FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS ON THE HALF-LINE

Mouffak Benchohra and Naima Hamidi

Abstract

We are concerned with the existence of bounded solutions of a boundary value problem on an unbounded domain for fractional order differential inclusions involving the Caputo fractional derivative. Our results are based on the fixed point theorem of Bohnnenblust-Karlin combined with the diagonalization method.

1 Introduction

This paper deals with the existence of bounded solutions for boundary value problems (BVP for short) for fractional order differential inclusions of the form

$$
\begin{gather*}
{ }^{c} D^{\alpha} y(t) \in F(t, y(t)), \quad t \in J:=[0, \infty), \tag{1.1}\\
y(0)=y_{0}, \quad y \text { is bounded on } J, \tag{1.2}
\end{gather*}
$$

where ${ }^{c} D^{\alpha}$ is the Caputo fractional derivative of order $\alpha \in(1,2], F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a multivalued map with compact, convex values $(\mathcal{P}(\mathbb{R})$ is the family of all nonempty subsets of $\mathbb{R}), y_{0} \in \mathbb{R}$.

Fractional Differential equations have gained considerable importance due to their application in various sciences, such as physics, mechanics, chemistry, engineering, control, etc. (see [15, 17, 19, 18, 24, 27, 28]).

Recently, there has been a significant development in the study of ordinary and partial differential equations and inclusions involving fractional derivatives, see the monographs of Kilbas et al. [21], Lakshmikantham et al. [22], Miller and Ross [25], Podlubny [27], Samko et al. [29] and the papers by Agarwal et al. [1], Belarbi et al. [7, 8], Benchohra et al. [9, 10, 11, 12], Chang and Nieto [14], Diethelm et al. [15], and Ouahab [26].

Agarwal et al. [2] have considered a class of boundary value problems involving Riemann-Liouville fractional derivative on the half line. They used the diagonalization

[^0]http://www.utgjiu.ro/math/sma
process combined with the nonlinear alternative of Leray- Schauder type. This paper continues this study by considering a boundary value problem with the Caputo fractional derivative. We use the classical fixed point theorem of BohnnenblustKarlin [13] combined with the diagonalization process widely used for integer order differential equations; see for instance [3, 4]. Our results extend to the multivalued case those considered recently by Arara et al. [5].

2 Preliminary facts

We now introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper.
Let $T>0$ and $J:=[0, T] . C(J, \mathbb{R})$ is the Banach space of all continuous functions from J into \mathbb{R} with the usual norm

$$
\|y\|=\sup \{|y(t)|: 0 \leq t \leq T\} .
$$

$L^{1}(J, \mathbb{R})$ denote the Banach space of functions $y: J \longrightarrow \mathbb{R}$ that are Lebesgue integrable with the norm

$$
\|y\|_{L^{1}}=\int_{0}^{T}|y(t)| d t
$$

$A C^{1}(J, \mathbb{R})$ denote the space of differentiable functions whose first derivative y^{\prime} is absolutely continuous.

2.1 Fractional derivatives

Definition 1. ([21, 27]). Given an interval $[a, b]$ of \mathbb{R}. The fractional (arbitrary) order integral of the function $h \in L^{1}([a, b], \mathbb{R})$ of order $\alpha \in \mathbb{R}_{+}$is defined by

$$
I_{a}^{\alpha} h(t)=\int_{a}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h(s) d s,
$$

where Γ is the gamma function. When $a=0$, we write $I^{\alpha} h(t)=\left[h * \varphi_{\alpha}\right](t)$, where $\varphi_{\alpha}(t)=\frac{t^{\alpha-1}}{\Gamma(\alpha)}$ for $t>0$, and $\varphi_{\alpha}(t)=0$ for $t \leq 0$, and $\varphi_{\alpha} \rightarrow \delta(t)$ as $\alpha \rightarrow 0$, where δ is the delta function.

Definition 2. ([21]). For a given function h on the interval $[a, b]$, the Caputo fractional-order derivative of h, is defined by

$$
\left({ }^{c} D_{a+}^{\alpha} h\right)(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t}(t-s)^{m-\alpha-1} h^{(m)}(s) d s
$$

where $m=[\alpha]+1$.

More details on fractional derivatives and their properties can be found in [21, 27]
Lemma 3. (Lemma 2.22 [21]). Let $\alpha>0$, then the differential equation

$$
{ }^{c} D^{\alpha} h(t)=0
$$

has solutions
$h(t)=c_{0}+c_{1} t+c_{2} t^{2}+\ldots .+c_{m-1} t^{m-1}, c_{i} \in \mathbb{R}, \quad i=0,1,2, \ldots, m-1, \quad m=[\alpha]+1$.
Lemma 4. (Lemma 2.22 [21]). Let $\alpha>0$, then

$$
\begin{equation*}
I^{\alpha}{ }^{c} D^{\alpha} h(t)=h(t)+c_{0}+c_{1} t+c_{2} t^{2}+\ldots .+c_{m-1} t^{m-1} \tag{2.1}
\end{equation*}
$$

for arbitrary $c_{i} \in \mathbb{R}, \quad i=0,1,2, \ldots ., m-1, \quad m=[\alpha]+1$.

2.2 Set-valued maps

Let X and Y be Banach spaces. A set-valued map $G: X \rightarrow \mathcal{P}(Y)$ is said to be compact if $G(X)=\bigcup\{G(y) ; y \in X\}$ is compact. G has convex (closed, compact) values if $G(y)$ is convex(closed, compact) for every $y \in X . G$ is bounded on bounded subsets of X if $G(B)$ is bounded in Y for every bounded subset B of X. A set-valued map G is upper semicontinuous (usc for short) at $z_{0} \in X$ if for every open set O containing $G z_{0}$, there exists a neighborhood V of z_{0} such that $G(V) \subset O . G$ is usc on X if it is usc at every point of X if G is nonempty and compact-valued then G is usc if and only if G has a closed graph. The set of all bounded closed convex and nonempty subsets of X is denoted by $\mathcal{P}_{b, c l, c}(X)$. A set-valued map $G: J \rightarrow \mathcal{P}_{c l}(X)$ is measurable if for each $y \in X$, the function $t \mapsto \operatorname{dist}(y, G(t))$ is measurable on J. If $X \subset Y, G$ has a fixed point if there exists $y \in X$ such that $y \in G y$. Also, $\|G(y)\|_{\mathcal{P}}=\sup \{|x| ; x \in G(y)\}$. A multivalued map $G: J \rightarrow P_{c l}(\mathbb{R})$ is said to be measurable if for every $y \in \mathbb{R}$, the function

$$
t \longmapsto d(y, G(t))=\inf \{|y-z|: z \in G(t)\}
$$

is measurable. For more details on multivalued maps see the books of Aubin and Frankowska [6], Deimling [16] and Hu and Papageorgiou [20].
Definition 5. A multivalued map $F: J \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is said to be L^{1}-Carathéodory if
(i) $t \longmapsto F(t, y)$ is measurable for each $x \in \mathbb{R}$;
(ii) $x \longmapsto F(t, y)$ is upper semicontinuous for almost all $t \in J$;
(iii) for each $q>0$, there exists $\varphi_{q} \in L^{1}\left(J, \mathbb{R}_{+}\right)$such that

$$
\|F(t, x)\|_{\mathcal{P}}=\sup \{|v|: v \in F(t, x)\} \leq \varphi_{q}(t) \text { for all }|x| \leq q \text { and for a.e. } t \in J .
$$

The multivalued map F is said of Carathéodory if it satisfies (i) and (ii).
For each $y \in C(J, \mathbb{R})$, define the set of selections of F by

$$
S_{F, y}^{1}=\left\{v \in L^{1}(J, \mathbb{R}): v(t) \in F(t, y(t)) \text { a.e. } t \in J\right\} .
$$

Definition 6. By a solution of BVP (1.1)-(1.2) we mean a function $y \in A C^{1}(J, \mathbb{R})$ such that

$$
\begin{gather*}
{ }^{c} D^{\alpha} y(t)=g(t), \quad t \in J, \quad 1<\alpha \leq 2, \tag{2.2}\\
y(0)=y_{0}, \quad y \text { bounded on } J, \tag{2.3}
\end{gather*}
$$

where $g \in S_{F, y}^{1}$.
Remark 7. Note that for an L^{1}-Carathéodory multifunction $F: J \times \mathbb{R} \rightarrow \mathcal{P}_{c l}(\mathbb{R})$ the set $S_{F, y}^{1}$ is not empty (see [23]).
Lemma 8. (Bohnenblust-Karlin)([13]). Let X be a Banach space and $K \in P_{c l, c}(X)$ and suppose that the operator $G: K \rightarrow P_{c l, c}(K)$ is upper semicontinuous and the set $G(K)$ is relatively compact in X. Then G has a fixed point in K.

3 Main result

We first address a boundary value problem on a bounded domain. Let $n \in \mathbb{N}$, and consider the boundary value problem

$$
\begin{gather*}
{ }^{c} D^{\alpha} y(t) \in F(t, y(t)), \quad t \in J_{n}:=[0, n], \quad 1<\alpha \leq 2 \tag{3.1}\\
y(0)=y_{0}, \quad y^{\prime}(n)=0 \tag{3.2}
\end{gather*}
$$

Let $h: J_{n} \rightarrow \mathbb{R}$ be continuous, and consider the linear fractional order differential equation

$$
\begin{equation*}
{ }^{c} D^{\alpha} y(t)=h(t), \quad t \in J_{n}, \quad 1<\alpha \leq 2 . \tag{3.3}
\end{equation*}
$$

We shall refer to (3.3)-(3.2) as (LP).
By a solution to (LP) we mean a function $y \in A C^{1}\left(J_{n}, \mathbb{R}\right)$ that satisfies equation (3.3) on J_{n} and condition (3.2).

We need the following auxiliary result:
Lemma 9. A function y is a solution of the fractional integral equation

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{n} G_{n}(t, s) h(s) d s, \tag{3.4}
\end{equation*}
$$

if and only if y is a solution of $(L P)$, where $G(t, s)$ is the Green's function defined by

$$
G_{n}(t, s)= \begin{cases}\frac{-t(n-s)^{\alpha-2}}{\Gamma(\alpha-1)}+\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq n \tag{3.5}\\ \frac{-t\left(n(-s)^{\alpha-2}\right.}{\Gamma(\alpha-1)}, & 0 \leq t \leq s<n .\end{cases}
$$

Proof. Let $y \in C\left(J_{n}, \mathbb{R}\right)$ be a solution to (LP). Using Lemma 4, we have that

$$
y(t)=I^{\alpha} h(t)-c_{0}-c_{1} t=\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} h(s) d s-c_{0}-c_{1} t,
$$

for arbitrary constants c_{0} and c_{1}. We have by derivation

$$
y^{\prime}(t)=\int_{0}^{t} \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s-c_{1} .
$$

Applying the boundary conditions (3.2), we find that

$$
\begin{gathered}
c_{0}=-y_{0} \\
c_{1}=\int_{0}^{n} \frac{(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s .
\end{gathered}
$$

Reciprocally, let $y \in C\left(J_{n}, \mathbb{R}\right)$ satisfying (3.4), then

$$
y(t)=y_{0}+\int_{0}^{t}\left[\frac{-t(n-s)^{\alpha-2}}{\Gamma(\alpha-1)}+\frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\right] h(s) d s+\int_{t}^{n} \frac{-t(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s
$$

Then $y(0)=y_{0}$ and

$$
y^{\prime}(t)=\int_{0}^{n} \frac{-(n-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s+\int_{0}^{t} \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s .
$$

Thus, $y^{\prime}(n)=0$ and

$$
{ }^{c} D^{\alpha-1} y(t)={ }^{c} D^{\alpha} y(t)={ }^{c} D^{\alpha-1} \int_{0}^{t} \frac{(t-s)^{\alpha-2}}{\Gamma(\alpha-1)} h(s) d s={ }^{c} D^{\alpha-1} I^{\alpha-1} h(t) .
$$

Remark 10. For each $n>0$, the function $t \in J_{n} \mapsto \int_{0}^{n}\left|G_{n}(t, s)\right| d s$ is continuous on $[0, n]$, and hence is bounded. Let

$$
\tilde{G}_{n}=\sup \left\{\int_{0}^{n}\left|G_{n}(t, s)\right| d s, t \in J_{n}\right\} .
$$

Definition 11. A function $y \in A C^{1}\left(J_{n}, \mathbb{R}\right)$ is said to be a solution of (3.1)-(3.2) if there exists a function $v \in L^{1}\left(J_{n}, \mathbb{R}\right)$ with $v(t) \in F(t, y(t))$, for a.e. $t \in J_{n}$, such that the differential equation ${ }^{c} D^{\alpha} y(t)=v(t)$ on J_{n} and

$$
y(0)=y_{0}, \quad y^{\prime}(n)=0
$$

are satisfied.

Theorem 12. Assume the following hypotheses hold:
$\left(\mathcal{H}_{1}\right) \quad F: J_{n} \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is Carathéodory with compact convex values,
$\left(\mathcal{H}_{2}\right)$ there exist $p \in C\left(J, \mathbb{R}^{+}\right)$and $\psi:[0, \infty) \rightarrow(0, \infty)$ continuous and nondecreasing such that

$$
\|F(t, u)\|_{\mathcal{P}} \leq p(t) \psi(|u|) \text { for } t \in J_{n} \text { and each } u \in \mathbb{R} ;
$$

$\left(\mathcal{H}_{3}\right)$ There exists a constant $r>0$ such that

$$
r \geq\left|y_{0}\right|+p_{n}^{*} \psi(r) \tilde{G_{n}},
$$

where

$$
p_{n}^{*}=\sup \left\{p(s), s \in J_{n}\right\} .
$$

Then BVP (3.1)-(3.2) has at least one solution on J_{n} with $|y(t)| \leq r$ for each $t \in J_{n}$.

Proof. Fix $n \in \mathbb{N}$ and consider the boundary value problem

$$
\begin{gather*}
D^{\alpha} y(t) \in F(t, y(t)), \quad t \in J_{n}, \quad 1<\alpha \leq 2, \tag{3.6}\\
y(0)=y_{0}, y^{\prime}(n)=0 . \tag{3.7}
\end{gather*}
$$

We begin by showing that (3.6)-(3.7) has a solution $y_{n} \in C\left(J_{n}, \mathbb{R}\right)$ with

$$
\left|y_{n}(t)\right| \leq r \text { for each } t \in J_{n} .
$$

Consider the operator $N: C\left(J_{n}, \mathbb{R}\right) \longrightarrow 2^{C\left(J_{n}, \mathbb{R}\right)}$ defined by

$$
(N y)=\left\{h \in C(J, \mathbb{R}): h(t)=y_{0}+\int_{0}^{n} G_{n}(t, s) v(s) d s\right\}
$$

where $v \in S_{F, y}^{1}$, and $G_{n}(t, s)$ is the Green's function given by (3.5). Clearly, from Lemma 8, the fixed points of N are solutions to (3.6)-(3.7). We shall show that N satisfies the assumptions of Bohnenblust-Karlins fixed point theorem. The proof will be given in several steps.

Let

$$
K=\left\{y \in C\left(J_{n}, \mathbb{R}\right),\|y\|_{n} \leq r\right\},
$$

where r is the constant given by $\left(\mathcal{H}_{3}\right)$. It is clear that K is a closed, convex subset of $C\left(J_{n}, \mathbb{R}\right)$.
Step1: $N(y)$ is convex for each $y \in K$.

Indeed, if h_{1}, h_{2} belong to $N(y)$, then there exist $v_{1}, v_{2} \in S_{F, y}^{1}$ such that for each $t \in J_{n}$ we have

$$
h_{i}(t)=y_{0}+\int_{0}^{n} G_{n}(t, s) v_{i}(s) d s, \quad i=1,2 .
$$

Let $0 \leq d \leq 1$. Then, for each $t \in J$, we have

$$
\left(d h_{1}+(1-d) h_{2}\right)(t)=\int_{0}^{n} G_{n}(t, s)\left(d v_{1}(s)+(1-d) v_{2}(s) d s\right.
$$

Since $S_{F, y}^{1}$ is convex (because F has convex values), we have

$$
d h_{1}+(1-d) h_{2} \in N(y)
$$

Step 2: $N(K)$ is bounded.
This is clear since $N(K) \subset K$ and K is bounded.
Step 3: $N(K)$ is equicontinuous.
Let $\xi_{1}, \xi_{2} \in J, \xi_{1}<\xi_{2}, y \in K$ and $h \in N(y)$, then

$$
\begin{aligned}
\left|h\left(\xi_{2}\right)-h\left(\xi_{1}\right)\right| & \leq \int_{0}^{n}\left|G\left(\xi_{2}, s\right)-G\left(\xi_{1}, s\right)\right| v(s) \mid d s \\
& \leq p_{n}^{*} \psi(r) \int_{0}^{n}\left|G_{n}\left(\xi_{2}, s\right)-G_{n}\left(\xi_{1}, s\right)\right| d s
\end{aligned}
$$

As $\xi_{1} \rightarrow \xi_{2}$, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude that $N: K \longrightarrow \mathcal{P}(K)$ is compact.

Step 4: N has a closed graph.
Let $y_{n} \rightarrow y_{*}, h_{n} \in N\left(y_{n}\right)$ and $h_{n} \rightarrow h_{*}$. We need to show that $h_{*} \in N\left(y_{*}\right)$. $h_{n} \in N\left(y_{n}\right)$ means that there exists $v_{n} \in S_{F, y_{n}}^{1}$ such that, for each $t \in J_{n}$,

$$
h_{n}(t)=y_{0}+\int_{0}^{n} G_{n}(t, s) v_{n}(s) d s
$$

We must show that there exists $v_{*} \in S_{F, y_{*}}^{1}$ such that, for each $t \in J_{n}$,

$$
h_{*}(t)=y_{0}+\int_{0}^{n} G_{n}(t, s) v^{*}(s) d s .
$$

We consider the continuous linear operator

$$
\Gamma: L^{1}\left(J_{n}, \mathbb{R}\right) \rightarrow C\left(J_{n}, \mathbb{R}\right),
$$

defined by

$$
(\Gamma v)(t)=\int_{0}^{n} G_{n}(t, s) v(s) d s
$$

Since $h_{n}(t)-y_{0} \in \Gamma\left(S_{F, y_{n}}^{1}\right),\left|\left(h_{n}(t)-y_{0}\right)-\left(h_{*}(t)-y_{0}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$ and $\Gamma \circ S_{F}^{1}$ has a closed graph, then

$$
h_{*}-y_{0} \in \Gamma\left(S_{F, y}^{1}\right)
$$

So

$$
h_{*} \in N\left(y_{*}\right) .
$$

Therefore, we deduce from Bohnenblust-Karlin fixed point theorem that N has a fixed point y_{n} in K which is a solution of BVP (3.6)-(3.7) with

$$
\left|y_{n}(t)\right| \leq r \text { for each } t \in J_{n}
$$

Diagonalization process

We now use the following diagonalization process. For $k \in \mathbb{N}$, let

$$
u_{k}(t)= \begin{cases}y_{k}(t), & t \in\left[0, n_{k}\right] \tag{3.8}\\ y_{k}\left(n_{k}\right) & t \in\left[n_{k}, \infty\right)\end{cases}
$$

Here $\left\{n_{k}\right\}_{k} \in \mathbb{N}^{*}$ is a sequence of numbers satisfying

$$
0<n_{1}<n_{2}<\ldots<n_{k}<\ldots \uparrow \infty
$$

Let $S=\left\{u_{k}\right\}_{k=1}^{\infty}$. Notice that

$$
\left|u_{k}(t)\right| \leq r \text { for } t \in\left[0, n_{1}\right], k \in \mathbb{N} .
$$

Also for $k \in \mathbb{N}$ and $t \in\left[0, n_{1}\right]$ we have

$$
u_{n_{k}}(t)=y_{0}+\int_{0}^{n_{1}} G_{n_{1}}(t, s) v_{n_{k}}(s) d s
$$

where $v_{n_{k}} \in S_{F, u_{n_{k}}}^{1}$ and thus, for $k \in \mathbb{N}$ and $t, x \in\left[0, n_{1}\right]$ we have

$$
u_{n_{k}}(t)-u_{n_{k}}(x)=\int_{0}^{n_{1}}\left[G_{n_{1}}(t, s)-G_{n_{1}}(x, s)\right] v_{n_{k}}(s) d s
$$

and by $\left(\mathcal{H}_{2}\right)$, we have

$$
\left|u_{n_{k}}(t)-u_{n_{k}}(x)\right| \leq p_{1}^{*} \psi(r) \int_{0}^{n_{1}}\left|G_{n_{1}}(t, s)-G_{n_{1}}(x, s)\right| d s
$$

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N_{1}^{*} of \mathbb{N} and a function $z_{1} \in C\left(\left[0, n_{1}\right], \mathbb{R}\right)$ with $u_{n_{k}} \rightarrow z_{1}$ in $C\left(\left[0, n_{1}\right], \mathbb{R}\right)$ as $k \rightarrow \infty$ through N_{1}^{*}. Let $N_{1}=N_{1}^{*} \backslash\{1\}$. Notice that

$$
\left|u_{n_{k}}(t)\right| \leq r \text { for } t \in\left[0, n_{2}\right], k \in \mathbb{N}
$$

Also for $k \in \mathbb{N}$ and $t, x \in\left[0, n_{2}\right]$ we have

$$
\left|u_{n_{k}}(t)-u_{n_{k}}(x)\right| \leq p_{2}^{*} \psi(r) \int_{0}^{n_{2}}\left|G_{n_{2}}(t, s)-G_{n_{2}}(x, s)\right| d s
$$

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N_{2}^{*} of N_{1} and a function $z_{2} \in C\left(\left[0, n_{2}\right], \mathbb{R}\right)$ with $u_{n_{k}} \rightarrow z_{2}$ in $C\left(\left[0, n_{2}\right], \mathbb{R}\right)$ as $k \rightarrow \infty$ through N_{2}^{*}. Note that $z_{1}=z_{2}$ on $\left[0, n_{1}\right]$ since $N_{2}^{*} \subseteq N_{1}$. Let $N_{2}=N_{2}^{*} \backslash\{2\}$. Proceed inductively to obtain for $m \in\{3,4, \ldots\}$ a subsequence N_{m}^{*} of N_{m-1} and a function $z_{m} \in C\left(\left[0, n_{m}\right], \mathbb{R}\right)$ with $u_{n_{k}} \rightarrow z_{m}$ in $C\left(\left[0, n_{m}\right], \mathbb{R}\right)$ as $k \rightarrow \infty$ through N_{m}^{*}. Let $N_{m}=N_{m}^{*} \backslash\{m\}$.
Define a function y as follows. Fix $t \in(0, \infty)$ and let $m \in \mathbb{N}$ with $s \leq n_{m}$. Then define $y(t)=z_{m}(t)$. Then $y \in C([0, \infty), \mathbb{R}), y(0)=y_{0}$ and $|y(t)| \leq r$ for $t \in[0, \infty)$. Again fix $t \in[0, \infty)$ and let $m \in \mathbb{N}$ with $s \leq n_{m}$. Then for $n \in N_{m}$ we have

$$
u_{n_{k}}(t)=y_{0}+\int_{0}^{n_{m}} G_{n_{m}}(t, s) v_{n_{k}}(s) d s
$$

Let $n_{k} \rightarrow \infty$ through N_{m} to obtain

$$
z_{m}(t)=y_{0}+\int_{0}^{n_{m}} G_{m}(x, s) v_{m}(s) d s
$$

i.e

$$
y(t)=y_{0}+\int_{0}^{n_{m}} G_{n_{m}}(t, s) v(s) d s
$$

where $v_{m} \in S_{F, z_{m}}^{1}$.
We can use this method for each $x \in\left[0, n_{m}\right]$, and for each $m \in \mathbb{N}$. Thus

$$
D^{\alpha} y(t) \in F(t, y(t)), \text { for } t \in\left[0, n_{m}\right]
$$

for each $m \in \mathbb{N}$ and $\alpha \in(1,2]$.

4 An example

Consider the boundary value problem

$$
\begin{equation*}
{ }^{c} D^{\alpha} y(t) \in F(t, y(t)), \text { for } t \in J=[0, \infty), \quad 1<\alpha \leq 2, \tag{4.1}
\end{equation*}
$$

Surveys in Mathematics and its Applications 5 (2010), 99 - 111

$$
\begin{equation*}
y(0)=1, y \text { is bounded on }[0, \infty) \tag{4.2}
\end{equation*}
$$

where ${ }^{c} D^{\alpha}$ is the Caputo fractional derivative. Set

$$
F(t, y)=\left\{v \in \mathbb{R}: f_{1}(t, y) \leq v \leq f_{2}(t, y)\right\}
$$

where $f_{1}, f_{2}: J \times \mathbb{R} \rightarrow \mathbb{R}$ are measurable in t. We assume that for each $t \in J, f_{1}(t, \cdot)$ is lower semi-continuous (i.e, the set $\left\{y \in \mathbb{R}: f_{1}(t, y)>\mu\right\}$ is open for each $\mu \in \mathbb{R}$), and assume that for each $t \in J, f_{2}(t, \cdot)$ is upper semi-continuous (i.e the set $\{y \in$ $\left.\mathbb{R}: f_{2}(t, y)<\mu\right\}$ is open for each $\left.\mu \in \mathbb{R}\right)$. Assume that there exists $p \in C\left(J, \mathbb{R}^{+}\right)$ and $\delta \in(0,1)$ such that

$$
\max \left(\left|f_{1}(t, y)\right|,\left|f_{2}(t, y)\right|\right) \leq p(t)|y|^{\delta}, \quad t \in J, \text { and all } y \in \mathbb{R}
$$

It is clear that F is compact and convex valued, and it is upper semi-continuous (see [16]). Also conditions $\left(\mathcal{H}_{1}\right)$ and $\left(\mathcal{H}_{2}\right)$ are satisfied with

$$
\psi(u)=u^{\delta}, \text { for each } u \in[0, \infty)
$$

From (3.5) we have for $s \leq t$

$$
\int_{0}^{t} G_{n}(t, s) d s=\frac{t}{\Gamma(\alpha-1)(\alpha-1)}\left[(n-t)^{(\alpha-1)}-n^{(\alpha-1)}\right]+\frac{t^{\alpha}}{\alpha \Gamma(\alpha)}
$$

and for $t \leq s$

$$
\int_{t}^{n} G_{n}(t, s) d s=\frac{-t}{(\alpha-1) \Gamma(\alpha-1)}(n-t)^{\alpha-1}
$$

Also since

$$
\lim _{c \rightarrow \infty} \frac{c}{1+p_{n}^{*} \psi(c) \tilde{G}_{n}}=\lim _{c \rightarrow \infty} \frac{c}{\psi(c)}=\lim _{c \rightarrow \infty} \frac{c}{c^{\delta}}=\infty
$$

then there exists $r>0$ such that

$$
\frac{r}{1+p_{n}^{*} \psi(r) \tilde{G}_{n}} \geq 1
$$

Hence $\left(\mathcal{H}_{3}\right)$ is satisfied. Then by Theorem 12, BVP (4.1)-(4.2) has a bounded solution on $[0, \infty)$.
Acknowledgement. The authors are grateful to the referee of his/her remarks.

References

[1] R.P Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (3) (2010), 973-1033.
[2] R.P. Agarwal, M. Benchohra, S. Hamani and S. Pinelas, Boundary value problem for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. (to appear).
[3] R.P Agarwal and D. O' Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 2001. MR1845855(2002g:34058). Zbl 0988.34002.
[4] R.P Agarwal and D. O' Regan, Boundary value problems of nonsingular type on the semi-infinite interval, Tohoku. Math. J. 51 (1999), 391-397. MR1707763(2000f:34033). Zbl 0942.34026.
[5] A. Arara, M. Benchohra, N. Hamidi and J.J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal. TMA 72 (2010), 580-586. MR2579326(2001m:22005). Zbl 1179.26015.
[6] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990. MR1048347(91d:49001). Zbl 0713.49021.
[7] A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional differential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440. MR2368194(2008j:34099). Zbl 1148.34042.
[8] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470. MR2282996(2008b:34158). Zbl 1175.34080.
[9] M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal. 87 (7) (2008), 851-863. MR2458962(2009g:34033). Zbl 05373332.
[10] M. Benchohra and S. Hamani, Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Methods Nonlinear Anal. 32 (1) (2008), 115-130. MR2466806(2009h:34012). Zbl 1180.26002.
[11] M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12. MR2390179(2009b:34188). Zbl 1157.26301.
[12] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350. MR2386501(2008m:34182). Zbl 05242627.

Surveys in Mathematics and its Applications 5 (2010), 99 - 111
[13] H.F. Bohnenblust and S. Karlin, On a theorem of ville. Contribution to the theory of games.155-160, Annals of Mathematics Studies, no. 24. Priceton University Press, Princeton. N. G. 1950. MR0041415(12,844c). Zbl 0041.25701.
[14] Y.-K. Chang and J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model. 49 (2009), 605-609. MR2483665(2009m:34020). Zbl 1165.34313.
[15] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in "Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.
[16] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, BerlinNew York, 1992. MR1189795(94b:34026). Zbl 0760.34002.
[17] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46-53.
[18] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. MR1890104(2002j:00009). Zbl 0998.26002.
[19] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (5) (2006), 765-772.
[20] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. MR1485775(98k:47001). Zbl 0887.47001.
[21] A.A. Kilbas, Hari M. Srivastava and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. MR2218073(2007a:34002). Zbl 1092.45003.
[22] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009. Zbl 05674847.
[23] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. MR0196178(33\#4370). Zbl 0151.10703.
[24] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186.

Surveys in Mathematics and its Applications 5 (2010), 99 - 111
[25] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. MR1219954(94e:26013). Zbl 0789.26002.
[26] A. Ouahab, Some results for fractional boundary value problem of differential inclusions, Nonlinear Anal. 69 (11) (2008), 3877-3896. MR2463341(2009h:34014). Zbl 1169.34006.
[27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022(99m:26009). Zbl 0924.34008.
[28] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386. MR1967839(2004k:26011a). Zbl 1042.26003.
[29] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. MR1347689(96d:26012). Zbl 0818.26003.

Mouffak Benchohra
Laboratory of Mathematics, University of Sidi Bel Abbès, P.O Box 89, Sidi Bel-Abbès, 22000, Algeria.
e-mail: benchohra@univ-sba.dz

Naima Hamidi
Laboratory of Mathematics, University of Sidi Bel Abbès, P.O Box 89, Sidi Bel-Abbès, 22000, Algeria.
e-mail: hamidi.naima@yahoo.fr

[^0]: 2010 Mathematics Subject Classification: 26A33, 26A42, 34A60, 34B15.
 Keywords: Boundary value problem; fractional order differential inclusions; fixed point; infinite intervals; diagonalization process.

