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FRACTIONAL ORDER DIFFERENTIAL
INCLUSIONS ON THE HALF-LINE

Mouffak Benchohra and Naima Hamidi

Abstract. We are concerned with the existence of bounded solutions of a boundary value
problem on an unbounded domain for fractional order differential inclusions involving the Caputo
fractional derivative. Our results are based on the fixed point theorem of Bohnnenblust-Karlin

combined with the diagonalization method.

1 Introduction

This paper deals with the existence of bounded solutions for boundary value problems
(BVP for short) for fractional order differential inclusions of the form

cD(t) € F(t,y(t)), te.J:=]0,00), (1.1)

y(0) = yo, y is bounded on J, (1.2)

where D is the Caputo fractional derivative of order o € (1,2], F': JxR — P(R) is
a multivalued map with compact, convex values (P(R) is the family of all nonempty
subsets of R), yo € R.

Fractional Differential equations have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry, engineering,
control, etc. (see [15, 17, 19, 18, 24, 27, 28]).

Recently, there has been a significant development in the study of ordinary and
partial differential equations and inclusions involving fractional derivatives, see the
monographs of Kilbas et al. [21], Lakshmikantham et al. [22], Miller and Ross [25],
Podlubny [27], Samko et al. [29] and the papers by Agarwal et al. [1], Belarbi et al.
[7, 8], Benchohra et al. [9, 10, 11, 12], Chang and Nieto [14], Diethelm et al. [15],
and Ouahab [26].

Agarwal et al. [2] have considered a class of boundary value problems involving
Riemann-Liouville fractional derivative on the half line. They used the diagonalization
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process combined with the nonlinear alternative of Leray- Schauder type. This paper
continues this study by considering a boundary value problem with the Caputo
fractional derivative. We use the classical fixed point theorem of Bohnnenblust-
Karlin [13] combined with the diagonalization process widely used for integer order
differential equations; see for instance [3, 4]. Our results extend to the multivalued
case those considered recently by Arara et al. [5].

2 Preliminary facts

We now introduce notations, definitions, and preliminary facts that will be used in
the remainder of this paper.

Let T'> 0 and J :=[0,7]. C(J,R) is the Banach space of all continuous functions
from J into R with the usual norm

lyll = sup{ly(t)] : 0 <t < T}

L'(J,R) denote the Banach space of functions y : J — R that are Lebesgue
integrable with the norm

T
Iyl = /0 y(0)\dt.

AC!(J,R) denote the space of differentiable functions whose first derivative y' is
absolutely continuous.

2.1 Fractional derivatives

Definition 1. (21, 27]). Given an interval [a,b] of R. The fractional (arbitrary)
order integral of the function h € L'([a,b],R) of order o € Ry is defined by

t — s a—1
ITh(t) = / (tI‘@)Z)h(S)dS’

where T is the gamma function. When a = 0, we write I*h(t) = [h * vo|(t), where

0alt) = % fort >0, and p(t) =0 fort <0, and o — §(t) as o — 0, where 0
1s the delta function.

Definition 2. (/21]). For a given function h on the interval [a,b], the Caputo
fractional-order derivative of h, is defined by

(“Dgyh)(t) = F(nl_a) / (t — s)™ LR (s)ds,
where m = [a] + 1.
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Fractional Order Differential Inclusions 101

More details on fractional derivatives and their properties can be found in [21, 27]
Lemma 3. (Lemma 2.22 [21]). Let a > 0, then the differential equation
‘D*h(t) =0
has solutions
h(t)=co+ct+ct’ + ..+ emit™ L eR, i=0,1,2,...,m—1, m=[a]+1.
Lemma 4. (Lemma 2.22 [21]). Let a > 0, then
I% °Dh(t) = h(t) + co + c1t + cot> + ... + 1 t™ 1, (2.1)

for arbitrary ¢; € R, i=0,1,2,....m—1, m=[a]+ 1.

2.2 Set-valued maps

Let X and Y be Banach spaces. A set-valued map G : X — P(Y) is said to be
compact if G(X) = |J{G(y);y € X} is compact. G has convex (closed, compact)
values if G(y) is convex(closed, compact) for every y € X. G is bounded on bounded
subsets of X if G(B) is bounded in Y for every bounded subset B of X. A set-valued
map G is upper semicontinuous (usc for short) at zgp € X if for every open set O
containing Gz, there exists a neighborhood V' of zy such that G(V') C O. G is usc
on X if it is usc at every point of X if G is nonempty and compact-valued then G
is usc if and only if G has a closed graph. The set of all bounded closed convex and
nonempty subsets of X is denoted by Pp o.o(X). A set-valued map G : J — Py(X)
is measurable if for each y € X, the function ¢t — dist(y,G(t)) is measurable on
J.If X C Y, G has a fixed point if there exists y € X such that y € Gy. Also,
IGW)|lp = sup{|z|;z € G(y)}. A multivalued map G : J — Py(R) is said to be
measurable if for every y € R, the function

t— d(y,G(t)) = inf{|ly — 2| : z € G(t)}

is measurable. For more details on multivalued maps see the books of Aubin and
Frankowska [6], Deimling [16] and Hu and Papageorgiou [20].

Definition 5. A multivalued map F : J x R — P(R) is said to be L'-Carathéodory
if

(i) t — F(t,y) is measurable for each x € R;
(ii) x — F(t,y) is upper semicontinuous for almost all t € J,
(iii) for each q > 0, there exists ¢, € L*(J,Ry) such that
|F(t,x)||[p =sup{|v| : v € F(t,x)} < q4(t) for all|z| < q and fora.e. t € J.
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The multivalued map F' is said of Carathéodory if it satisfies (i) and (ii).
For each y € C(J,R), define the set of selections of F' by

S}’,y ={ve LY (J,R):v(t) € F(t,y(t)) a.e. t € J}.

Definition 6. By a solution of BVP (1.1)-(1.2) we mean a function y € AC1(J,R)
such that
‘D¥(t) =g¢(t), ted, 1<a<?2, (2.2)

y(0) = vo, y bounded on J, (2.3)

where g € S};y.

Remark 7. Note that for an L'-Carathéodory multifunction F : J x R — Py(R)
the set Sll’,y is not empty (see [23]).

Lemma 8. ( Bohnenblust-Karlin)([13]). Let X be a Banach space and K € Py .(X)
and suppose that the operator G : K — Py (K) is upper semicontinuous and the
set G(K) is relatively compact in X. Then G has a fixed point in K.

3 Main result

We first address a boundary value problem on a bounded domain. Let n € N, and
consider the boundary value problem

°D%(t) € F(t,y(t)), te Jp,:=[0,n], 1<a<2 (3.1)

y(0) =yo, ¥'(n)=0. (3.2)

Let h : J, — R be continuous, and consider the linear fractional order differential
equation
‘D% (t) =h(t), ted,, l<a<?2 (3.3)

We shall refer to (3.3)-(3.2) as (LP).

By a solution to (LP) we mean a function y € AC!(J,,R) that satisfies equation
(3.3) on J,, and condition (3.2).

We need the following auxiliary result:

Lemma 9. A function y is a solution of the fractional integral equation
n
vt) =w+ [ Galto)hs)ds, (3.4)
0

if and only if y is a solution of (LP), where G(t,s) is the Green’s function defined
by

—t(n—s)>2 + (t—s)*! 0<s<t<n
Galtis) = { e, e <s<t<n, (3.5)
o= 0<t<s<n.
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Proof. Let y € C(J,,R) be a solution to (LP). Using Lemma 4, we have that

t — s a—1
y(t) = I*h(t) — co — 1t = /0 (tf@o)z)

for arbitrary constants cg and c¢;. We have by derivation

t — s a—2
Y (t) = /0 (lé(azl)h(s)ds —c1.

h(s)ds — co — et

Applying the boundary conditions (3.2), we find that

€0 = —Yo,
_ n (TL _ 8)0472 \ds
Cl_/o Mo 1) ")

Reciprocally, let y € C(J,, R) satisfying (3.4), then

t_n_sa—Z _Sa—l n o_ ’/Z—Sa_2
y(t)=y0+/0 [ té(a_l) U F(o)z) ]h(s)ds—k/t té(a_)n h(s)ds.

Then y(0) = yo and

n_n_sa72 t _80172
v = [ T+ [ s

Thus, y'(n) = 0 and

cmya—1 _c o _ ¢ noa—1 ! (t B S)a_2 $)ds =¢ a—1jya—1
DLy () = Dy(t) =¢ D /0 a1y Me)ds = DT (D),
OJ

Remark 10. For each n > 0, the function t € Jp, — [}"|Gn(t,s)|ds is continuous
on [0,n], and hence is bounded. Let

G = sup {/ |G (t, s)|ds, t € Jn} .
0

Definition 11. A function y € AC'(J,,R) is said to be a solution of (3.1)—(5.2)
if there exists a function v € L'(J,,R) with v(t) € F(t,y(t)), for a.e. t € Jp, such
that the differential equation “D%y(t) = v(t) on J, and

y(0) =yo, y'(n) =0
are satisfied.
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Theorem 12. Assume the following hypotheses hold:

(H1) F:J, xR — P(R) is Carathéodory with compact convex values,

(Ha) there existp € C(J,RT) and 1 : [0,00) — (0,00) continuous and nondecreasing
such that

|E(t,uw)|lp < p(t)Y(|u]) fort € J, and each u € R;

(Hs3) There exists a constant r > 0 such that

7> |yo| + pib(r)Gy,

where
pr = sup{p(s),s € Jp}.

Then BVP (3.1)-(3.2) has at least one solution on J, with |y(t)| < r for each
te Jy,.

Proof. Fix n € N and consider the boundary value problem
DY(t) € F(t,y(t)), t€ Jp, 1<a<?2, (3.6)

y(0) = yo, ¥'(n) = 0. (3.7)
We begin by showing that (3.6)-(3.7) has a solution y,, € C(J,,R) with

lyn(t)| < r for each t € J,.

Consider the operator N : C(J,,, R) — 2¢(/R) defined by

(Ny) = {h € C(J,R) : h(t) = yo + /On Galt, s)v(s)ds}

where v € 5’11;7?/, and G,(t,s) is the Green’s function given by (3.5). Clearly, from
Lemma 8, the fixed points of N are solutions to (3.6)—(3.7). We shall show that
N satisfies the assumptions of Bohnenblust-Karlins fixed point theorem. The proof
will be given in several steps.

Let
K ={y € C(Jn,R), |lylln <1},

where r is the constant given by (H3). It is clear that K is a closed, convex subset
of C(Jp,R).
Stepl: N(y) is convex for each y € K.
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Indeed, if hy, he belong to N(y), then there exist v1,v9 € S’}% such that for each
t € J, we have

hat) = yo + / G(t, syvi(s)ds, i=1,2.
0

Let 0 < d < 1. Then, for each ¢t € J, we have
(dhy1 + (1 — d)ha)(t) = / Gn(t,s)(dvi(s) + (1 — d)va(s)ds.
0

Since S};y is convex (because F' has convex values), we have
)

dhy + (1 — d)hy € N(y).

Step 2: N(K) is bounded.
This is clear since N(K) C K and K is bounded.

Step 3: N(K) is equicontinuous.

Let £1,& € J, & <&, y € K and h € N(y), then

h(&2) = n(&)| < [ 1G(&,s) — G(&r,8)|v(s)|ds
< ppab(r) Jo' 1Gn(&a, 5) — Gn(&1, 5)|ds.

As & — &, the right-hand side of the above inequality tends to zero. As a
consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that N : K — P(K) is compact.

Step 4: N has a closed graph.

Let yp — Yx, hyn € N(yn) and h,, — h.. We need to show that h, € N(y,).
hn € N(y,) means that there exists v, € Sll*—',yn such that, for each t € J,,

hn(t) = yo + /On Gn(t, s)vn(s)ds.

We must show that there exists v, € S}m - such that, for each t € J,,

h«(t) = yo -|-/ Gn(t,s)v*(s)ds.
0
We consider the continuous linear operator
r:LY(J,,R) — C(Jn,R),
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defined by
(To)(t) = / (£ $)0(s)ds.

0
Since hy,(t) —yo € F(S}qyn), |(hnn(t) — yo) — (ha(t) — yo)| — 0 as n — oo and I' o0 S},
has a closed graph, then
he —yo € T(Sk,).

So
hs € N(yx).

Therefore, we deduce from Bohnenblust-Karlin fixed point theorem that N has a
fixed point y,, in K which is a solution of BVP (3.6)—(3.7) with

lyn(t)| < r for each t € J,.

Diagonalization process

We now use the following diagonalization process. For k£ € N, let

_J ow(t),  te[0,mg],
wel(t) { pltl, e (3.8)

Here {ny}r € N* is a sequence of numbers satisfying
O<n<ne<...<np<...Too.
Let S = {ux}32,. Notice that
lug(t)] < rfor t €[0,n;], k€ N.

Also for k € N and t € [0,n;] we have
ni
Un, (t) = 4o +/ G, (t, s)vp, (s)ds,
0

where v, € S}T,unk and thus, for k € N and ¢,z € [0,n;] we have

umnﬂmmzéﬁ%ﬁw—%mwmmws
and by (Hz), we have

mm@—wwwﬁﬁMMAmWMW$—&d%M%
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The Arzela-Ascoli Theorem guarantees that there is a subsequence N7 of N and a
function z; € C([0,n1], R) with u,, — 21 in C([0,n1],R) as k — oo through N7 Let
N; = N{\{1}. Notice that

|up, (t)] < r for t € [0,n2], k € N.

Also for k € N and ¢,z € [0, ng] we have

Wm@—wwMSQMHAMWMWQ—@d%ﬂ%

The Arzela-Ascoli Theorem guarantees that there is a subsequence N5 of N; and
a function zo € C([0,n2],R) with u,, — 22 in C([0,n2],R) as k — oo through
N3. Note that z; = z2 on [0,n1] since Ny C Nj. Let Ny = Nj\{2}. Proceed
inductively to obtain for m € {3,4,...} a subsequence N}, of N,,_1 and a function
zm € C([0,np],R) with u,, — zp, in C([0,ny,],R) as k& — oo through N;,. Let
N = N\ m}.

Define a function y as follows. Fix ¢t € (0,00) and let m € N with s < n,,. Then
define y(t) = zp(t). Then y € C([0,00),R), y(0) = yo and |y(t)| < r for t € [0, c0).
Again fix t € [0,00) and let m € N with s < n,,. Then for n € N,,, we have

Un, (t) = yo + / " Gh,, (t,s)vp, (s)ds,
0

Let ny — oo through N,, to obtain

zm(t) = yo + /Onm G (z, 8)vm(8)ds,
mn=m+AMwaawmm

where v,, € 5}77 o
We can use this method for each = € [0,n,,], and for each m € N. Thus

Doy(t) € F(t,y(t)), for t € [0, nm]

for each m € N and « € (1,2]. O

4 An example
Consider the boundary value problem
D%(t) € F(t,y(t)), for te J=1[0,00), 1<a<2 (4.1)
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y(0) =1, y is bounded on [0, c0), (4.2)
where “D® is the Caputo fractional derivative. Set
F(t7y) = {'l) eER: fl(t7y) <v< fZ(t7y)}7

where f1, fo : J xR — R are measurable in ¢. We assume that for each t € J, fi(t, )
is lower semi-continuous (i.e, the set {y € R: fi(¢,y) > p} is open for each u € R),
and assume that for each ¢ € J, fa(t,-) is upper semi-continuous (i.e the set {y €
R : fa(t,y) < p} is open for each u € R). Assume that there exists p € C(J,RT)
and d € (0,1) such that

max(|f1(t, )], [f2(t,y)]) < p#)|y°, te€J, and all y € R.

It is clear that F'is compact and convex valued, and it is upper semi-continuous (see
[16]). Also conditions (H1) and (Hs) are satisfied with

Y(u) = u®, for each u € [0, c0).

From (3.5) we have for s <t

/ Gn(t,s) t [(n — t)(aq) — n(afl)] + _

and for t < s

" _ —t n— a—1
/t Gn(t,s)ds = TR 1)( ).

Also since
c

lim —m—— = lim —— = — =
=00 14 pigp(c)Gy o0 h(c)  emso
then there exists r > 0 such that
r

1+ prb(r)Gy

Hence (H3) is satisfied. Then by Theorem 12, BVP (4.1)-(4.2) has a bounded
solution on [0, c0).
Acknowledgement. The authors are grateful to the referee of his/her remarks.
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