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FRACTIONAL ORDER DIFFERENTIAL
INCLUSIONS ON THE HALF-LINE

Mouffak Benchohra and Naima Hamidi

Abstract. We are concerned with the existence of bounded solutions of a boundary value

problem on an unbounded domain for fractional order differential inclusions involving the Caputo

fractional derivative. Our results are based on the fixed point theorem of Bohnnenblust-Karlin

combined with the diagonalization method.

1 Introduction

This paper deals with the existence of bounded solutions for boundary value problems
(BVP for short) for fractional order differential inclusions of the form

cDαy(t) ∈ F (t, y(t)), t ∈ J := [0,∞), (1.1)

y(0) = y0, y is bounded on J, (1.2)

where cDα is the Caputo fractional derivative of order α ∈ (1, 2], F : J×R → P(R) is
a multivalued map with compact, convex values (P(R) is the family of all nonempty
subsets of R), y0 ∈ R.

Fractional Differential equations have gained considerable importance due to
their application in various sciences, such as physics, mechanics, chemistry, engineering,
control, etc. (see [15, 17, 19, 18, 24, 27, 28]).

Recently, there has been a significant development in the study of ordinary and
partial differential equations and inclusions involving fractional derivatives, see the
monographs of Kilbas et al. [21], Lakshmikantham et al. [22], Miller and Ross [25],
Podlubny [27], Samko et al. [29] and the papers by Agarwal et al. [1], Belarbi et al.
[7, 8], Benchohra et al. [9, 10, 11, 12], Chang and Nieto [14], Diethelm et al. [15],
and Ouahab [26].

Agarwal et al. [2] have considered a class of boundary value problems involving
Riemann-Liouville fractional derivative on the half line. They used the diagonalization
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process combined with the nonlinear alternative of Leray- Schauder type. This paper
continues this study by considering a boundary value problem with the Caputo
fractional derivative. We use the classical fixed point theorem of Bohnnenblust-
Karlin [13] combined with the diagonalization process widely used for integer order
differential equations; see for instance [3, 4]. Our results extend to the multivalued
case those considered recently by Arara et al. [5].

2 Preliminary facts

We now introduce notations, definitions, and preliminary facts that will be used in
the remainder of this paper.
Let T > 0 and J := [0, T ]. C(J,R) is the Banach space of all continuous functions
from J into R with the usual norm

‖y‖ = sup{|y(t)| : 0 ≤ t ≤ T}.

L1(J,R) denote the Banach space of functions y : J −→ R that are Lebesgue
integrable with the norm

‖y‖L1 =
∫ T

0
|y(t)|dt.

AC1(J,R) denote the space of differentiable functions whose first derivative y′ is
absolutely continuous.

2.1 Fractional derivatives

Definition 1. ([21, 27]). Given an interval [a, b] of R. The fractional (arbitrary)
order integral of the function h ∈ L1([a, b],R) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ ϕα](t), where
ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, where δ
is the delta function.

Definition 2. ([21]). For a given function h on the interval [a, b], the Caputo
fractional-order derivative of h, is defined by

(cDα
a+h)(t) =

1
Γ(n− α)

∫ t

a
(t− s)m−α−1h(m)(s)ds,

where m = [α] + 1.
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Fractional Order Differential Inclusions 101

More details on fractional derivatives and their properties can be found in [21, 27]

Lemma 3. (Lemma 2.22 [21]). Let α > 0, then the differential equation

cDαh(t) = 0

has solutions

h(t) = c0 + c1t+ c2t
2 + ....+ cm−1t

m−1, ci ∈ R, i = 0, 1, 2, ....,m− 1, m = [α] + 1.

Lemma 4. (Lemma 2.22 [21]). Let α > 0, then

Iα cDαh(t) = h(t) + c0 + c1t+ c2t
2 + ....+ cm−1t

m−1, (2.1)

for arbitrary ci ∈ R, i = 0, 1, 2, ....,m− 1, m = [α] + 1.

2.2 Set-valued maps

Let X and Y be Banach spaces. A set-valued map G : X → P(Y ) is said to be
compact if G(X) = ¯⋃

{G(y); y ∈ X} is compact. G has convex (closed, compact)
values if G(y) is convex(closed, compact) for every y ∈ X. G is bounded on bounded
subsets of X if G(B) is bounded in Y for every bounded subset B of X. A set-valued
map G is upper semicontinuous (usc for short) at z0 ∈ X if for every open set O
containing Gz0, there exists a neighborhood V of z0 such that G(V ) ⊂ O. G is usc
on X if it is usc at every point of X if G is nonempty and compact-valued then G
is usc if and only if G has a closed graph. The set of all bounded closed convex and
nonempty subsets of X is denoted by Pb,cl,c(X). A set-valued map G : J → Pcl(X)
is measurable if for each y ∈ X, the function t 7→ dist(y,G(t)) is measurable on
J. If X ⊂ Y, G has a fixed point if there exists y ∈ X such that y ∈ Gy. Also,
‖G(y)‖P = sup{|x|;x ∈ G(y)}. A multivalued map G : J → Pcl(R) is said to be
measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of Aubin and
Frankowska [6], Deimling [16] and Hu and Papageorgiou [20].

Definition 5. A multivalued map F : J ×R → P(R) is said to be L1-Carathéodory
if

(i) t 7−→ F (t, y) is measurable for each x ∈ R;

(ii) x 7−→ F (t, y) is upper semicontinuous for almost all t ∈ J ;

(iii) for each q > 0, there exists ϕq ∈ L1(J,R+) such that

‖F (t, x)‖P = sup{|v| : v ∈ F (t, x)} ≤ ϕq(t) for all |x| ≤ q and for a.e. t ∈ J.
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The multivalued map F is said of Carathéodory if it satisfies (i) and (ii).
For each y ∈ C(J,R), define the set of selections of F by

S1
F,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Definition 6. By a solution of BVP (1.1)-(1.2) we mean a function y ∈ AC1(J,R)
such that

cDαy(t) = g(t), t ∈ J, 1 < α ≤ 2, (2.2)

y(0) = y0, y bounded on J, (2.3)

where g ∈ S1
F,y.

Remark 7. Note that for an L1-Carathéodory multifunction F : J × R → Pcl(R)
the set S1

F,y is not empty (see [23]).

Lemma 8. ( Bohnenblust-Karlin)([13]). Let X be a Banach space and K ∈ Pcl,c(X)
and suppose that the operator G : K → Pcl,c(K) is upper semicontinuous and the
set G(K) is relatively compact in X. Then G has a fixed point in K.

3 Main result

We first address a boundary value problem on a bounded domain. Let n ∈ N, and
consider the boundary value problem

cDαy(t) ∈ F (t, y(t)), t ∈ Jn := [0, n], 1 < α ≤ 2, (3.1)

y(0) = y0, y′(n) = 0. (3.2)

Let h : Jn → R be continuous, and consider the linear fractional order differential
equation

cDαy(t) = h(t), t ∈ Jn, 1 < α ≤ 2. (3.3)

We shall refer to (3.3)-(3.2) as (LP).
By a solution to (LP) we mean a function y ∈ AC1(Jn,R) that satisfies equation

(3.3) on Jn and condition (3.2).
We need the following auxiliary result:

Lemma 9. A function y is a solution of the fractional integral equation

y(t) = y0 +
∫ n

0
Gn(t, s)h(s)ds, (3.4)

if and only if y is a solution of (LP), where G(t, s) is the Green’s function defined
by

Gn(t, s) =

{ −t(n−s)α−2

Γ(α−1) + (t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ n,
−t(n−s)α−2

Γ(α−1) , 0 ≤ t ≤ s < n.
(3.5)
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Proof. Let y ∈ C(Jn,R) be a solution to (LP). Using Lemma 4, we have that

y(t) = Iαh(t)− c0 − c1t =
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds− c0 − c1t,

for arbitrary constants c0 and c1. We have by derivation

y′(t) =
∫ t

0

(t− s)α−2

Γ(α− 1)
h(s)ds− c1.

Applying the boundary conditions (3.2), we find that

c0 = −y0,

c1 =
∫ n

0

(n− s)α−2

Γ(α− 1)
h(s)ds.

Reciprocally, let y ∈ C(Jn,R) satisfying (3.4), then

y(t) = y0 +
∫ t

0

[
−t(n− s)α−2

Γ(α− 1)
+

(t− s)α−1

Γ(α)

]
h(s)ds+

∫ n

t

−t(n− s)α−2

Γ(α− 1)
h(s)ds.

Then y(0) = y0 and

y′(t) =
∫ n

0

−(n− s)α−2

Γ(α− 1)
h(s)ds+

∫ t

0

(t− s)α−2

Γ(α− 1)
h(s)ds.

Thus, y′(n) = 0 and

cDα−1y(t) =c Dαy(t) =c Dα−1

∫ t

0

(t− s)α−2

Γ(α− 1)
h(s)ds =c Dα−1Iα−1h(t).

Remark 10. For each n > 0, the function t ∈ Jn 7→
∫ n
0 |Gn(t, s)|ds is continuous

on [0, n], and hence is bounded. Let

G̃n = sup
{∫ n

0
|Gn(t, s)|ds, t ∈ Jn

}
.

Definition 11. A function y ∈ AC1(Jn,R) is said to be a solution of (3.1)–(3.2)
if there exists a function v ∈ L1(Jn,R) with v(t) ∈ F (t, y(t)), for a.e. t ∈ Jn, such
that the differential equation cDαy(t) = v(t) on Jn and

y(0) = y0, y
′(n) = 0

are satisfied.
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Theorem 12. Assume the following hypotheses hold:

(H1) F : Jn × R → P(R) is Carathéodory with compact convex values,

(H2) there exist p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and nondecreasing
such that

‖F (t, u)‖P ≤ p(t)ψ(|u|) for t ∈ Jn and each u ∈ R;

(H3) There exists a constant r > 0 such that

r ≥ |y0|+ p∗nψ(r)G̃n,

where
p∗n = sup{p(s), s ∈ Jn}.

Then BVP (3.1)–(3.2) has at least one solution on Jn with |y(t)| ≤ r for each
t ∈ Jn.

Proof. Fix n ∈ N and consider the boundary value problem

Dαy(t) ∈ F (t, y(t)), t ∈ Jn, 1 < α ≤ 2, (3.6)

y(0) = y0, y
′(n) = 0. (3.7)

We begin by showing that (3.6)-(3.7) has a solution yn ∈ C(Jn,R) with

|yn(t)| ≤ r for each t ∈ Jn.

Consider the operator N : C(Jn,R) −→ 2C(Jn,R) defined by

(Ny) =
{
h ∈ C(J,R) : h(t) = y0 +

∫ n

0
Gn(t, s)v(s)ds

}
where v ∈ S1

F,y, and Gn(t, s) is the Green’s function given by (3.5). Clearly, from
Lemma 8, the fixed points of N are solutions to (3.6)–(3.7). We shall show that
N satisfies the assumptions of Bohnenblust-Karlins fixed point theorem. The proof
will be given in several steps.

Let
K = {y ∈ C(Jn,R), ‖y‖n ≤ r},

where r is the constant given by (H3). It is clear that K is a closed, convex subset
of C(Jn,R).
Step1: N(y) is convex for each y ∈ K.
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Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ S1
F,y such that for each

t ∈ Jn we have

hi(t) = y0 +
∫ n

0
Gn(t, s)vi(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) =
∫ n

0
Gn(t, s)(dv1(s) + (1− d)v2(s)ds.

Since S1
F,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N(K) is bounded.

This is clear since N(K) ⊂ K and K is bounded.

Step 3: N(K) is equicontinuous.

Let ξ1, ξ2 ∈ J, ξ1 < ξ2, y ∈ K and h ∈ N(y), then

|h(ξ2)− h(ξ1)| ≤
∫ n
0 |G(ξ2, s)−G(ξ1, s)|v(s)|ds

≤ p∗nψ(r)
∫ n
0 |Gn(ξ2, s)−Gn(ξ1, s)|ds.

As ξ1 → ξ2, the right-hand side of the above inequality tends to zero. As a
consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude
that N : K −→ P(K) is compact.

Step 4: N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ S1

F,yn
such that, for each t ∈ Jn,

hn(t) = y0 +
∫ n

0
Gn(t, s)vn(s)ds.

We must show that there exists v∗ ∈ S1
F,y∗

such that, for each t ∈ Jn,

h∗(t) = y0 +
∫ n

0
Gn(t, s)v∗(s)ds.

We consider the continuous linear operator

Γ : L1(Jn,R) → C(Jn,R),
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defined by

(Γv)(t) =
∫ n

0
Gn(t, s)v(s)ds.

Since hn(t)− y0 ∈ Γ(S1
F,yn

), |(hn(t)− y0)− (h∗(t)− y0)| → 0 as n→∞ and Γ ◦ S1
F

has a closed graph, then
h∗ − y0 ∈ Γ(S1

F,y).

So
h∗ ∈ N(y∗).

Therefore, we deduce from Bohnenblust-Karlin fixed point theorem that N has a
fixed point yn in K which is a solution of BVP (3.6)–(3.7) with

|yn(t)| ≤ r for each t ∈ Jn.

Diagonalization process

We now use the following diagonalization process. For k ∈ N, let

uk(t) =
{
yk(t), t ∈ [0, nk],
yk(nk) t ∈ [nk,∞).

(3.8)

Here {nk}k ∈ N∗ is a sequence of numbers satisfying

0 < n1 < n2 < . . . < nk < . . . ↑ ∞.

Let S = {uk}∞k=1. Notice that

|uk(t)| ≤ r for t ∈ [0, n1], k ∈ N.

Also for k ∈ N and t ∈ [0, n1] we have

unk
(t) = y0 +

∫ n1

0
Gn1(t, s)vnk

(s)ds,

where vnk
∈ S1

F,unk
and thus, for k ∈ N and t, x ∈ [0, n1] we have

unk
(t)− unk

(x) =
∫ n1

0
[Gn1(t, s)−Gn1(x, s)]vnk

(s)ds

and by (H2), we have

|unk
(t)− unk

(x)| ≤ p∗1ψ(r)
∫ n1

0
|Gn1(t, s)−Gn1(x, s)|ds.
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The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
1 of N and a

function z1 ∈ C([0, n1],R) with unk
→ z1 in C([0, n1],R) as k →∞ through N∗

1 . Let
N1 = N∗

1 \{1}. Notice that

|unk
(t)| ≤ r for t ∈ [0, n2], k ∈ N.

Also for k ∈ N and t, x ∈ [0, n2] we have

|unk
(t)− unk

(x)| ≤ p∗2ψ(r)
∫ n2

0
|Gn2(t, s)−Gn2(x, s)|ds.

The Arzelà-Ascoli Theorem guarantees that there is a subsequence N∗
2 of N1 and

a function z2 ∈ C([0, n2],R) with unk
→ z2 in C([0, n2],R) as k → ∞ through

N∗
2 . Note that z1 = z2 on [0, n1] since N∗

2 ⊆ N1. Let N2 = N∗
2 \{2}. Proceed

inductively to obtain for m ∈ {3, 4, ...} a subsequence N∗
m of Nm−1 and a function

zm ∈ C([0, nm],R) with unk
→ zm in C([0, nm],R) as k → ∞ through N∗

m. Let
Nm = N∗

m\{m}.
Define a function y as follows. Fix t ∈ (0,∞) and let m ∈ N with s ≤ nm. Then
define y(t) = zm(t). Then y ∈ C([0,∞),R), y(0) = y0 and |y(t)| ≤ r for t ∈ [0,∞).
Again fix t ∈ [0,∞) and let m ∈ N with s ≤ nm. Then for n ∈ Nm we have

unk
(t) = y0 +

∫ nm

0
Gnm(t, s)vnk

(s)ds,

Let nk →∞ through Nm to obtain

zm(t) = y0 +
∫ nm

0
Gm(x, s)vm(s)ds,

i.e
y(t) = y0 +

∫ nm

0
Gnm(t, s)v(s)ds,

where vm ∈ S1
F,zm

.
We can use this method for each x ∈ [0, nm], and for each m ∈ N. Thus

Dαy(t) ∈ F (t, y(t)), for t ∈ [0, nm]

for each m ∈ N and α ∈ (1, 2].

4 An example

Consider the boundary value problem

cDαy(t) ∈ F (t, y(t)), for t ∈ J = [0,∞), 1 < α ≤ 2, (4.1)
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y(0) = 1, y is bounded on [0,∞), (4.2)

where cDα is the Caputo fractional derivative. Set

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},

where f1, f2 : J×R → R are measurable in t. We assume that for each t ∈ J, f1(t, ·)
is lower semi-continuous (i.e, the set {y ∈ R : f1(t, y) > µ} is open for each µ ∈ R),
and assume that for each t ∈ J, f2(t, ·) is upper semi-continuous (i.e the set {y ∈
R : f2(t, y) < µ} is open for each µ ∈ R). Assume that there exists p ∈ C(J,R+)
and δ ∈ (0, 1) such that

max(|f1(t, y)|, |f2(t, y)|) ≤ p(t)|y|δ, t ∈ J, and all y ∈ R.

It is clear that F is compact and convex valued, and it is upper semi-continuous (see
[16]). Also conditions (H1) and (H2) are satisfied with

ψ(u) = uδ, for each u ∈ [0,∞).

From (3.5) we have for s ≤ t∫ t

0
Gn(t, s)ds =

t

Γ(α− 1)(α− 1)
[(n− t)(α−1) − n(α−1)] +

tα

αΓ(α)

and for t ≤ s ∫ n

t
Gn(t, s)ds =

−t
(α− 1)Γ(α− 1)

(n− t)α−1.

Also since
lim

c→∞

c

1 + p∗nψ(c)G̃n

= lim
c→∞

c

ψ(c)
= lim

c→∞

c

cδ
= ∞,

then there exists r > 0 such that

r

1 + p∗nψ(r)G̃n

≥ 1.

Hence (H3) is satisfied. Then by Theorem 12, BVP (4.1)-(4.2) has a bounded
solution on [0,∞).
Acknowledgement. The authors are grateful to the referee of his/her remarks.
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