̂j = AjY, j = 1, 2 be two linear estimators of β. Suppose that
D = Cov(β̂1) − Cov(β̂2) is p.d. then ∆ = MSE(β̂1) −MSE(β̂2) is n.n.d. if and
only if b′2(D + b1b

′
1)

−1b2 ≤ 1, where bj denotes the bias vector of β̂j.

Proof. See Trenkler and Toutenburg [21].

3.1 Comparison between AUL Estimator and GLS Estimator

The difference MSE between the AUL and GLS estimators is given as follows

∆1 = MSE(α̃)−MSE(α̃∗
d) = σ2D1 − b2b

′
2,

where D1 = Γ−1 − Γ−1[I − (1 − d)2(Γ + I)−2][I − (1 − d)2(Γ + I)−2] and b2 =
−(1− d)2(Γ + I)−2α.

In the following theorem, we will give the necessary and sufficient conditions for
α̃∗

d to be superior to the α̃.

Theorem 3. Under the linear regression model with heteroscedastic and/or correlated
errors, the α̃∗

d is superior to the α̃ in the MSE sense, namely, ∆1 if and only if

b′2D
−1
1 b2 ≤ σ2.
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Proof. It is clear that when 0 < d < 1, then I − [I − (I − dI)2(Γ + I)−2]2 is p.d.
and that means D1 is p.d. Therefore using Lemma 1, ∆1 is n.n.d. if and only if
b′2D

−1
1 b2 ≤ σ2 and by using an explicit form, ∆1 is n.n.d. if and only if

(1− d)2α′Γ
[
2(Γ + I)2 − (I − d)2I

]−1
α < σ2.

The proof is completed.

3.2 Comparison between AUL Estimator and Liu Estimator

Consider
∆2 = MSE(α̃d)−MSE(α̃∗

d) = σ2D2 + b1b
′
1 − b2b

′
2,

where D2 = Γ−1(Γ + I)−2(Γ + dI)2 − Γ−1[I − (1 − d)2(Γ + I)−2]2 and b1 = −(1 −
d)(Γ + I)−1α. The following theorem gives the necessary and sufficient conditions
for α̃∗

d to be superior to the α̃d.

Theorem 4. Under the linear regression model with heteroscedastic and/or correlated
errors, when 1 < d < 2γi +3 , the α̃∗

d is superior to the α̃d in the MSE sense, namely
∆2, if and only if b′2(σ

2D2 + b1b
′
1)

−1b2 ≤ 1.

Proof. D2 is p.d. if and only if

(γi + 1)2(γi + d)2 −
[
(γi + 1)2 − (γi − d + 2)2

]
γi(γi + 1)4

=
(γi + d)2(d− 1)(2γi − d + 3)

γi(γi + 1)4
> 0.

Since (γi + d)2 > 0 for any value of d, we have to consider the following option to
show that D2 is p.d.

• If d > 1, then (2γi − d + 3) must be greater than zero, i.e.

(2γi − d + 3) > 0 ⇒ d < 2γi + 3.

We should find d that makes (2γi−d+3) > 0. This is will happen when d < 2γi +3.
Therefore, when 1 < d < 2γi + 3, D2 is p.d. By applying Lemma 2, ∆2 is n.n.d. if
and only if

b′2(σ
2D2 + b1b

′
1)

−1b2 ≤ 1.

By using an explicit form, ∆2 is n.n.d. if and only if

(1− d)4α′(Γ + I)−2
[
σ2Γ−1(Γ + I)−2(Γ + dI)2 − Γ−1[I − (1− d)2(Γ + I)−2]2

+(1− d)2(Γ + I)−1αα′(Γ + I)−1
]
(Γ + I)−2α ≤ 1.

The proof is completed.
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3.3 Comparison between AUL Estimator and ORR Estimator

Consider

∆3 = MSE(α̃k)−MSE(α̃d) = σ2D3 + b3b
′
3 − b2b

′
2

∆4 = MSE(α̃d)−MSE(α̃k) = σ2D4 + b2b
′
2 − b3b

′
3

where

D3 = (Γ + kI)−1Γ(Γ + kI)−1 − (Γ + I)−2(Γ + dI)2Γ−1

D4 = (Γ + I)−2(Γ + dI)2Γ−1 − (Γ + kI)−1Γ(Γ + kI)−1

b3 = −k(Γ + kI)−1α

Let us assume that k is fixed. We need to show that D3 is p.d.,

D3 = diag

{
γi

(γi + k)2
− (γi + d)2

γi(γi + 1)2

}p

i=1

is p.d. if{
γ2

i (γ + 1)2 − (γi + k)2(γi + d)2

γi(γ + 1)2(γi + k)2

}
> 0

⇔ d <
(1− k)γi

(γi + k)
.

Therefore, D3 is p.d. for 0 < d < d∗ = (1−k)γi

(γi+k) . After applying Lemma 2, we can
state the following theorem.

Theorem 5. Under the linear regression model with heteroscedastic and/or correlated
errors , then

1. For 0 < d < d∗, ∆3 is n.n.d. if and only if

b′2(σ
2D3 + b3b

′
3)

−1b2 < 1

and if we use an explicit form, then ∆3 is n.n.d. if and only if

(1− d)4α′[σ2(Γ + I)2Γ(Γ + kI)−2(Γ + I)2 − (Γ + dI)2Γ−1(Γ + I)2 +
+k2(Γ + I)2(Γ + kI)−1αα′(Γ + kI)−1(Γ + I)2]−1α < 1.

2. For 0 < d∗ < d < 1, ∆4 is n.n.d. if and only if

b′3(σ
2D4 + b′2b2)−1b3 < 1

and if we use an explicit form, then ∆4 is n.n.d. if and only if

k2α′[σ2(Γ + kI)(Γ + I)−2(Γ + dI)2Γ−1(Γ + kI)− Γ +
(1− d)4(Γ + kI)(Γ + I)−2αα′(Γ + I)−2(Γ + kI)]−1α < 1.
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Let us now assumed that d is fixed. By using same approach in D3, D4 is p.d.
for k > k∗ = (1−d)γi

(γi+d) . After applying Lemma 2 we have the following theorem

Theorem 6. Under the linear regression model with heteroscedastic and/or correlated
errors, then

1. For k > k∗, ∆4 is n.n.d. if and only if

b′3(D4 + b2b
′
2)

−1b3 < 1.

2. For k < k∗, ∆3 is n.n.d. if and only if

b′2(D3 + b3b
′
3)

−1b2 < 1.

The explicit forms of Theorem 6 are same as the explicit forms of ∆3 and ∆4

in Theorem 5. We can find the optimal value of d by minimizing the MSE of
Liu estimator and AUL estimator in the linear model with heteroscedastic and/or
correlated errors as follows:

d =

∑ γi(α
2−σ2)

γi(γi+1)2∑ (σ2+γiα2
i )

γi(γi+1)2

(3.1)

and

dAULE = 1−

√√√√√∑p
i=1

σ2

γi(γi+1)2∑p
i=1

σ2+γiα2
i

γi(γi+1)4

(3.2)

respectively.
Since d depends on the unknown parameters (α, σ2), we replace them by their

unbiased estimators (GLS) and the estimated values are

d̂ =

p∑
i=1

γi(α̂
2
i −σ̂2)

γi(γi+1)2

p∑
i=1

(σ̂2+γiα̂2
i )

γi(γi+1)2

and

d̂AULE = 1−

√√√√√∑p
i=1

σ̂2

γi(γi+1)2∑p
i=1

σ̂2+γiα̂2
i

γi(γi+1)4

respectively.
We can note from our theorems that the comparison results depend on the

unknown parameters β and σ2. In consequence of that, we cannot exclude that
our results obtained in the theorems will be held and the results may be changeable.
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So, we replace them ( β and σ2) by their unbiased estimators. Since V is rarely
known, the estimate of V can be used. Trenkler [20] gave some estimates of V as

V = (vij) , vij = ρ|i−j|, i, j = 1, 2, ..., n (3.3)

and

V =
1

1 + ρ2
=



1 + ρ2 ρ 0 · · · 0
ρ 1 + ρ2 ρ · · · 0
0 ρ 0 · · · 0
...

...
...

...
...

0 0 · · · 1 + ρ2 ρ
0 0 · · · ρ 1 + ρ2


.

Firinguetti [5] introduced another estimate of V matrix as follows

V =
1

1− ρ2
=



1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

...
...

ρn−1 ρn−2 · · · 1


. (3.4)

There are other estimates of V matrix are given by other researchers like Bayhan
and Bayhan [3].

4 The Monte Carlo Simulation

This section conducted a simulation study to compare the performance of the AULE
with other estimators. To achieve different degrees of collinearity, following McDonald
and Galarneau [14], Gibbons [6] and Kibria [12], the explanatory variables are
generated by using the following equation.

xij = (1− γ2)1/2zij + γzip, i = 1, · · · , n, j = 1, 2, · · · , p,

where zij are independent standard normal pseudo-random numbers , p = 5 is the
number of the explanatory variables, n = 50, 100 and 150 and γ is specified so that
the correlation between any two explanatory variables is given by γ2. Three different
sets of correlation are considered according to the value of γ = 0.85 and 0.95. Also
the explanatory variables are standardized so that X ′X will be in correlation form.

The estimated V matrix that given in (3.3) is used in this simulation study
where four values of ρ are given as 0.1, 0.4, 0.7, 0.9. According to Kibria [12],
Alheety and Gore [1] and Muniz and Kibria [15], we consider the coefficient vector
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that corresponded to the largest eigenvalue of X ′V −1X matrix. The n observations
for the dependent variable are determined by the following equation:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + · · · + βpxip + ei,

where ei are independent normal pseudo-random numbers with mean 0 and variance
σ2. In this study, β0 is taken to be zero. Three values of σ are given as 0.01, 0.3
and 1. The estimated optimal values of d and dAULE are used for Liu and AUL
estimator respectively. The experiment is replicated 2000 times by generating new
error terms. The MSEs for the estimators are calculated as follows

MSE(β̂∗) =
1

2000

2000∑
r=1

(β̂∗
(r) − β)′(β̂∗

(r) − β),

where β̂∗ is any estimator that used in this study for making a comparison.
The simulated MSEs for all estimators are presented in Table 1. It is observed

that the proposed AULE estimator performing well compare to others for small σ. It
is also noted that the performance of the estimators depend on ρ, γ and the sample
size n.

5 Concluding Remarks

A new biased estimator has been proposed for estimating the parameter of the
linear regression model with multicollinearity and heteroscedastics and/or correlated
errors. The bias and MSE expressions of the estimators are given. The proposed
almost unbiased Liu estimator (AULE) is examined against generalized least squares
(GLS), ordinary ridge regression (ORR) and Liu estimators in terms of matrix mean
square error criterion. The optimal values of d for Liu and almost unbiased Liu
estimators are obtained. A simulation study has been made to show the performance
of the proposed estimator compared with others. It is observed that under some
conditions on d, the proposed estimator performed well compared to others. We
belive that the findings of this paper will be useful for the practitioners.

Acknowledgment. The authors are thankful to the editor and referee for
their constructive and valuable suggestions and comments that have improved the
presentation of the paper greatly.
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Table 1: Mean square errors of the GLS, LE, AULE and ORR estimators for
different ρ and V estimated using the equation (3.3)

ρ n σ γ = 0.85 γ = 0.95
GLS LE AULE ORR GLS LE AULE ORR

0.10 50 0.01 0.2401 0.2401 0.2401 0.2401 0.2901 0.2901 0.2901 0.2901
0.3 0.2414 0.2457 0.2364 0.2414 0.2925 0.3069 0.2875 0.2925
1 0.3722 0.3930 0.4280 0.3618 0.5384 0.4563 0.748 0.4612

100 0.01 0.2539 0.2539 0.2539 0.2539 0.2805 0.2805 0.2805 0.2805
0.3 0.2546 0.2570 0.2494 0.2546 0.2819 0.2893 0.2751 0.2819
1 0.331 0.3668 0.3489 0.3297 0.4268 0.4249 0.5037 0.4119

150 0.01 0.244 0.2440 0.2440 0.2440 0.2868 0.2868 0.2868 0.2868
0.3 0.2447 0.2463 0.2413 0.2448 0.2879 0.2938 0.2811 0.2879
1 0.3256 0.3653 0.3318 0.3254 0.3972 0.4086 0.4507 0.3893

0.40 50 0.01 0.2475 0.2475 0.2475 0.2475 0.2827 0.2827 0.2827 0.2827
0.3 0.2488 0.2519 0.2465 0.2488 0.2848 0.2940 0.2823 0.2849
1 0.3788 0.3821 0.4292 0.3721 0.5000 0.4417 0.6285 0.4623

100 0.01 0.2533 0.2533 0.2533 0.2533 0.2844 0.2844 0.2844 0.2844
0.3 0.254 0.2561 0.2512 0.2541 0.2858 0.2919 0.2827 0.2858
1 0.336 0.3545 0.3578 0.3348 0.4219 0.4076 0.4893 0.4101

150 0.01 0.25 0.2500 0.2500 0.2500 0.2898 0.2898 0.2898 0.2898
0.3 0.2507 0.2520 0.2483 0.2507 0.2907 0.2952 0.2871 0.2907
1 0.3283 0.3513 0.3398 0.3278 0.3905 0.3895 0.4346 0.3848

0.70 50 0.01 0.2336 0.2336 0.2336 0.2336 0.2909 0.2909 0.2909 0.2909
0.3 0.2355 0.2379 0.2339 0.2355 0.2936 0.2983 0.2941 0.2936
1 0.413 0.4026 0.4498 0.4069 0.5810 0.5106 0.6794 0.5465

100 0.01 0.2411 0.2411 0.2411 0.2411 0.2824 0.2824 0.2824 0.2824
0.3 0.2421 0.2432 0.2407 0.2421 0.2841 0.2883 0.2835 0.2841
1 0.3428 0.3481 0.3557 0.3422 0.4546 0.4293 0.5019 0.4449

150 0.01 0.2364 0.2364 0.2364 0.2364 0.2833 0.2833 0.2833 0.2833
0.3 0.2373 0.2382 0.2358 0.2373 0.2845 0.2874 0.2835 0.2845
1 0.3312 0.3391 0.3397 0.3310 0.4030 0.3932 0.4312 0.3998

0.90 50 0.01 0.2387 0.2387 0.2387 0.2387 0.2887 0.2887 0.2887 0.2887
0.3 0.2403 0.2409 0.2404 0.2403 0.2911 0.2924 0.2914 0.2911
1 0.4081 0.4000 0.4216 0.406 0.5558 0.5279 0.5886 0.5455

100 0.01 0.2397 0.2397 0.2397 0.2397 0.2868 0.2868 0.2868 0.2868
0.3 0.2407 0.2412 0.2406 0.2407 0.2883 0.2895 0.2884 0.2883
1 0.3478 0.3466 0.3538 0.3475 0.4462 0.435 0.4606 0.4438

150 0.01 0.2415 0.2415 0.2415 0.2415 0.2871 0.2871 0.2871 0.2871
0.3 0.2424 0.2428 0.2421 0.2424 0.2882 0.2892 0.2882 0.2882
1 0.3371 0.3374 0.3411 0.337 0.4054 0.3986 0.4153 0.4043
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