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COMMON FIXED POINT THEOREM FOR HYBRID
PAIRS OF R-WEAKLY COMMUTING MAPPINGS

R. K. Saini, Sanjeev Kumar and Peer Mohammed

Abstract. In this paper we established a common fixed point theorem for four mappings f, g

(crisp) and S, T (fuzzy) of R — weakly commuting mapping in a metric space.

1 Introduction

After the introduction of fuzzy sets by Zadeh [17], Butnariu [3], Chitra [5], Heilpern
[6], Lee and Cho[9], Som [15], and others introduced the concept of fuzzy mappings
and proved a fixed point theorem for fuzzy mappings. In 1975, Weiss [16], initiated
the fixed point of fuzzy mappings. In 1987, Bose and Sahani [2] gave an improved
version of Heilpern. In 2000, Arora and Sharma [1], proved a common fixed point
theorem of fuzzy mappings satisfying a different inequality. Heilpern, Bose and
Sahani and Arora and Sharma all considered fuzzy fixed point theorems in a linear
metric space settings. In this series, recently Rashwan & Ahmed [14] proved a
common fixed point theorem for a pair of fuzzy mappings.

A fuzzy function is a generalization of the concept of classical function. A
classical function f is a correspondence from the domain D of definition of the
function f into a space S; f(D) C S is called the range of f. Different features of
the classical concepts of a function can be considered to be fuzzy rather than crisp.
Therefore, different degrees of fuzzification of the classical notion of a function are
conceivable.

(1) There can be a crisp mapping from a fuzzy set, which carries along the
fuzziness of the domain and therefore generates a fuzzy set. The image of a crisp
argument would again be crisp.

(2) The mapping itself can be fuzzy, thus blurring the image of a crisp
argument. This we shall call a fuzzy function or fuzzy mapping.

(3) Ordinary functions can have fuzzy properties or be contained by fuzzy
constraints.

In this paper first the coincidence point of a crisp mapping and a fuzzy mapping
has been defined. Then R — weakly commutativity is introduced for a pair of crisp
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mapping & a fuzzy mapping (see [7, 8, 12, 13]). At last, a common coincidence
points theorem has been proved for the combinations of crisp mappings & fuzzy
mappings together using the notion of R — weakly commuting mappings.

2 Preliminaries

Here we cite briefly some definitions, lemmas and propositions noted in [14]. Let
(X, d) be a metric linear space. A fuzzy set in X is a function with domain X and
values in [0, 1]. If A is a fuzzy set and x € X, then the function values A(x) is called
the grade of membership of z in A. The a-level set of A denoted by A, is defined
by

Ay ={z: Alz) > aif a € (0,1]},
Ag={z: A(z) > 0}
where B denotes the closure of the set B.

Definition 1. A fuzzy set A in X is said to be an approximate quantity iff A is
compact and convex in X for each o € [0,1] and sup,ex A(z) = 1. Let F(X) be
the collection of all fuzzy sets in X and W(X) be a sub-collection of all approximate
quantities.

Definition 2. Let A, B € W(X), a € [0,1]. Then

o(A,B) = inf d(z,y),
pa(A,B)= _ inf —d(xy)
6a(A,B) = sup  d(z,y)
TEAN,YEBa
D.(A,B) = H(A,, B,) = max{ sup d(a, By), sup d(Aq.,b)}
a€Aa beBa

where H is the Hausdorff distance and D is called generalized Hausdorff distance
or metric in the collection CP(X) of all non empty compact subsets of X. Also for
CB(X), set of non-empty closed subset of X, as follows:

p(A, B) =suppa(4, B),

5(A, B) = sup 8a(A, B)

and
D(A, B) = sup Da(A, B)

It is noted that p, is non-decreasing function of a and thus p(A, B) = p1(A, B). In
particular if A = {z}, p({z}, B) = p1(z, B) = d(z, By).
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Definition 3. Let A,B € W(X). Then A is said to be more accurate than B (or
B includes A), denoted by A C B iff A(z) < B(z) for each x € X.
Let X be an arbitrary set and Y be any linear metric space. F' is called a fuzzy

mapping iff F is a mapping from the set X into W (Y') with membership function
F(x)(y). The function value F(x)(y) is the grade of membership of y in F(x).

Lemma 4. ([6]) Let x € X. A € W(X) and {z} be a fuzzy set with membership
function equal to characteristic function of the set {x}. Then x CA if and only if
pa(z, A) =0 for each o € [0, 1].

Lemma 5. ([6]) pa(2,A) < d(x,y) + pa(y, A) for any z,y € X.
Lemma 6. (/6]) If {zo} C A then po(x0, B) < Do(A, B) for each B € W(X).

Proposition 7. (/9]) Let (X,d) be a complete metric linear space and F : X —
W(X) be a fuzzy mapping and xo € X. Then there exists x1 € X such that x1 €
F(ﬂ?o)

Remark 8. Let J : X — X and F : X — W(X) such that U{F(X)}, C J(X) for
each o € [0,1]. Suppose J(X) is complete. Then, by an application of Proposition
2.1, it can be easily shown that for any chosen point xqg € X there exists a point
z1 € X such that {J(z1)} C F(xo).

Proposition 9. (/10]) If A,B € CP(X), a collection of all nonempty compact
subset i.e. A,B € CP(X) subset of X and a € A, then there exists b € B such that

d(a,b) < H(A,B)

Recently Rashwan and Ahmad [14] introduced the set G of all continuous functions
g:]0,00)% — [0, 00) with the following properties :

(i) g is non decreasing in 2"?, 374 4" and 5! variables.

(ii) If w,v € [0, 00) are such that u < g(v,v,u,u + v,0) or u < g(v,u,v,0,u + v)
then v < hv where 0 < h < 1 is a given constant.

(iii) If u € [0, 00) is such that u < g(u,0,0,u,u) then u = 0.

Then Rashwan and Ahmad proved the following theorem:

Theorem 10. Let X be a complete metric linear space and let Fy and Fa be fuzzy
mappings from X into W(X). If there is a g € G such that for all x,y € X

D(Fi(x), F2(y)) < gld(x,y), p(z, F1(x)), p(y, F2(y)), p(2, F2(y)), p(y, F1()]

then there exists z € X such that {z} C Fi(z) and z C Fy(z).
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3 Main result

First of all, we introduce the following definitions and examples:

Definition 11. Let I : X — X be a self mapping and F : X — W(X) a fuzzy
mapping. Then a point v € X 1is said to be coincidence point of I and F. If
{I(w)} C F(u) i.e. I(u) € {F(u)},.

Definition 12. The mappings I : X — X and F : X — W(X) are said to be R-
weakly commuting if for all x in X, I{F(x)}, € CP(X) and there exists a positive
number R such that

H(I{Fxz}, {FIz},) < Rd(Iz,{Fx},),

for all a € [0,1], where

{Fa}, ={y € X|F(x)(y) > a}.

Example 13. Let (X,d) be a metric space where X = [0,1] and d denote the usual
metric. Define the mapping I : X — X such that Ix = 5 for all x € X and
F: X — W(X) a fuzzy mapping such that for all z € [0,1], Fz is a fuzzy set on X
given by, for all x,y € [0,1],

0 if0 < yj &t
F(x = _ . 2
when0§a<%then

x

(Fa}, = [A(1+2),1], {Iz} = {5}

(Flz}, = (F (g))a = 1+ ], I{Fa}, = E(Hx),;]
and so,

H(I{Fa},, {PIs}o) ={|§ (1+3) - § @+ o) 1= 4]} =3,
and
d(Iz,{Fz}s) = 3

when &+ < a <1, then {Fz}, =[x+ (1 —2),1],
H{Fz}, =[2+%1-2),35]
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and

Now we have,

H(I{Fz},, {Flc},) =max {| (3 + o (1-3)) - (3 + § (1-2)) |, 3}
a 1 1
= max { g, 5}25
and
dIz,{Fz},)=%2+a(l-2z) > %2 + $(1 — 2) =3, whereégaél

Hence for R =1, we have H(I{Fz} ,{FIz},) < Rd({z,{Fz},) and so F,I are

R-weakly commuting.

07

Example 14. Let I : X — X be such that

x
1= {3}
and F : X — W(X) be defined as

0 if 0 < [ T
F(QT)(y)_{y—x ifr < yylg 1

Now, we have for all 0 < a <1,
{Fz}o =[x+ (1 —2x),1],

KFz},=[% + § (1-u),

D=
Pl

and
{(FIz},=[% + o (1-%), 1].

Then, similarly we get
H(I{Fa}, {FIz},) = L.

But d(Iz,{Fx},) = 5+ (1 — ), which can be made as small as possible by taking
a and x very small. Thus no R > 0 can serve the purpose. Hence F' and I are not
R - weakly commuting.

We prove the following theorem:

Theorem 15. Let I,J be mappings of a metric space X into itself and let Fy, Fs :
X — W(X) be fuzzy mappings. Let G be the set of all continuous functions g :
[0,00)% — [0, 00) with the following properties:

(i) g is non decreasing in 2", 37, 4™ and 5" variables;
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(i) If u,v € [0,00) are such that u < g(v,v,u,u~+v,0) oru < g(v,u,v,0,u+ v)
then u < hv where 0 < h < 1 s a given constant.

(i13) If u € [0, 00) is such that u < g(u,0,0,u,u) then u=0.

(iv) (a) U{F1X}, C J(X)

(b) {F>X}, C I(X) for each a € [0, 1],

(v) suppose there is a g € G such that for all x,y € X, and I, J, F1 and Fy satisfy
the following conditions:

D(lev ng) < g[d(l$, Jy)vp(lx>F1$)7p(Jy> ng),p(ll‘, F2y)7p(‘]y> F1$)]

and
(vi) the pairs Fi, I and Fy,J are R - weakly commuting. Suppose that one of
I(X) or J(X) is complete, then there exists z € X such that Iz C F1z and Jz C Fyz.

Proof. Let xg € X and suppose that J(X) is complete. Taking yo = [z¢ by Remark
8, and (a) in (iv) there exist points z1,y;1 € X such that {y1} = Jx; C Fjzp. For
this point y;, by Proposition 7, there exists a point y» € {Fyx1},. But, by (b) in
(iv) there exists xo € X such that {y2} = {Ix2} C Fyzy. Now by Proposition 9 and
condition (v), we obtain

d(y1,y2) < Di(Fizo, Fox) < D(Fizg, Foxy)
< gld(Ixo, Jz1), p(Iz0, Fix0), p(J21, Foz1), p(Ix0, Fox1), p(J21, Fi20)]
S g[d(y()a y1)7 d(y07y1)7d(y17 y2)7 d(y07y1) + d(yh Y2, )70}
which, by (ii) gives
d(y1,y2) < hd(yo,y1)-

Since {Faz1}1, {Fize}1 € CP(X) and y2 = Ixe € {Fox1}1 therefore, by proposition
2.2, there exists y3 € {Fiz2}1 € J(X) and hence there exists x3 € X such that
{ys} = {Jxs} C {Fiz2}1. Again

d(y2,y3) < hd(y1,y2).

Thus, by repeating application of Proposition 9, and (a) ,(b) in (iv), we construct a
sequence ¥y in X such that, for each K =0,1,2,......

{yar+1} = {J2ong1} € Fr(wor)

and
{yorto} = {Imopy2} C Fo(wopy1)-
and d(yk, yx+1) < hd(yk+1,yk). Then, as in proof of Theorem 15, in [3], the sequence

Yk, and hence any subsequence thereof, is Cauchy. Since J(X) is complete then
Jxopy1 — z = Jv for some v € X. Then

d(Izok, Jv) < d(Izok, Jxogt1) + d(Jxogi1, Jv) — 0 as k — oo.
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Hence Ixo, — Jv as k — oo.
Now, by Lemma 5, Lemma 6, and condition (v)

p(z, Fov) < d(z, Jxags1) + D(Fiazog, Fov)
< d(z, Jxoky1) + gld(Izak, Jv), p(Izok, Fraay), p(Ju, Fov), p(Ixak, Fov), p(Jv, Fizay)]
< d(z,Jxopy1) + gld(Ixak, 2), p(Y2k, Y2k+1), P(2, Fov), p(Ixok, Fov), d(2, yor+1)]
letting £ — oo it implies,
p(zy FQU) S 9(07 0,p(2, FQU),])(Z, FQU)a 0)

which, by (ii), yields that p(z, Fov) = 0. So by Lemma 4, we get {z} CFyv i.e.
Jv € {Fyv},. Since by (iv)(b), {F2(X)}; € I(X) and Jv € {Fyv}, therefore there
is a point u € X such that

Iu = Jv =z € {Fyov},.
Now, by Lemma 6, we have
p(Iu, Fiu) = p(Fiu, Iu) < Di(Fiu, Fpv) < D(Fiu, Fav)
< gld(Iu, Jv), p(Iu, Fyu), p(Jv, Fav), p(Iu, Fyv), p(Jv, Fiu)]
yielding thereby
p(Iu, Fiu) < g[0,p(Lu, F1u),0,0,p(Lu, Fiu)]
which, by (ii), gives p({u, Fiu) = 0. Thus, by Lemma 4, Iu C Fiu, i.e. Tu € {Fju},.
Now, by R-weakly commutativity of pairs £}, and Fs, J, we have
H(I{Fiu}y,{F1 Iu},) < Rd({u,{Fiu},) =0
H(J{Fyv},,{F>Jv},) < Rd(Jv,{Fhv},) =0

which gives I{Fiu}, = {Filu}, = {Fiz}, and {JFv}, = {FyJv}; = {Faz}
respectively.
But Iu € {Fiu}, and Jv € {Fyv}, implies

Iz =IIu € I{Fiu}, = {Fiz},
Jz = JJv € J{Fyv}, = {Fsz},.
Hence Iz C Fiz and Jz C F5z. Thus the theorem completes. O

Remark 16. If J(X) is complete, then in Theorem 15, it is sufficient that (iv)(b)
holds only for o = 1, because it becomes crisp set. Similarly if I(X) is complete then
(iv)(a) holds for o = 1, is sufficient to consider.

Corollary 17. If taking I = J =identity in Theorem 15, we get easily Theorem 10.
Acknowledgement. I pay my special thanks to referee for revision of the paper.
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